首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Grappin P  Bouinot D  Sotta B  Miginiac E  Jullien M 《Planta》2000,210(2):279-285
The physiological characteristics of seed dormancy in Nicotiana plumbaginifolia Viv. are described. The level of seed dormancy is defined by the delay in seed germination (i.e the time required prior to germination) under favourable environmental conditions. A wild-type line shows a clear primary dormancy, which is suppressed by afterripening, whereas an abscisic acid (ABA)-deficient mutant shows a non-dormant phenotype. We have investigated the role of ABA and gibberellic acid (GA3) in the control of dormancy maintenance or breakage during imbibition in suitable conditions. It was found that fluridone, a carotenoid biosynthesis inhibitor, is almost as efficient as GA3 in breaking dormancy. Dry dormant seeds contained more ABA than dry afterripened seeds and, during early imbibition, there was an accumulation of ABA in dormant seeds, but not in afterripened seeds. In addition, fluridone and exogenous GA3 inhibited the accumulation of ABA in imbibed dormant seeds. This reveals an important role for ABA synthesis in dormancy maintenance in imbibed seeds. Received: 31 December 1998 / Accepted: 9 July 1999  相似文献   

3.
Seed germination of Agrostemma githago is prevented by inhibitors of protein and RNA synthesis. Thus protein as well as RNA synthesis are essential prerequisites for germination. Early protein synthesis of Agrostemnia embryos can be completely inhibited by cycloheximide and cordycepin. During the aging of seeds there is a considerable decrease in germination capacity and protein synthesis. In dormant and afterripened embryos of Agrostemma githago14C-leucine and 14C-uracil are incorporated in protein and RNA respectively with nearly the same intensity, whereas RNA and protein synthesis of dormant seeds and embryos starts earlier than in those subjected to afterripening. 3H-uracil-labelled RNA from dormant and afterripened embryos are able to hybridize on oligo-dT-cellulose to the same extent. There is a similarity in the protein pattern of dormant and afterripened embryos revealed by electrophoresis in polyacrylamide gels of double-labelled proteins. According to these results dormancy of Agrostemma githago is not caused by a general but by a specific metabolic block.  相似文献   

4.
Nondormant A. caudatus seeds germinated in the darkat temperatures between 20 and 35° but not at 45 °C.Incubation at this temperature for at least 10 h inhibited seedgermination over the temperature range 20 to 35 °C,temperatures previously suitable for germination. Thus incubation at 45°C induced secondary dormancy. Mechanical or chemicalscarification or exposure to pure oxygen caused complete or almost completegermination of dormant seeds although more slowly in comparison to nondormantseeds. Secondary dormant scarified seeds required a lower concentration of ABAthan nondormant seeds to inhibit germination. The high temperature, whichinduced dormancy, 45 °C, caused the seed coat to be partiallyresponsible for secondary dormancy. Involvement of ABA (synthesis orsensitivity) in the induction and/or maintenance of this dormancy should beconsidered.  相似文献   

5.
The Arabidopsis endosperm consists of a single cell layer surrounding the mature embryo and playing an essential role to prevent the germination of dormant seeds or that of nondormant seeds irradiated by a far red (FR) light pulse. In order to further gain insight into the molecular genetic mechanisms underlying the germination repressive activity exerted by the endosperm, a "seed coat bedding" assay (SCBA) was devised. The SCBA is a dissection procedure physically separating seed coats and embryos from seeds, which allows monitoring the growth of embryos on an underlying layer of seed coats. Remarkably, the SCBA reconstitutes the germination repressive activities of the seed coat in the context of seed dormancy and FR-dependent control of seed germination. Since the SCBA allows the combinatorial use of dormant, nondormant and genetically modified seed coat and embryonic materials, the genetic pathways controlling germination and specifically operating in the endosperm and embryo can be dissected. Here we detail the procedure to assemble a SCBA.  相似文献   

6.
The soybean callus assay was used to study the effect of high oxygen tensions on the cytokinin levels of Leucadendron daphnoides Meisn. seed, where dormancy is apparently due to the restricting effect of the seed coat on oxygen diffusion to the embryo. High oxygen tensions led to a six-fold increase in germination compared to seed incubated in air and resulted in significant increases in butanol soluble cytokinins prior to visible germination. It is suggested that the primary effect of oxygen is to increase the rate of respiration and thus, to provide the energy required for the synthesis of butanol soluble cytokinins which leads to cotyledon expansion and subsequent radicle elongation. Present indications are that untreated seeds remain dormant due to low concentrations of butanol soluble cytokinins in their embryos.  相似文献   

7.

Background and Aims

Lomatium dissectum (Apiaceae) is a perennial, herbaceous plant of wide distribution in Western North America. At the time of dispersal, L. dissectum seeds are dormant and have under-developed embryos. The aims of this work were to determine the requirements for dormancy break and germination, to characterize the type of seed dormancy, and to determine the effect of dehydration after embryo growth on seed viability and secondary dormancy.

Methods

The temperature requirements for embryo growth and germination were investigated under growth chamber and field conditions. The effect of GA3 on embryo growth was also analysed to determine the specific type of seed dormancy. The effect of dehydration on seed viability and induction of secondary dormancy were tested in seeds where embryos had elongated about 4-fold their initial length. Most experiments examining the nature of seed dormancy were conducted with seeds collected at one site in two different years. To characterize the degree of variation in dormancy-breaking requirements among seed populations, the stratification requirements of seeds collected at eight different sites were compared.

Key Results

Embryo growth prior to and during germination occurred at temperatures between 3 and 6 °C and was negligible at stratification temperatures of 0·5 and 9·1 °C. Seeds buried in the field and exposed to natural winter conditions showed similar trends. Interruption of the cold stratification period by 8 weeks of dehydration decreased seed viability by about 30 % and induced secondary dormancy in the remaining viable seeds. Comparison of the cold stratification requirements of different seed populations indicates that seeds collected from moist habitats have longer cold stratification requirements that those from semiarid environments.

Conclusions

Seeds of L. dissectum have deep complex morphophysiological dormancy. The requirements for dormancy break and germination reflect an adaptation to trigger germination in late winter.Key words: Apiaceae, cold stratification, Lomatium dissectum, morphophysiological dormancy, secondary dormancy, seed germination  相似文献   

8.
Abstract Seeds of Polemonium reptans var. reptans , a perennial herb of mesic deciduous forests in eastern North America, mature in late May-early June, and a high percentage of them are dormant. Seeds afterripened (came out of dormancy) during summer when kept in a nylon bag under leaves in a nonheated greenhouse or on wet soil in a 30/15°C incubator. The optimum temperature for germination of nondormant seeds was a simulated October (20/10°C) regime. In germination phenology studies in the nonheated greenhouse, 20–30% of the seeds that eventually germinated did so in October, and the remainder germinated the following February and March. Since low (5°C) winter temperatures promote some afterripening (ca. 50%) and do not cause nondormant seeds to re-enter dormancy, seeds that fail to germinate in autumn may germinate in spring. Thus, the taxon has very little potential to form a persistent seed bank. The large spatulate embryos and ability of seeds to afterripen at high temperatures means that seeds of P. reptans var. reptans have nondeep physiological dormancy, unlike many herbaceous woodland species, which have morphophysiological dormancy.  相似文献   

9.
The mechanism of seed dormancy at low temperatures (15-9°C) was investigated in the seeds of Syringa josikaea, S. reflexa and S. vulgaris. Low temperature dormancy in Syringa species was mainly imposed by endosperm embedding the radicle. Different degrees of embryo dormancy may occur in S. reflexa seeds. In most cases the low temperature dormancy was broken completely by removing the endosperm around the radicle. The endosperm did not seem to contain significant quantities of germination inhibitors, and the results indicate that it prevents germination mainly due to its mechanical resistance. The mechanical resistance of endosperm did not change during chilling or during induction of dormancy by high temperature incubation. The strength of the endosperm decreased rapidly in non-dormant seeds before visible germination. Similar changes were not observed in dormant seeds. Generally, the strength of the endosperm was lower in the non- (or less) dormant species S. josikaea and S. vulgaris than in the more dormant S. reflexa seeds. The growth potential of the embryos, measured as their ability to germinate in osmotic solutions (mannitol or polyethylen glycol 4000), was increased by chilling and by GA3-treatment. The growth potential of untreated S. josikaea and S. vulgaris embryos was generally higher than that of S. reflexa embryos. Acid ethyl acetate fractions of methanol extracts from embryos of all three species contained substances with GA3-like activity in the lettuce hypocotyl test. The activity was found at Rf 0.9–1.0 on paper chromatograms run in distilled water. No significant changes in the activity were detected during chilling or prior to visible germination.  相似文献   

10.
Germination and carbohydrate concentrations were determined in excised dormant and afterripened wild oat (Avena fatua L. line M73) embryos cultured on N6 medium with and without 88 mM fructose (Fru). Without Fru dormant embryos began to germinate after approximately 2 weeks, and the germination rate was greater at 12 than 16°C. With addition of Fru 80% of dormant embryos germinated in 3 days. More than 80% of afterripened embryos germinated within 1 day on N6 with or without additional sugars. Therefore, relative to afterripened embryos, true embryo dormancy exists in line M73. Concentrations of starch and soluble sugars were initially similar in dormant and afterripened embryos. Culturing dormant and afterripened embryos on medium with Fru resulted in concentrations of glucose (Glu), sucrose (Sue), Fru and maltose (Mal) that were the same or higher than the initial levels. The concentration of starch in embryos initially increased slightly then remained constant or declined, except in dormant embryos on Fru-amended medium, where starch accumulated to 34 μg Glu equivalents (mg fresh weight)-1 at 52 h. Raffinose (Raf) and stachyose (Stach) concentrations declined over time in all embryos. Carbohydrate concentrations in afterripened embryos on medium without Fru decreased to nearly undetectable levels by 52 h. Soluble sugar concentrations in dormant embryos on medium without Fru also declined by 52 h, but changes were not as extensive as those in afterripened embryos without Fru. In 52 h Raf and Stach were nearly depleted in all afterripened embryos, and in dormant embryos cultured on Fru-containing medium but not in dormant embryos without Fru. The concentration of Stach in dormant embryos without Fru declined 60% at 12 to 18 days coinciding with the potential for germination. The results demonstrate that a decline in Stach concentration is associated with the potential for germination of dormant (D) excised embryos. The mechanism of dormancy-breaking associated with the Raf family oligosaccharides remains to be determined.  相似文献   

11.
In white spruce ( Picea glauca [Moench.] Voss.) seeds, the raffinose family oligosaccharides (RFOs) provide carbon reserves for the early stages of germination prior to radicle protrusion. Some seedlots contain seeds that are dormant, failing to complete germination under optimal conditions. Since dormancy may be imposed through a metabolic block in reserve mobilization, the goal of this project was to identify any impediment to RFO mobilization in dormant relative to nondormant seeds. Desiccated seeds contain primarily, and in order of abundance on a molar basis, sucrose and the first 3 members of the RFOs, raffinose, stachyose and verbascose. Upon radicle protrusion at 25°C, the contents of RFOs decreased to low amounts in all seed parts, regardless of prior dormancy status and sucrose was metabolized to glucose and fructose, which increased in seed parts. During moist chilling at 4°C, RFO content initially decreased before stabilizing and then increasing. In seeds that did not complete germination, the synthesis of RFOs at 4°C favored verbascose, so that at the end of 14 (nondormant) or 35 (dormant) weeks, verbascose contents in megagametophytes exceeded the amount initially present in the desiccated seed. This was also true in the embryos of the dormant seedlot. In seed parts from both seedlots after months of moist chilling, stachyose amounts exceeded raffinose amounts. Upon radicle protrusion at 4°C, RFO contents decreased to amounts most similar to those present in seeds that completed germination at 25°C. Hence, the RFOs are utilized as a source of energy, regardless of the temperature at which white spruce seeds complete germination. Based on the similarity of sugar contents in seed parts between dormant and nondormant seeds that did not complete germination, differences in sugar metabolism are probably not the basis of dormancy in white spruce seeds.  相似文献   

12.
The seeds of Paris polyphylla var. yunnanensis are deeply dormant, and they remain dormant for 18 months or longer in their natural environment. Periodic exposure of the seeds to a low-temperature of 4 °C broke the dormancy in about 16 weeks (112 days). The most effective temperature stratification scheme was an interval of 14 days at 4 °C and 14 days at 22 °C. Both GA3 and ethephon significantly enhanced the germination rate during the stratification treatment. The seed coat, particularly the mesophyll outer layer of the seed coat, strongly inhibited the germination. With removal of the seed coat and exposure of the uncoated seeds to 600 mg/l GA3 for 48 h before the temperature stratification of 14 days at 4 °C and 14 days at 22 °C for 112 days, a germination percentage as high as 95.3% of the seeds was attained in about 160 days.  相似文献   

13.
Seed dormancy is a common phase of the plant life cycle, and several parts of the seed can contribute to dormancy. Whole seeds, seeds lacking the testa, embryos, and isolated aleurone layers of Arabidopsis (Arabidopsis thaliana) were used in experiments designed to identify components of the Arabidopsis seed that contribute to seed dormancy and to learn more about how dormancy and germination are regulated in this species. The aleurone layer was found to be the primary determinant of seed dormancy. Embryos from dormant seeds, however, had a lesser growth potential than those from nondormant seeds. Arabidopsis aleurone cells were examined by light and electron microscopy, and cell ultrastructure was similar to that of cereal aleurone cells. Arabidopsis aleurone cells responded to nitric oxide (NO), gibberellin (GA), and abscisic acid, with NO being upstream of GA in a signaling pathway that leads to vacuolation of protein storage vacuoles and abscisic acid inhibiting vacuolation. Molecular changes that occurred in embryos and aleurone layers prior to germination were measured, and these data show that both the aleurone layer and the embryo expressed the NO-associated gene AtNOS1, but only the embryo expressed genes for the GA biosynthetic enzyme GA3 oxidase.  相似文献   

14.
Activities of RNasea were studied in cotyledons of dormant and afterripenedAgrostemma githago seeds. Activity of RNase increases during imbibition and germination. This increase in activity cannot be observed in variants which are not able to germinate (dormant seeds and seeds blocked by higher temperature). The development of RNase activities during germination cannot be inhibited by concentrations of cycloheximide or actinomycine D completely preventing phosphatase synthesis. These results may be indicative for the assumption that the increase of RNase during germination is caused by enzyme activation and not by enzyme synthesis. Cytokinins and a combination of cycloheximide and gibberellic acid stimulate the activity of RNase in dormant cotyledons, whereas neither cycloheximide nor gibberellic acid, applicated by themselves, show any effect. Cytokinins and gibberellic acid do not influence the activity of RNase of afterripened cotyledons, abscisic acid inhibits the increase of enzyme activity. There are characteristic changes in the pattern of RNases during germination revealed by polyacrylamide gel electrophoresis. The increase in RNase activity of dormant cotyledons caused by cytokinins is accompanied by obvious changes in the RNase pattern on polyacrylamide gel. Treating dormant cotyledons with cytokinins dormancy is partially overcome. In consequence of the application of cytokinins the differences in the electrophoretic RNase pattern between dormant and afterripened cotyledons can be nearly balanced.  相似文献   

15.
In recalcitrant seeds of horse chestnut (Aesculus hippocastanum L.) maintaining a high water content during winter, dormancy is determined by the presence and influence of the seed coat, while the axial organs of the embryos excised from these seeds are not dormant. Such axial organs were capable for active water uptake and rapid fresh weight increase, so that their fresh weights exceeded those in intact seeds at the time of radicle protrusion. Fructose plays an essential role in the water uptake as a major osmotically active compound. ABA interferes with the water uptake by the axial organs and thus delays the commencement of their growth. The manifestation of seed response to ABA during the entire dormancy period indicates the presence of active ABA receptors and the pathways of its signal transduction. The content of endogenous ABA in the embryo axes doubled in the middle of dormancy period, which coincided with a partial suppression of water uptake by the axes. During seed dormancy release and imbibition before radicle protrusion, the level of endogenous ABA in axes declined gradually. Application of exogenous ABA can imitate dormancy by limiting water absorption by axial organs. Fusicoccin A (FC A) treatment neutralized completely this ABA effect. Endogenous FC-like ligands were detected in the seed axial organs during dormancy release and germination. Apparently, endogenous FC stimulates water uptake via the activation of plasmalemmal H+-ATPase, acidification of cell walls, their loosening, and turgor pressure reduction. FC can evidently counteract the ABA-induced suppression of water uptake by controlling the activity of H+-ATPase. It is likely that, in dormant intact recalcitrant seeds, axial organs, maintaining a high water content, are competent to elevate their water content and to start their preparation for germination under the influence of FC when coat-imposed dormancy becomes weaker.  相似文献   

16.
At harvest, barley seeds are dormant because their germination is difficult above 20 degrees C. Incubation of primary dormant seeds at 30 degrees C, a temperature at which they do not germinate, results in a loss of their ability to germinate at 20 degrees C. This phenomenon which corresponds to an induction of a secondary dormancy is already observed after a pre-treatment at 30 degrees C as short as 4-6 h, and is optimal after 24-48 h. It is associated with maintenance of a high level of embryo ABA content during seed incubation at 30 degrees C, and after seed transfer at 20 degrees C, while ABA content decreases rapidly in embryos of primary dormant seeds placed directly at 20 degrees C. Induction of secondary dormancy also results in an increase in embryo responsiveness to ABA at 20 degrees C. Application of ABA during seed treatment at 30 degrees C has no significant additive effect on the further germination at 20 degrees C. In contrast, incubation of primary dormant seeds at 20 degrees C for 48 and 72 h in the presence of ABA inhibits further germination on water similarly to 24-48 h incubation at 30 degrees C. However fluridone, an inhibitor of ABA synthesis, applied during incubation of the grains at 30 degrees C has only a slight effect on ABA content and secondary dormancy. Expression of genes involved in ABA metabolism (HvABA8'OH-1, HvNCED1 and HvNCED2) was studied in relation to the expression of primary and secondary dormancies. The results presented suggest a specific role for HvNCED1 and HvNCED2 in regulation of ABA synthesis in secondary seed dormancy.  相似文献   

17.
Summary Dormancy in intact seeds of Ruellia humilis is broken by chilling or by treatment with gibberellic acid (GA3). Embryos are nondormant and will grow when the seed coat is removed completely. Embryos from chilled or GA3-treated seeds have more growth potential than embryos from nontreated seeds. Dormancy is ascribed to the mechanical restriction of the embryo by the seed coat. Chilling and treatment with GA3 break dormancy by increasing the expansive force of the embryo; thus, chilled or GA3-treated embryos exert enough expansive force to break through the seed coat, whereas nontreated embryos do not.This work was supported by an NIH Biomedical Sciences Support Grant to the University of Kentucky.  相似文献   

18.
Seeds with a water‐impermeable seed coat and a physiologically dormant embryo are classified as having combinational dormancy. Seeds of Sicyos angulatus (burcucumber) have been clearly shown to have a water‐impermeable seed coat (physical dormancy [PY]). The primary aim of the present study was to confirm (or not) that physiological dormancy (PD) is also present in seeds of S. angulatus. The highest germination of scarified fresh (38%) and 3‐month dry‐stored (36%) seeds occurred at 35/20°C. The rate (speed) of germination was faster in scarified dry‐stored seeds than in scarified fresh seeds. Removal of the seed coat, but leaving the membrane surrounding the embryo intact, increased germination of both fresh and dry‐stored seeds to > 85% at 35/20°C. Germination (80–100%) of excised embryos (both seed coat and membrane removed) occurred at 15/6, 25/15 and 35/20°C and reached 95–100% after 4 days of incubation at 25/15 and 35/20°C. Dry storage (after‐ripening) caused an increase in the germination percentage of scarified and of decoated seeds at 25/15°C and in both germination percentage and rate of excised embryos at 15/6°C. Eight weeks of cold stratification resulted in a significant increase in the germination of scarified seeds at 25/15 and 35/20°C and of decoated seeds at 15/6 and 25/15°C. Based on the results of our study and on information reported in the literature, we conclude that seeds of S. angulatus not only have PY, but also non‐deep PD, that is, combinational dormancy (PY + PD).  相似文献   

19.
20.
Fusicoccin induced germination in dormant and partially afterripened dormant caryopses of Avena fatua L. The rate of caryopsis germination was slower and final percentage germination lower in the highly dormant inbred line M73 at a given concentration of fusicoccin than in the dormant caryopses of line AN265. Gibberellic acid was more effective than fusicoccin in breaking dormancy in both lines. Promotion of germination of dormant caryopses by fusicoccin was inhibited by a 6-day pretreatment with (2-chloroethyl)trimethylammonium chloride.
The basal rate of proton efflux from embryos isolated from dormant and fully afterripened line AN265 caryopses was similar. Addition of fusicoccin increased the rate of proton efflux from the isolated embryos of dormant and afterripened caryopses by nearly 400%. Gibberellic acid had no effect on the rate of proton extrusion. The uptake of 86Rb+ in dormant and afterripened A. fatua embryos was similar after a 2 h uptake period. The addition of fusicoccin to the medium doubled the uptake of 86Rb4 by dormant and afterripened embryos. Gibberelleic acid had no effect on the uptake of 86Rb+ by isolated embryos from either dormant or afterripened caryopses. The experimental results indicate that gibberellic acid is more versatile in its action than fusicoccin, and gibberellic acid may facilitate dormant A. fatua caryopsis germination by stimulating mechanisms other than the direct H+ efflux and K+ uptake at the membrane level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号