首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduce formulae in suitable form for the numerical computation of Mie coefficients and the scattered electrical field in the general case of a sphere with permitivity and permeability . The small particle limit is also investigated. We compute the extinction cross section of a negative index sphere, as well as intensity maps. Excitation of surface plasmons featuring narrow linewidths is observed, which can be attributed to the permitivity or the permeability of the sphere.  相似文献   

2.
Various techniques exerting mechanical stress on cells have been developed to investigate cellular responses to externally controlled stimuli. Fundamental mechanotransduction processes about how applied physical forces are converted into biochemical signals have often been examined by transmitting such forces through cells and probing its pathway at cellular levels. In fact, many cellular biomechanics studies have been performed by trapping (or immobilizing) individual cells, either attached to solid substrates or suspended in liquid media. In that context, we demonstrated two‐dimensional acoustic trapping, where a lipid droplet of 125 µm in diameter was directed transversely toward the focus (or the trap center) similar to that of optical tweezers. Under the influence of restoring forces created by a 30 MHz focused ultrasound beam, the trapped droplet behaved as if tethered to the focus by a linear spring. In order to apply this method to cellular manipulation in the Mie regime (cell diameter > wavelength), the availability of sound beams with its beamwidth approaching cell size is crucial. This can only be achieved at a frequency higher than 100 MHz. We define ultrasound beams in the frequency range from 100 MHz to a few GHz as ultrasound microbeams because the lateral beamwidth at the focus would be in the micron range. Hence a zinc oxide (ZnO) transducer that was designed and fabricated to transmit a 200 MHz focused sound beam was employed to immobilize a 10 µm human leukemia cell (K‐562) within the trap. The cell was laterally displaced with respect to the trap center by mechanically translating the transducer over the focal plane. Both lateral displacement and position trajectory of the trapped cell were probed in a two‐dimensional space, indicating that the retracting motion of these cells was similar to that of the lipid droplets at 30 MHz. The potential of this tool for studying cellular adhesion between white blood cells and endothelial cells was discussed, suggesting its capability as a single cell manipulator. Biotechnol. Bioeng. 2011; 108:1643–1650. © 2011 Wiley Periodicals, Inc.  相似文献   

3.
生物组织光散射等效颗粒模型及Mie相函数计算   总被引:2,自引:0,他引:2  
为研究生物组织的散射特性,将其从散射效果上等效为离散的球形散射体的集合,结合经典的Mie散射理论对生物组织散射相函数进行数值计算。计算结果表明:Mie散射相函数能够描述生物组织后向(大角度)散射光强振荡特性与等效粒径的对应关系,可为基于后向散射光的无创伤或微创伤诊疗提供理论依据;Mie散射相函数能够解释生物组织散射光空间分布与波长的相关性,为医学诊疗上入射光波长选择提供参考;合理选择集群散射体粒度分布参数,可实现对复杂生物组织散射相函数的精确描述。  相似文献   

4.
ABSTRACT

We review the group contribution Statistical Associating Fluid Theory with Mie interaction potentials (SAFT-γ Mie) approach for building coarse-grained models for molecular simulation of polymeric systems. In this top-down method, force field parameters for coarse-grained polymer models can be derived from thermodynamic information on constituent monomer units using the SAFT-γ Mie equation of state (EoS). This strategy can facilitate high-throughput computational screening of polymeric materials, with a corresponding states correlation expediting the force field fitting. Accurate and transferable non-bonded parameters linked to macroscopic thermodynamic data allow for calculation of properties beyond those obtainable from the EoS alone. To overcome limitations of SAFT-γ Mie regarding polymer chain stiffness and branching, hybrid top-down/bottom-up approaches have combined non-bonded parameters from SAFT-γ Mie with bond-stretching and angle-bending potentials from higher-resolution force fields. Our review critically evaluates the performance of recent SAFT-γ Mie polymer models, highlighting the strengths and weaknesses in the context of other equation of state and coarse-graining methods.  相似文献   

5.
Autofluorescence properties of tissues have been widely used to diagnose various types of malignancies. In this study, we measured the autofluorescence properties of H‐ras transfected murine fibroblasts and the counterpart control cells. The pair of cells is genetically identical except for the transfected H‐ras gene. We applied Monte Carlo simulations to evaluate the relative contributions of Rayleigh and Mie scattering effects towards fluorescence in an in vitro model system of normal and H‐ras transfected fibroblasts. The experimental results showed that fluorescence emission intensity was higher for normal cells than the malignant counterpart cells by about 30%. In normal cells, linearity in emission intensity was observed for cell densities of up to 1.0 × 106 cells/ml whereas for transformed cells it was up to 1.4 × 106 cells/ml. Nuclear volume changes give good account for the differences in the intrinsic fluorescence between normal and malignant cells. The Monte Carlo (MC) code, newly developed for this study, explains both predominant experimental features: the large fluorescence intensity differences between the transfected and the corresponding control cells as well as the phenomena of the red shift in the excitation spectra as a function of cell density. The contribution of Rayleigh scattering was found to be predominant compared to Mie scattering. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 132–140, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

6.
Specific absorption rates (SARs) were determined theoretically and experimentally for several spherical models of tissue exposed to electrical fields of TE101 mode in a rectangular cavity of 57.3 MHz resonant frequency. The approximate theoretical SAR can be calculated according to the Mie theory by superposition of four plane waves representing the fields excited in the cavity. The theoretical and thermographically determined SAR patterns in spheres with radii of 5, 7.5, and 10 cm and with conductivities of 0.1, 1, and 10 S/m were compared. For a sphere with radius less than 7.5 cm and conductivity less than 1 S/m, the SAR was quite uniform. When conductivity was increased to 10 S/m, the SAR patterns showed higher absorption in the periphery of the largest sphere (10-cm radius). These characteristics are important in evaluating the scaling technique of exposing a model of a human to very-high-frequency fields to obtain power absorption data in humans exposed to high-frequency or very-low-frequency fields.  相似文献   

7.
The electric field pulse shape and change in transmembrane potential produced at various points within a sphere by an intense, ultrawideband pulse are calculated in a four stage, analytical procedure. Spheres of two sizes are used to represent the head of a human and the head of a rat. In the first stage, the pulse is decomposed into its Fourier components. In the second stage, Mie scattering analysis (MSA) is performed for a particular point in the sphere on each of the Fourier components, and the resulting electric field pulse shape is obtained for that point. In the third stage, the long wavelength approximation (LWA) is used to obtain the change in transmembrane potential in a cell at that point. In the final stage, an energy analysis is performed. These calculations are performed at 45 points within each sphere. Large electric fields and transmembrane potential changes on the order of a millivolt are produced within the brain, but on a time scale on the order of nanoseconds. The pulse shape within the brain differs considerably from that of the incident pulse. Comparison of the results for spheres of different sizes indicates that scaling of such pulses across species is complicated.  相似文献   

8.
结合偏振门技术和米氏散射理论,建立了组织模型的偏振散射差分光谱理论模型.计算分析了粒子群的平均尺寸、相对折射率变化时后向偏振散射差分光谱的特征.结果表明,利用偏振门技术测量的差分光谱主要是来自表层粒子的光信号,偏振散射差分光谱对粒子平均尺寸及相对折射率的变化比较敏感,随着粒子平均尺寸的增加,光谱振荡频率将增加,而随着相对折射率的减小,光谱的振幅减小,且差分光强值减小.该方法对于早期癌症检测具有潜在应用意义.  相似文献   

9.
Spectroscopic analysis can provide valuable insights into morphological and biochemical cellular transformations caused by diseases. However, traditional spectroscopic methods and the corresponding spectral interpretation approaches have been challenged by the complexities of the cell shape, orientation, and internal structure. Here we present an elegant spectral interpretation model that enables accurate quantitative analysis of the UV-visible spectra of red blood cells (RBCs) parasitized by the lethal human malaria parasite, Plasmodium falciparum. The model is based on the modified Mie theory (MMT) approach that incorporates the effects of the nonsphericity and orientation and multilayered cell structure to account for complex composition of the infected RBCs (IRBCs). We determine the structure and composition of the IRBCs and address unresolved matters over the alterations induced by the intraerythrocytic development of P. falciparum. The results indicate deformation and swelling of the IRBCs during the trophozoite stage of P. falciparum that is followed by substantial shrinkage during the schizont stages. We determine that up to 90% depletion of hemoglobin from the RBC cytosol does not lead to a net loss of iron from the infected cells. We quantitatively follow the morphological changes in the parasites during the intraerythrocytic development by applying the interpretation model to the UV-visible spectroscopic measurements of the IRBCs. We expect this method of quantitative spectroscopic characterization of the diseased cells to have practical clinical utility for rapid diagnosis, therapeutic monitoring, and drug susceptibility testing.  相似文献   

10.
Infrared spectroscopy of single cells and tissue is affected by Mie scattering. During recent years, several methods have been proposed for retrieving pure absorbance spectra from such measurements, while currently no user‐friendly version of the state‐of‐the‐art algorithm is available. In this work, an open‐source code for correcting highly scatter‐distorted absorbance spectra of cells and tissues is presented, as well as several improvements of the latest version of the Mie correction algorithm based on extended multiplicative signal correction (EMSC) published by Konevskikh et al. In order to test the stability of the code, a set of apparent absorbance spectra was simulated. To this purpose, pure absorbance spectra based on a Matrigel spectrum are simulated. Scattering contributions where obtained by mimicking the scattering features observed in a set of experimentally obtained spectra . It can be concluded that the algorithm is not depending strongly on the reference spectrum used for initializing the algorithm and retrieves well the underlying pure absorbance spectrum. The calculation time of the algorithm is considerably improved with respect to the resonant Mie scattering EMSC algorithm used by the community today.   相似文献   

11.
Multiwavelength transmission spectra of microorganisms and cell suspensions consist of combined absorption and scattering phenomena resulting from the interaction of light with microorganisms or cells typically suspended in a nonabsorbing media. The distribution of intensities as a function of wavelength depends on the size, shape, and optical properties of the sample. The optical properties are functions of the chemical composition and the state of aggregation, or association, of the chromophoric groups contained in the microorganisms. This article explores the growth behavior of Escherichia coli from the perspective of multiwavelength UV-Vis spectroscopy. Experimentally, it is demonstrated that the spectral signatures of the microorganism evolve as a function of time. It is also demonstrated that the spectral changes observed during growth are consistent with data reported elsewhere. From the theoretical point of view, it is demonstrated that the spectral signatures can be adequately represented with an interpretation model based on light-scattering theory. The parameters from the interpretation model reflect changes in size and chemical composition known to take place in the microorganisms during growth.  相似文献   

12.
Mie scattering effects create serious problems for the interpretation of Fourier‐transform infrared spectroscopy spectra of single cells and tissues. During recent years, different techniques were proposed to retrieve pure absorbance spectra from spectra with Mie distortions. Recently, we published an iterative algorithm for correcting Mie scattering in spectra of single cells and tissues, which we called “the fast resonant Mie scatter correction algorithm.” The algorithm is based on extended multiplicative signal correction (EMSC) and employs a meta‐model for a parameter range of refractive index and size parameters. In the present study, we suggest several improvements of the algorithm. We demonstrate that the improved algorithm reestablishes chemical features of the measured spectra, and show that it tends away from the reference spectrum employed in the EMSC. We suggest strategies for choosing parameter ranges and other model parameters such as the number of principal components of the meta‐model and the number of iterations. We demonstrate that the suggested algorithm optimizes an error function of the refractive index in a forward Mie model. We suggest a stop criterion for the iterative algorithm based on the error function of the forward model.   相似文献   

13.
Noble metal, especially gold (Au) and silver (Ag) nanoparticles exhibit unique and tunable optical properties on account of their surface plasmon resonance (SPR). In this review, we discuss the SPR-enhanced optical properties of noble metal nanoparticles, with an emphasis on the recent advances in the utility of these plasmonic properties in molecular-specific imaging and sensing, photo-diagnostics, and selective photothermal therapy. The strongly enhanced SPR scattering from Au nanoparticles makes them useful as bright optical tags for molecular-specific biological imaging and detection using simple dark-field optical microscopy. On the other hand, the SPR absorption of the nanoparticles has allowed their use in the selective laser photothermal therapy of cancer. We also discuss the sensitivity of the nanoparticle SPR frequency to the local medium dielectric constant, which has been successfully exploited for the optical sensing of chemical and biological analytes. Plasmon coupling between metal nanoparticle pairs is also discussed, which forms the basis for nanoparticle assembly-based biodiagnostics and the plasmon ruler for dynamic measurement of nanoscale distances in biological systems.  相似文献   

14.
An understanding of the optical properties of biological media and cells is essential to the development of noninvasive optical studies of tissues. Unicellular organisms offer a unique opportunity to investigate the factors affecting light propagation, since they can be manipulated in ways impossible for more complex biological samples. In this study, we examined optical absorption and scattering properties of strongly multiple scattering yeast suspensions by means of near-infrared (NIR) time-resolved spectroscopy (TRS) and a sample substitution method. We determined the critical parameters for photon migration by varying the cell organelle content, the cell ploidy, the cell size, and the concentration of suspended cells. The results indicate that the photon absorption is insensitive to cell differentiation and that the cell volume is the primary factor determining light-scattering property.  相似文献   

15.
Recent genome-wide association studies have identified various dyslipidemia-related genetic variants. However, most studies were conducted in a cross-sectional manner. We thus performed longitudinal exome-wide association studies of dyslipidemia in a Japanese population. We used ~244,000 genetic variants and clinical data of 6022 Japanese individuals who had undergone annual health checkups for several years. After quality control, the association of dyslipidemia-related phenotypes with 24,691 single nucleotide polymorphisms (SNPs) was tested using the generalized estimating equation model. In total, 82 SNPs were significantly (P < 2.03 × 10?6) associated with dyslipidemia phenotypes. Of these SNPs, four (rs74416240 of TCHP, rs925368 of GIT2, rs7969300 of ATXN2, and rs12231744 of NAA25) and two (rs34902660 of SLC17A3 and rs1042127 of CDSN) were identified as novel genetic determinants of hypo-HDL- and hyper-LDL-cholesterolemia, respectively. A replication study using the cross-sectional data of 8310 Japanese individuals showed the association of the six identified SNPs with dyslipidemia-related traits.  相似文献   

16.
本文结合采用扫描和透射电子显微镜(包括冷冻断裂-蚀刻、超薄切片以及细胞化学染色法),研究了金鱼精子的超微结构特征,结果表明金鱼精子的质膜和核膜都具有区域特异性:1)精子质膜内大部分区域含有许多蛋白颗粒,但在特定区域内,蛋白颗粒呈有序排列,构成晶格状结构。2)精子头颈部和尾部均有液泡密集之处,凡是覆盖着液泡区的质膜内,几乎都不含有蛋白颗粒。3)液泡区能被细胞化学方法染成致密色,表明内含糖蛋白。4)核膜孔只集中存在于靠近颈部的核膜上,而其他部分则没有。本文对上述诸点进行了讨论。  相似文献   

17.
中华大蟾蜍长足的卵母细胞,经注入装载水相孕酮的红细胞膜泡,能被诱发成熟;直接注入水相孕酮的卵母细胞,无能恢复成熟分裂。将蛋白酶处理的红细胞制备成装载水相孕酮的膜泡,注入卵内,照样能诱发其成熟分裂;然而,分别用根皮素结合或磷脂酶A_2水解红细胞膜磷脂,制备的膜泡,虽亦包裹着水相孕酮,但注射的卵母细胞都未能被诱发成熟。这些结果表明,在通过红细胞膜转运孕酮诱发卵母细胞成熟过程中,红细胞膜上的某些膜蛋白可能不是必要的成份,而膜磷脂类却是关键成份,它不仅可能保证孕酮不被迅速代谢,且保证孕酮从卵母细胞内部诱发成熟分裂。  相似文献   

18.
This paper covers major events of the early history of chlorophyll research in the Russian Empire and the Soviet Union from 1771 until 1952, when the modern period of studies on photosynthesis began in full swing. Short biographical sketches of key scientists, reviews of their major research contributions and some selected photographs are included. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
利用超速离心和离子交换层析技术,从牛脊髓中分离纯化了神经丝蛋白三组分:NF-L,NF-M和NF-H。应用电镜负染色和金属投影方法研究神经丝的形态结构与NF-L的体外组装,结果表明:神经丝由10nm的核心纤维与外周的丝状突起组成;在近似生理条件下,NF-L可在60min内组装成10nm纤维,纤维由4根亚丝缠绕而成;在碱性缓冲液中,NaCl能促进NF-L装配成短纤维,这种10nm的短纤维无法连接成长纤维。  相似文献   

20.
视网膜起源于前脑泡,结构简单层次分明,因此常被视为脑的简化模型。但近期工作证明,视网膜包含的神经活性物质(神经递质、调质和神经肽)种类之多、分布之复杂并不亚于脑。尤其是无长突细胞不仅包含多种递质和肽类,而且还有递质与肽类或肽类与肽类在一个细胞中的共存。对视网膜神经递质、调质和神经肽的研究将是探索脑奥秘的有效途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号