首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modulations of ion channel activity underlie rapid changes in membrane transport of cations in various nonexcitable cells. Previously, in smooth muscle cells, macrophages, lymphocytes, carcinoma and leukemia cell lines, non-voltage-gated sodium (NVGS) channels have been found. The activity of NVGS channels was shown to be critically dependent on the organization of actin cytoskeleton. The molecular identity of NVGS channels remains unclear. The present work is focused on molecular and functional identification of NVGS channels in human myeloid leukemia K562 cells. Degenerin/epithelial Na+ channels (DEG/ENaC) can be considered as possible molecular correlates. By using RT-PCR, expression of ??-, ??-, and ??-hENaC subunits in the K562 cells was detected. Various modes of the patch-clamp method were used to examine functional properties of sodium channels??specifically, to test the effect of amiloride on single channel and integral currents. The biophysical characteristics of the NVSG channels were close to those of ENaC; the channels have unitary conductance of 12 pS (145 mM Na+) and were impermeable to divalent cations (Ca2+ and Mg2+). We found that amiloride did not inhibit NVGS channels. Importantly, no amiloride-blockable sodium current was detected in the plasma membrane of K562 cells. Taken together, our observations suggest that amiloride-insensitive sodium channels in the K562 cells belong to the ENaC family.  相似文献   

2.
Ion transport in various tissues can be regulated by the cortical actin cytoskeleton. Specifically, involvement of actin dynamics in the regulation of nonvoltage-gated sodium channels has been shown. Herein, inside-out patch clamp experiments were performed to study the effect of the heterodimeric actin capping protein CapZ on sodium channel regulation in leukemia K562 cells. The channels were activated by cytochalasin-induced disruption of actin filaments and inactivated by G-actin under ionic conditions promoting rapid actin polymerization. CapZ had no direct effect on channel activity. However, being added together with G-actin, CapZ prevented actin-induced channel inactivation, and this effect occurred at CapZ/actin molar ratios from 1:5 to 1:100. When actin was allowed to polymerize at the plasma membrane to induce partial channel inactivation, subsequent addition of CapZ restored the channel activity. These results can be explained by CapZ-induced inhibition of further assembly of actin filaments at the plasma membrane due to the modification of actin dynamics by CapZ. No effect on the channel activity was observed in response to F-actin, confirming that the mechanism of channel inactivation does not involve interaction of the channel with preformed filaments. Our data show that actin-capping protein can participate in the cytoskeleton-associated regulation of sodium transport in nonexcitable cells.  相似文献   

3.
In the present paper, functional properties of nonvoltage-gated sodium channels in K562 cells were studied after cholesterol depletion, i.e., under conditions of the destruction of microdomains (rafts). For cholesterol depletion, cells were incubated with methyl-beta-cyclodextrin (MbCD), an oligosaccharide that selectively binds sterols. Single currents through sodium channels were recorded in cell-attached and inside-out experiments using the patch-clamp technique. After incubation with MbCD (2.5 or 5 mM), the activation of sodium channels in response to cytochalasin B or D was observed in both native cells and membrane fragments. Biophysical characteristics of sodium channels in cholesterol-depleted K562 cells were close to those in control; unitary conductance was 12 pS. Inside-out experiments with the use of globular actin have indicated that filament assembly on cytoplasmic membrane side causes an inactivation of sodium channels in the modified cells. These data imply that sodium channels in K562 cells are not associated with cholesterol-rich membrane microdomains. Possible mechanisms of the interaction of the plasma membrane and the cortical cytoskeleton are discussed.  相似文献   

4.
To investigate the possible regulation of large-conductance Ca2+-activated K+ channels (BKCa) by tyrosine phosphatases (Tyr-PPs), single-channel currents of myocytes from rat mesenteric artery were recorded in open cell-attached patches. Two structurally different Tyr-PP inhibitors, sodium orthovanadate (Na3VO4) and dephostatin, were used. The channels (236 pS) evoked at +40 mV and pCa 6, were significantly inhibited by 1 mM Na3VO4 (-81+/-3%, n = 10; P < 0.005). Similarly, 100 microM dephostatin strongly inhibited the BKCa channels (-80+/-7%, n = 7 ; P < 0.05). Therefore, BKCa channels in vascular smooth muscle cells may be regulated by tyrosine phosphatase-dependent signal transduction pathways, whose inhibition could attenuate the channel activity.  相似文献   

5.
The endogenous Mg(2+)-inhibited cation (MIC) current was recently described in different cells of hematopoietic lineage and was implicated in the regulation of Mg2+ homeostasis. Here we present a single channel study of endogenously expressed Mg(2+)-dependent cation channels in the human myeloid leukemia K562 cells. Inwardly directed unitary currents were activated in cell-attached experiments in the absence of Ca2+ and Mg2+ in the pipette solution. The current-voltage (I-V) relationships displayed strong inward rectification and yielded a single channel slope conductance of approximately 30 pS at negative potentials. The I-V relationships were not altered by patch excision into divalent-free solution. Channel open probability (P(o)) and mean closed time constant (tau(C)) were strongly voltage-dependent, indicating that gating mechanisms may underlie current inward rectification. Millimolar concentrations of Ca2+ or Mg2+ applied to the cytoplasmic side of the membrane produced slow irreversible inhibition of channel activity. The Mg(2+)-dependent cation channels described in this study differ from the MIC channels described in human T-cells, Jurkat, and rat basophilic leukemia (RBL) cells in their I-V relationships, kinetic parameters and dependence on intracellular divalent cations. Our results suggested that endogenously expressed Mg(2+)-dependent cation channels in K562 cells and the MIC channels in other hematopoietic cells might be formed by different channel proteins.  相似文献   

6.
Patch clamp method in cell-attached configuration was used to search for mechanogated ion channels in plasma membrane of human myeloid leukemia K562 cells. A reversible activation of transmembrane currents in response to negative pressure applied to membrane patch was observed. Four types of mechanosensitive channels were identified in K562 cells: two main types were characterized with conductance values of 16 and 25 pS; while two others, showing higher conductance values (about 35 and 50 pS), were rarely met. In terms of gating, all channels described here could be assigned to the stretch-activated type. No inactivation of mechanosensitive channels at the sustained stimulation was observed. The activation of mechanosensitive channels in K562 cells was not dependent upon the presence of bivalent cations in the extracellular solution.  相似文献   

7.
Non-voltage-gated ion channels play an essential role in cellular signalling and ionic homeostasis in nonexcitable cells. The patch clamp method in cell-attached configuration was used to search for the effects of amiloride and gadolinium (Gd3+) exerted on two types of voltage-insensitive cationic channels in plasma membrane of human leukemia K562 cells: Na-selective channels activated by actin disassembly, and mechanosensitive channels. Here we demonstrate that amiloride in high concentrations (1 mM) caused a full inhibition of mechanosensitive channels in K562 cells similarly to Gd3+ effect in micromolecular concentration range. Na-selective channels controlled by actin dynamics were shown to be unaffected by Gd3+ similarly as by amiloride. We also found that application of amiloride to the extracellular surface of membrane patch resulted in a significant increase in the activity of sodium channels. This unexpected stimulatory effect of amiloride may represent an unknown mechanism of activation of non-voltage-gated sodium channels. The data show an essential difference of the activation and blockage of these types of cation-selective channels.  相似文献   

8.
The Arg615 to Cys615 mutation of the sarcoplasmic reticulum (SR) Ca2+ release channel of malignant hyperthermia susceptible (MHS) pigs results in a decreased sensitivity of the channel to inhibitory Ca2+ concentrations. To investigate whether this mutation also affects the ion selectivity filter of the channel, the monovalent cation conductances and ion permeability ratios of single Ca2+ release channels incorporated into planar lipid bilayers were compared. Monovalent cation conductances in symmetrical solutions were: Li+, 183 pS +/- 3 (n = 21); Na+, 474 pS +/- 6 (n = 29); K+, 771 pS +/- 7 (n = 29); Rb+, 502 pS +/- 10 (n = 22); and Cs+, 527 pS +/- 5 (n = 16). The single-channel conductances of MHS and normal Ca2+ release channel were not significantly different for any of the monovalent cations tested. Permeability ratios measured under biionic conditions had the permeability sequence Ca2+ >> Li+ > Na+ > K+ > or Rb+ > Cs+, with no significant difference noted between MHS and normal channels. This systematic examination of the conduction properties of the pig skeletal muscle Ca2+ release channel indicated a higher Ca2+ selectivity (PCa2+:Pk+ approximately 15.5) than the sixfold Ca2+ selectivity previously reported for rabbit skeletal (Smith et al., 1988) or sheep cardiac muscle (Tinker et al., 1992) Ca2+ release channels. These results also indicate that although Ca2+ regulation of Ca2+ release channel activity is altered, the Arg615 to Cys615 mutation of the porcine Ca2+ release channel does not affect the conductance or ion selectivity properties of the channel.  相似文献   

9.
M Chua  W J Betz 《Biophysical journal》1991,59(6):1251-1260
The channels present on the surface membrane of isolated rat flexor digitorum brevis muscle fibers were surveyed using the patch clamp technique. 85 out of 139 fibers had a novel channel which excluded the anions chloride, sulfate, and isethionate with a permeability ratio of chloride to sodium of less than 0.05. The selectivity sequence for cations was Na+ = K+ = Cs+ greater than Ca++ = Mg++ greater than N-Methyl-D-Glucamine. The channel remained closed for long periods, and had a large conductance of approximately 320 pS with several subconductance states at approximately 34 pS levels. Channel activity was not voltage dependent and the reversal potential for cations in muscle fibers of approximately 0 mV results in the channel's behaving as a physiological leakage conductance. Voltage activated potassium channels were present in 65 of the cell attached patches and had conductances of mostly 6, 12, and 25 pS. The voltage sensitivity of the potassium channels was consistent with that of the delayed rectifier current. Only three patches contained chloride channels. The scarcity of chloride channels despite the known high chloride conductance of skeletal muscle suggests that most of the chloride channels must be located in the transverse tubular system.  相似文献   

10.
Amiloride-sensitive cationic channels are present in the apical membrane of porcine thyroid cells in primary culture. An amiloride-sensitive (K0.5 = 150 +/- 28 nM where K0.5 is the concentration of unlabelled ligand which reduces the specific binding of the same labelled ligand by 50%) 22Na+-flux component (Km for Na+ at 18 mM) has been identified which was also blocked by the potent amiloride derivative phenamil (K0.5 = 47 +/- 21 nM). The most potent inhibitor of Na+/H+ exchange, ethylisopropyl-amiloride, hardly inhibited this 22Na+-influx component at a concentration of 21 microM. Amiloride binding sites were characterized using [3H]phenamil. The tritiated ligand binds to a single family of binding sites in thyroid membranes with a Kd value of 50 +/- 10 nM and a maximal binding capacity of 5 +/- 1 pmol/mg protein. Patch-clamp experiments have directly demonstrated the existence of a phenamil- and amiloride-sensitive cationic channel, with a conductance of 2.6 pS, which is permeable to sodium, but not very selective (PNa+/PK+ = 1.2). This channel is an important element in the regulation of the resting membrane potential of thyroid cells.  相似文献   

11.
Hwang JU  Suh S  Yi H  Kim J  Lee Y 《Plant physiology》1997,115(2):335-342
Actin antagonists have previously been shown to alter responses of Commelina communis stomata to physiological stimuli, implicating actin filaments in the control of guard cell volume changes (M. Kim, P.K. Hepler, S.-O. Eun, K.S. Ha, Y. Lee [1995] Plant Physiol 109: 1077-1084). Since K+ channels in the guard cell play an important role in stomatal movements, we examined the possible regulation of K+-channel activities by the state of actin polymerization. Agents affecting actin polymerization altered light-induced stomatal opening and inward K+-channel activities measured by patch clamping in Vicia faba. Cytochalasin D, which induces depolymerization of actin filaments, promoted light-induced stomatal opening and potentiated the inward K+ current in guard cell protoplasts. Phalloidin, a stabilizer of filamentous actin, inhibited both light-induced stomatal opening and inward K+ current. Inward K+-channel activities in outside-out membrane patches showed responses to these agents that support results at the whole-cell current level, suggesting that cytochalasin D facilitates and phalloidin inhibits K+ influx in intact guard cells, thus resulting in enhancement and inhibition of stomatal opening, respectively. To our knowledge, this is the first report that provides evidence that actin filaments may regulate an important physiological process by modulating the activities of ion channels in plant cells.  相似文献   

12.
Patch-clamp measurements were made on osteoblast-like cells isolated from embryonic chick calvaria. Cell-attached-patch measurements revealed two types of high conductance (100-250 pS) channels, which rapidly activated upon 50-100 mV depolarization. One type showed sustained and the other transient activation over a 10-sec period of depolarization. The single-channel conductances of these channel types were about 100 or 250 pS, depending on whether the pipettes were filled with a low K+ (3 mM) or high K+ (143 mM) saline, respectively. The different reversal potentials under these conditions were consistent with at least K+ conduction. Whole-cell measurements revealed the existence of two types of outward rectifying conductances. The first type conducts K+ ions and activates within 20-200 msec (depending on the stimulus) upon depolarizing voltage steps from less than -60 mV to greater than -30 mV. It inactivates almost completely with a time constant of 2-3 sec. Recovery from inactivation is biphasic with an initial rapid phase (1-2 sec) followed by a slow phase (greater than 20 sec). The second whole-cell conductance activates at positive membrane potentials of greater than +50 mV. It also rapidly turns on upon depolarizing voltage steps. Activation may partly disappear at the higher voltages. Its single channels of 140 pS conductance were identified in the whole cell and did conduct K+ ions but were not highly Cl- or Na+ selective. The results show that osteoblasts may express various types of voltage controlled ionic channels. We predict a role for such channels in mineral metabolism of bone tissue and its control by osteoblasts.  相似文献   

13.
A Corcia  I Pecht  S Hemmerich  S Ran  B Rivnay 《Biochemistry》1988,27(19):7499-7506
Ion channels, activated upon IgE-Fc epsilon receptor aggregation by specific antigen, were studied in micropipet-supported lipid bilayers. These bilayers were reconstituted with purified IgE-Fc epsilon receptor complex and the intact 110-kDa channel-forming protein, both isolated from plasma membranes of rat basophilic leukemia cells (line RBL-2H3). In order to identify the current carrier through these ion channels and to determine their ion selectivity, we investigated the currents flowing through the IgE-Fc epsilon receptor gated channels in the presence of a gradient of Ca2+ ions. Thus, the solution in which the micropipet-supported bilayer was immersed contained 1.8 mM CaCl2, while the interior of the micropipet contained 0.1 microM Ca2+ (buffered with EGTA). Both solutions also contained 150 mM of a monovalent cation chloride salt (either K+ or Na+). The currents induced upon specific aggregation of the IgE (by either antigen or anti-IgE antibodies) were examined over a range of potentials imposed on the bilayer. The type of conductance event most frequently observed under the employed experimental conditions was a channel that has a slope conductance of 3 pS and a reversal potential practically identical with the calculated value for the reversal potential of calcium (134 +/- 11 mV in the presence of sodium, 125 +/- 13 mV in the presence of potassium). These results indicate that this channel is highly selective for calcium against the monovalent cations sodium and potassium. This same channel has a conductance of 4-5 pS in the presence of symmetrical solutions containing only 100 mM CaCl2 and 8 pS in the presence of 0.5 M NaCl with no calcium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
This study investigates the presence and properties of Na+-activated K+ (K(Na)) channels in epithelial renal cells. Using real-time PCR on mouse microdissected nephron segments, we show that Slo2.2 mRNA, which encodes for the K(Na) channels of excitable cells, is expressed in the medullary and cortical thick ascending limbs of Henle's loop, but not in the other parts of the nephron. Patch-clamp analysis revealed the presence of a high conductance K+ channel in the basolateral membrane of both the medullary and cortical thick ascending limbs. This channel was highly K+ selective (P(K)/P(Na) approximately 20), its conductance ranged from 140 to 180 pS with subconductance levels, and its current/voltage relationship displayed intermediate, Na+-dependent, inward rectification. Internal Na+ and Cl- activated the channel with 50% effective concentrations (EC50) and Hill coefficients (nH) of 30 +/- 1 mM and 3.9 +/- 0.5 for internal Na+, and 35 +/- 10 mM and 1.3 +/- 0.25 for internal Cl-. Channel activity was unaltered by internal ATP (2 mM) and by internal pH, but clearly decreased when internal free Ca2+ concentration increased. This is the first demonstration of the presence in the epithelial cell membrane of a functional, Na+-activated, large-conductance K+ channel that closely resembles native K(Na) channels of excitable cells. This Slo2.2 type, Na+- and Cl--activated K+ channel is primarily located in the thick ascending limb, a major renal site of transcellular NaCl reabsorption.  相似文献   

15.
Development of ionic channels during mouse neuronal differentiation   总被引:1,自引:0,他引:1  
Using a mouse embryonal teratocarcinoma (E.C.) cell line, it was possible to follow the sequence of development of ionic channels during neuronal differentiation, with patch-clamp techniques. 1003 E.C. cells were induced to differentiate into neurons by culturing them in defined medium without foetal calf serum (DARMON et al., 1981). Non-differentiated cells were not excitable and presented mainly 2 types of K+ channels: a Ca2+ activated K+ channel (220 pS in symmetrical K+) and a delayed rectifier (30 pS in symmetrical K+). When the cells start to grow neurites, a low threshold calcium current can be recorded, only if the cell is held at hyperpolarized potentials (-70 to -80 mV). Fully differentiated cells with long neurites presented a complete repertoire of ionic channels: voltage dependent Na+ and Ca2+ channels, Ca2+ activated K+ channel and K+ delayed rectifier.  相似文献   

16.
Activation of Ca2+-dependent K+ conductance has long been postulated to contribute to the cyclical pauses in glucose-induced electrical activity of pancreatic islet B cells. Here we have examined the gating, permeation and blockade by cations of a large-conductance, Ca2+-activated K+ channel in these cells. This channel shares many features with BK (or maxi-K+) Ca2+-activated K+ channels in other cells. (1) Its 'permeability' selectivity sequence is PT1+: PK+: PRb+: PNH4+: PNa+, Li+, Cs+ = 1.3:1.0:0.5:0.17: less than 0.05. Permeant, as well as impermeant, cations reduce channel conductance. (2) Its conductance saturates at 325-350 pS with bath KCl greater than 400 mM (144 mM KCl pipette). (3) It shows asymmetric blockade by tetraethylammonium ion (TEA) and Na+. (4) It is sensitive to Ca2+i over the range 5 nM-100 microM; over the range 50-200 nM, channel activity varies as [Ca2+ free]1-2. (5) It is sensitive to internal pH over the range 6.85-7.35, but the decrease in channel activity seen with reduced pHi may be partially compensated by the increase in free Ca2+ concentration which occurs on acidification of buffered Ca2+/EGTA solutions.  相似文献   

17.
Single channel and whole cell recordings were used to study ion permeation through Ca channels in isolated ventricular heart cells of guinea pigs. We evaluated the permeability to various divalent and monovalent cations in two ways, by measuring either unitary current amplitude or reversal potential (Erev). According to whole cell measurements of Erev, the relative permeability sequence is Ca2+ greater than Sr2+ greater than Ba2+ for divalent ions; Mg2+ is not measurably permeant. Monovalent ions follow the sequence Li+ greater than Na+ greater than K+ greater than Cs+, and are much less permeant than the divalents. These whole cell measurements were supported by single channel recordings, which showed clear outward currents through single Ca channels at strong depolarizations, similar values of Erev, and similar inflections in the current-voltage relation near Erev. Information from Erev measurements stands in contrast to estimates of open channel flux or single channel conductance, which give the sequence Na+ (85 pS) greater than Li+ (45 pS) greater than Ba2+ (20 pS) greater than Ca2+ (9 pS) near 0 mV with 110-150 mM charge carrier. Thus, ions with a higher permeability, judged by Erev, have lower ion transfer rates. In another comparison, whole cell Na currents through Ca channels are halved by less than 2 microM [Ca]o, but greater than 10 mM [Ca]o is required to produce half-maximal unitary Ca current. All of these observations seem consistent with a recent hypothesis for the mechanism of Ca channel permeation, which proposes that: ions pass through the pore in single file, interacting with multiple binding sites along the way; selectivity is largely determined by ion affinity to the binding sites rather than by exclusion by a selectivity filter; occupancy by only one Ca ion is sufficient to block the pore's high conductance for monovalent ions like Na+; rapid permeation by Ca ions depends upon double occupancy, which only becomes significant at millimolar [Ca]o, because of electrostatic repulsion or some other interaction between ions; and once double occupancy occurs, the ion-ion interaction helps promote a quick exit of Ca ions from the pore into the cell.  相似文献   

18.
The actin cytoskeleton has been shown to be involved in the regulation of sodium-selective channels in non-excitable cells. However, the molecular mechanisms underlying the changes in channel function remain to be defined. In the present work, inside-out patch experiments were employed to elucidate the role of submembranous actin dynamics in the control of sodium channels in human myeloid leukemia K562 cells. We found that the application of cytochalasin D to the cytoplasmic surface of membrane fragments resulted in activation of non-voltage-gated sodium channels of 12 picosiemens conductance. Similar effects could be evoked by addition of the actin-severing protein gelsolin to the bath cytosol-like solution containing 1 microm [Ca(2+)](i). The sodium channel activity induced by disassembly of submembranous microfilaments with cytochalasin D or gelsolin could be abolished by intact actin added to the bath cytosol-like solution in the presence of 1 mm MgCl(2) to induce actin polymerization. In the absence of MgCl(2), addition of intact actin did not abolish the channel activity. Moreover, the sodium currents were unaffected by heat-inactivated actin or by actin whose polymerizability was strongly reduced by cleavage with specific Escherichia coli A2 protease ECP32. Thus, the inhibitory effect of actin on channel activity was observed only under conditions promoting rapid polymerization. Taken together, our data show that sodium channels are directly controlled by dynamic assembly and disassembly of submembranous F-actin.  相似文献   

19.
Amiloride (8 X 10(-4), an inhibitor of sodium channels of nonexcited membranes, inhibits the activity of Na+,K+-ATPase in the kidney cortex homogenate as well as that of the partially purified membrane-bound and lubrol-soluble Na+,K+-ATPase preparations from the cattle brain. Inhibition of Na+,K+-ATPase from different organs of various animals by amiloride, a blocker of sodium channels, indicates similarity of the molecular organization of the Na+-recognizing component both of sodium channels and sodium centres of Na+,K+-ATPase.  相似文献   

20.
Activation of phospholipase C (PLC)-mediated signaling pathways in non-excitable cells causes the release of calcium (Ca2+) from inositol 1,4,5-trisphosphate (InsP3)-sensitive intracellular Ca2+ stores and activation of Ca2+ influx via plasma membrane Ca2+ channels. The properties and molecular identity of plasma membrane Ca2+ influx channels in non-excitable cells is a focus of intense investigation. In the previous studies we used patch clamp electrophysiology to describe the properties of Ca2+ influx channels in human carcinoma A431 cell lines. Now we extend our studies to human embryonic kidney HEK293 cells. By using a combination of Ca2+ imaging and whole cell and single channel patch clamp recordings we discovered that: 1) HEK293 cells contain four types of plasma membrane Ca2+ influx channels: I(CRAC), Imin, Imax, and I(NS); 2) I(CRAC) channels are highly Ca2+-selective (P(Ca/Cs)>1000) and I(CRAC) single channel conductance is too small for single channel analysis; 3) Imin channels in HEK293 cells display functional properties identical to Imin channels in A431 cells, with single channel conductance of 1.2 pS for divalent cations, 10 pS for monovalent cations, and divalent cation selectivity P(Ba/K)=20; 4) Imin channels in HEK293 cells are activated by InsP3 and inhibited by phosphatidylinositol 4,5-bisphosphate, but store-independent; 5) when compared with Imin, Imax channels have higher conductance for divalent (17 pS) and monovalent (33 pS) cations, but less selective for divalent cations (P(Ba/K)=4), 6) Imax channels in HEK293 cells can be activated by InsP3 or by Ca2+ store depletion; 7) I(NS) channels are non-selective (P(Ba/K)=0.4) and display a single channel conductance of 5 pS; and 8) I(NS) channels are not gated by InsP3 but activated by depletion of intracellular Ca2+ stores. Our findings provide novel information about endogenous Ca2+ channels supporting receptor-operated and store-operated Ca2+ influx pathways in HEK293 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号