首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhizopus niveus lipase (RNL) has a unique structure consisting of two noncovalently bound polypeptides (A-chain and B-chain). To improve this enzyme's properties by protein engineering, we have developed a new expression system for the production of recombinant lipase in the yeast Saccharomyces cerevisiae. For the present study, we developed a more efficient expression system using the strain ND-12B and the multicopy-type plasmid pJDB219. We purified two types of recombinant lipases, each to a single peak by gel-filtration HPLC, although they were found to be heterogeneous by SDS-PAGE. Analysis of reversed-phase HPLC, N-terminal amino acid sequence, and sugar content showed that the difference between the two types of lipases was due mainly to their sugar content (high or low mannose type). Moreover, there were two species within each type of lipase. One kind was processed to the A-chain and B-chain as in the native lipase, while the other remained unprocessed. Although these yeast-purified lipases contained several posttranslational modifications and different glycosylations, their secondary structures were the same as those of the native lipase as measured by circular dichroism spectra and determination of disulfide bonding. This suggests that protein folding of the recombinant lipase occurred correctly in yeast.  相似文献   

2.
Random mutagenesis was used to improve the optimum temperature for Rhizopus niveus lipase (RNL) activity. The lipase gene was mutated using the error-prone PCR technique. One desirable mutant was isolated, and three amino acids were substituted in this mutant (P18H, A36T and E218V). The wild-type and this randomly mutated lipase were both purified and characterized. The specific activity of the mutant lipase was 80% that of the wild-type. The optimum temperature of the mutant lipase was higher by 15 degrees C than that of the wild-type. To confirm which substitution contributed to enhancing the optimum temperature for enzymic activity, two chimeric lipases from the wild-type and randomly mutated gene were constructed: chimeric lipase 1 (CL-1; P18H and A36T) and chimeric lipase 2 (CL-2; E218V). Each of the chimeric enzymes was purified, and the optimum temperature for lipase activity was measured. CL-1 had a similar optimum temperature to that of the wild-type, and CL-2 had a higher temperature like the randomly mutated lipase. The mutational effect is interpreted in terms of a three-dimensional structure for the wild-type lipase.  相似文献   

3.
Laminin-5 (LN5), which regulates both cell adhesion and cell migration, undergoes specific extracellular proteolytic processing at an amino-terminal region of the gamma2 chain as well as at a carboxyl-terminal region of the alpha3 chain. To clarify the biological effect of the gamma2 chain processing, we prepared a human recombinant LN5 with the 150-kDa, non-processed gamma2 chain (GAA-LN5) and natural LN5 with the 105-kDa, processed gamma2 chain (Nat-LN5). Comparison of their biological activities demonstrated that GAA-LN5 had an about five-times higher cell adhesion activity but an about two-times lower cell migration activity than Nat-LN5. This implies that the proteolytic processing of LN5 gamma2 chain converts the LN5 from the cell adhesion type to the cell migration type. It was also found that human gastric carcinoma cells expressing the LN5 with the non-processed gamma2 chain is more adherent but less migratory than the carcinoma cells expressing a mixture of LN5 forms with the processed gamma2 chain and with the unprocessed one. The functional change of LN5 by the proteolytic processing of the gamma2 chain may contribute to elevated cell migration under some pathological conditions such as wound healing and tumor invasion.  相似文献   

4.
Summary Three distinct forms of lipolytic enzyme were identified in a commercialCandida lipase preparation. Two of these lipases (lipases A & C) were isolated and characterized. Lipase A had a higher optimal reaction pH and a better thermal stability than those of lipase C. Lipase A and C displayed different acyl chain length specificity on the lipolysis of p-nitrophenol esters.  相似文献   

5.
糖脂修饰的脂肪酶在有机溶剂中催化酯化反应   总被引:8,自引:0,他引:8  
本文研究了不同糖脂化合物修饰的脂肪酶在有机溶剂中催化长碳链脂肪酸和脂肪醇的酯化反应,不同的脂肪酶经糖脂修饰后,催化活性均有不同程度的提高。在4种糖脂和6种脂肪酶中,以蔗糖酯SE-7修饰脂肪酶CES活性最高,本文还对pH、溶剂和温度等对修饰脂肪酶生的影响进行了研究。  相似文献   

6.
The sequence corresponding to the mature lipase of Rhizopus oryzae WPG (ROLw) was subcloned in the pPIC9K expression vector, with a strong AOX1 promoter, to construct a recombinant lipase protein containing six histidine residues at the N-terminal. The His-tagged lipase was expressed in Pichia Pastoris X33 and purified to homogeneity by a simple, one-step purification protocol using immobilized metal affinity chromatography (Ni-NTA resin). High level expression of the lipase by Pichia Pastoris X33 cells harbouring the lipase gene containing expression vector was observed upon induction with 2.5 g/l methanol at 28°C; the specific activity of the purified His6-ROLw was 1,500 or 760 U/mg using olive oil emulsion or tributyrin as substrates, respectively. To check the importance of Asn 134 His substitution in the affinity and substrate selectivity of ROLw, the mutant His6-ROLw-N134H was overexpressed in Pichia Pastoris X33 and purified with the same nickel metal affinity column. The specific activity of the purified His-tagged ROLw-N134H was 5,900 and 35 U/mg using olive oil emulsion or tributyrin as substrate. A comparative study of the wild type (His6-ROLw) and the mutant (His6-ROLw-N134H) proteins was carried out. A 3D structure model of ROLw was built using the RNL structure as template. We have concluded that a slight increase in the exposed hydrophilic residues on the surface of ROLw as compared to RNL (ROLwN134H) could be responsible for a higher selectivity of ROlw for long and short chain triacylglycerols at the lipid/water interface and then explaining the importance of Asn 134 for the chain length specificity of ROLw. This property is quite rare among Rhizopus lipases and gives this new lipase great potential for use in the field of biocatalysis.  相似文献   

7.
An extracellular lipase produced by the glycolipid-producing yeast Kurtzmanomyces sp. I-11 was purified by ammonium sulfate precipitation and column chromatographies on DEAE-Sephadex A-25, SP-Sephadex C-50, and Sephadex G-100. Based on the analysis of the purified lipase on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified lipase was judged to be homogeneous and its molecular mass was estimated to be approximately 49 kDa. The optimum temperature for the activity was 75 degrees C, and the activity was very stable at temperatures below 70 degrees C. The active pH range of this lipase was 1.9-7.2, and the activity was stable at pH below 7.1. The lipase showed a preference for C18 acyl groups by measurements with p-nitrophenyl esters and triglycerides as substrates. The lipase was very stable in the presence of various organic solvents at a concentration of 40%. Although the N-terminal sequence of the Kurtzmanomyces lipase was very similar to that of lipase A from Candida antarctica, the pH profiles of the two lipases were significantly different.  相似文献   

8.
Two staphylococcal lipases were obtained from Staphylococcus epidermidis S2 and Staphylococcus aureus S11 isolated from sebaceous areas on the skin of the human face. The molecular mass of both enzymes was estimated to be 45 kDa by SDS-PAGE. S2 lipase displayed its highest activity in the hydrolysis of olive oil at 32 degrees C and pH 8, whereas S11 lipase showed optimal activity at 31 degrees C and pH 8.5. The S2 lipase showed the property of cold-adaptation, with activation energy of 6.52 kcal/mol. In contrast, S11 lipase's activation energy, at 21 kcal/mol, was more characteristic of mesophilic lipases. S2 lipase was stable up to 45° C and within the pH range from 5 to 9, whereas S11 lipase was stable up to 50 degrees C and from pH 6 to 10. Both enzymes had high activity against tributyrin, waste soybean oil, and fish oil. Sequence analysis of the S2 lipase gene showed an open reading frame of 2,067 bp encoding a signal peptide (35 aa), a pro-peptide (267 aa), and a mature enzyme (386 aa); the S11 lipase gene, at 2,076 bp, also encoded a signal peptide (37 aa), pro-peptide (255 aa), and mature enzyme (399 aa). The two enzymes maintained amino acid sequence identity of 98-99% with other similar staphylococcal lipases. Their microbial origins and biochemical properties may make these staphylococcal lipases isolated from facial sebaceous skin suitable for use as catalysts in the cosmetic, medicinal, food, or detergent industries.  相似文献   

9.
Penicillium cyclopium, grown in stationary culture, produces a type I lipase specific for triacylglycerols while, in shaken culture, it produces a type II lipase only active on partial acylglycerols. Lipase II has been purified by ammonium sulfate precipitation and chromatographies on Sephadex G-75 and DEAE-Sephadex. The enzyme exists in several glycosylated forms of 40-43 kDa, which can be converted to a single protein of 37 kDa by enzymatic deglycosylation. Activity of lipase II is maximal at pH 7.0 and 40 degrees C. The enzyme is stable from pH 4.5 to 7.0. Activity is rapidly lost at temperatures above 50 degrees C. The enzyme specifically hydrolyzes monoacylglycerols and diacylglycerols, especially of medium chain fatty acids. The sequence of the 20 first amino acid residues is similar to the N-terminal region of P. camembertii lipase and partially similar to lipases from Humicola lanuginosa and Aspergillus oryzae, but is different from Penicillium cyclopium lipase I. However, it can be observed that residues of valine and serine at positions 2 and 5 in Penicillium cyclopium lipase II are conserved in Penicillium expansum lipase, of which 16 out of the 20 first amino acid residues are similar to Penicillium cyclopium lipase I.  相似文献   

10.
A gene coding for a thermostable esterase was isolated by functional screening of Escherichia coli cells that had been transformed with fosmid environmental DNA libraries constructed with metagenomes from thermal environmental samples. The gene conferring esterase activity on E. coli grown on tributyrin agar was composed of 936 bp, corresponding to 311 amino acid residues with a molecular mass of 34 kDa. The enzyme showed significant amino acid similarity (64%) to the enzyme from a hyperthermophilic archaeon, Pyrobaculum calidifontis. An amino acid sequence comparison with other esterases and lipases revealed that the enzyme should be classified as a new member of the hormone-sensitive lipase family. The recombinant esterase that was overexpressed and purified from E. coli was active above 30 degrees C up to 95 degrees C and had a high thermal stability. It displayed a high degree of activity in a pH range of 5.5 to 7.5, with an optimal pH of approximately 6.0. The best substrate for the enzyme among the p-nitrophenyl esters (C(4) to C(16)) examined was p-nitrophenyl caproate (C(6)), and no lipolytic activity was observed with esters containing an acyl chain length of longer than 10 carbon atoms, indicating that the enzyme is an esterase and not a lipase.  相似文献   

11.
Staphylococcus xylosus AF208229 lipase was expressed in E. coli containing an histidine-tag (WT-Val). In the present work, in order to check the importance of the residue 309 in the specific activity, the amino acid side chain residue valine 309 was substituted by aspartate or lysine through site-directed mutagenesis. Both mutant lipases (MUT-Lys and MUT-Asp) were expressed in E. coli and the recombinant histidine-tagged lipases were purified by immobilized metal ion affinity chromatography. The enzyme activity was determined using p-nitrophenyl butyrate as substrate and secondary structure content was evaluated by circular dichroism. MUT-Lys and MUT-Asp presented significant increase of lipase activity (P < 0.05) in comparison to WT-Val, although highest activities for the three enzymes were observed at the same pH and temperature (pH 9.0 and 42°C). The wild type and mutant lipases presented high thermal stability, after 30 min of incubation at 80°C all enzymes retained their initial activities.  相似文献   

12.
Biochemical and molecular characterization of Staphylococcus xylosus lipase   总被引:1,自引:0,他引:1  
The Staphylococcus xylosus strain secretes a non-induced lipase in culture medium: S. xylosus lipase (SXL). Pure SXL is a monomeric protein (43 kDa). The 23 N-terminal amino acid residues were sequenced. This sequence is identical to that of Staphylococcus simulans lipase (SSL); in addition, it exhibits a high degree of homology with Staphylococcus aureus lipase (SAL NCTC 8530) sequences. The cloning and sequencing of gene part encoding the mature lipase shows one nucleotide difference with SSL, which corresponds to the change of one residue at a position 311. The lipase activity is maximal at pH 8.2 and 45 degrees C. SXL is able to hydrolyse triacylglycerols without chain length specificity. The specific activity of about 1900 U/mg was measured using tributyrin or triolein as substrate at pH 8.2 and at 45 degrees C in the presence of 2 mM CaCl2. In contrast to some previously characterized staphylococcal lipases, Ca2+ is not required to trigger the activity of SXL. SXL was found to be stable between pH 5 and pH 8.5. The enzyme maintains 50% of its activity after a 15-min incubation at 60 degrees C. Using tripropionin or vinyl esters as substrates, SXL does not present the interfacial activation phenomenon. Unlike many lipases, SXL is able to hydrolyse its substrate in the presence of bile salts or amphiphilic proteins. SXL is a serine enzyme, which is inhibited by THL.  相似文献   

13.
Lipase-mediated deacetylation and oligomerization of lactonic sophorolipids   总被引:2,自引:0,他引:2  
Hu Y  Ju LK 《Biotechnology progress》2003,19(2):303-311
The direct enzymatic polymerization of lactonic sophorolipids (SLs) was investigated with four lipases, including porcine pancreatic lipase (PPL), immobilized Mucor miehei lipase (MML), lyophilized Candida antarctica lipase (Fraction B, CAL-B), and lyophilized Pseudomonas sp. lipase (PSL). Several organic solvents, covering a wide range of polarity, were compared for suitability as the reaction medium. Isopropyl ether and toluene were found most effective. According to the quantification and structure identification by HPLC and LC-MS, the reaction proceeded with the formation of monoacetylated lactonic SLs and the subsequent conversion of the intermediates to oligomers and polymers, presumably through ring-opening polymerization. Temperature was found to have significant effects on the reaction. Both the conversion of reactant SLs and the subsequent formation of oligomers and polymers from the intermediates were faster at 60 degrees C than at 50 degrees C. The substrate selectivity among the three dominant reactant SLs also differed with the temperature. The conversion rate increased with the ring size of the lactones at 60 degrees C, but it decreased with the size at 50 degrees C.  相似文献   

14.
A novel strain of Rhizopus oryzae WPG secretes a noninduced lipase (ROLw) in the culture medium; purified ROLw is a protein of 29 kDa, the 45 N-terminal amino acid residues were sequenced, this sequence is very homologous to Rhizopus delemar lipase (RDL), Rhizopus niveus lipase (RNL) and R. oryzae lipase (ROL29) sequences; the cloning and sequencing of the part of the gene encoding the mature ROLw, shows two nucleotides differences with RDL, RNL and ROL29 sequences corresponding to the change of the residues 134 and 200; ROLw does not present the interfacial activation phenomenon when using tripropionin or vinyl propionate as substrates; the lipase activity is maximal at pH 8 and at 37 degrees C, specific activities of 3500 or 900 U mg(-1) were measured at 37 degrees C and at pH 8, using olive oil emulsion or tributyrin as substrates, respectively; ROLw is unable to hydrolyse triacylglycerols in the presence of high concentration of bile salts; it is a serine enzyme as it is inhibited by tetrahydrolipstatin and was stable between pH 5 and pH 8.  相似文献   

15.
A novel support has been utilized for immobilization of lipase, which was prepared by amination of silica with ethanolamine followed by cross linking with glutaraldehyde. Lipases from Rhizopus oryzae 3562 and Enterobacter aerogenes were immobilized on activated silica gel, where they retained 60 and 50% of respective original activity. The thermal stability of the immobilized lipases was significantly improved in comparison to the free forms while the pH stability remained unchanged. E. aerogenes and R. oryzae 3562 lipases retained 75 and 97% of respective initial activity on incubation at 90 degrees C, whereas both the free forms became inactive at this temperature. The conversion yield of isoamyl acetate was found to be higher with the immobilized fungal (90 vs. 21%) and bacterial lipases (64 vs. 18%) than the respective free forms. Immobilized R. oryzae 3562 lipases retained 50% activity for isoamyl acetate synthesis up to ten cycles whereas it was eight cycles for E. aerogenes.  相似文献   

16.
To prepare a whole-cell biocatalyst of a stable lipase at a low price, mutated Candida antarctica lipase B (mCALB) constructed on the basis of the primary sequences of CALBs from C. antarctica CBS 6678 strain and from C. antarctica LF 058 strain was displayed on a yeast cell surface by α-agglutinin as the anchor protein for easy handling and stability of the enzyme. When mCALB was displayed on the yeast cell surface, it showed a preference for short chain fatty acids, an advantage for producing flavors; although when Rhizopus oryzae lipase (ROL) was displayed, the substrate specificity was for middle chain lengths. When the thermal stability of mCALB on the cell surface was compared with that of ROL on a cell surface, T 1/2, the temperature required to give a residual activity of 50% for heat treatment of 30 min, was 60°C for mCALB and 44°C for ROL indicating that mCALB displayed on cell surface has a higher thermal stability. Furthermore, the activity of the displayed mCALB against p-nitrophenyl butyrate was 25-fold higher than that of soluble CALB, as reported previously. These findings suggest that mCALB-displaying yeast is more practical for industrial use as the whole-cell biocatalyst.  相似文献   

17.
Rhizopus oryzae lipase (ROL) was found to be a true lipase. This enzyme presents the interfacial activation phenomenon. The N-terminal amino acid sequence of ROL was compared to those of rhizopus lipases. Purified ROL possesses the same N-terminal sequence as the mature Rhizopus niveus lipase (RNL). This sequence was found in the last 28 amino acids of the propeptide sequence derived from the cDNA of Rhizopus delemar lipase (RDL). Using the baro-stat method, we have measured the hydrolysis rate of dicaprin films by ROL as a function of surface pressure. Our results show that Rhizopus oryzae lipase is markedly stereoselective of the sn-3 position of the 2,3 enantiomer of dicaprin. Polyclonal antibodies (PAB) directed against ROL have been produced and purified by immunoaffinity. The effects of these PAB on the interfacial behavior of ROL were determined. The immunoblot analysis with polyclonal antibodies anti-ROL (PAB anti-ROL) and various lipases shows a cross-immunoreactivity between the lipase from the rhizopus family (Rhizopus delemar lipase and Rhizopus arrhizus lipase).  相似文献   

18.
Lipases are industrially useful versatile enzymes that catalyze numerous different reactions including hydrolysis of triglycerides, transesterification, and chiral synthesis of esters under natural conditions. Although lipases from various sources have been widely used in industrial applications, such as in food, chemical, pharmaceutical, and detergent industries, there are still substantial current interests in developing new microbial lipases, specifically those functioning in abnormal conditions. We screened 17 lipase-producing yeast strains, which were prescreened for substrate specificity of lipase from more than 500 yeast strains from the Agricultural Research Service Culture Collection (Peoria, IL, U.S.A.), and selected Yarrowia lipolytica NRRL Y-2178 as a best lipase producer. This report presents new finding and optimal production of a novel extracellular alkaline lipase from Y. lipolytica NRRL Y-2178. Optimal c ulture conditions f orlipase production by Y. lipolytica NRRL Y-2178 were 72 h incubation time, 27.5 degrees C, pH 9.0. Glycerol and glucose were efficiently used as the most efficient carbon sources, and a combination of yeast extract and peptone was a good nitrogen source for lipase production by Y. lipolytica NRRL Y-2178. These results suggested that Y. lipolytica NRRL Y-2178 showsgood industrial potential as a new alkaline lipase producer.  相似文献   

19.
Recent investigations of Aneurinibacillus thermoaerophilus strains have allowed identification of a unique solvent tolerant lipase, distinct from known lipases. This work reports the expression and purification of this lipase (LipAT) and the first characterization of its structure and temperature and pH-dependent behaviour. LipAT has a secondary structural content compatible with the canonical lipase α/β hydrolase fold, and is dimeric at neutral pH. The protein was folded from pH 5 to 10, and association into folded aggregates at pH 7 and 8 likely protected its secondary structures from thermal unfolding. The enzyme was active from 25 to 65 °C under neutral pH, but its maximal activity was detected at pH 10 and 45 °C. The ability of LipAT to recover from high temperature was investigated. Heating at 70 °C and pH 10 followed by cooling prevented the restoration of activity, while similar treatments performed at pH 8 (where folded aggregates may form) allowed recovery of 50% of the initial activity. In silico analyses revealed a high conservation (85% or more) for the main lipase signature sequences in LipAT despite an overall low residue identity (60% identity compared to family I.5 lipases). In contrast, the active site lid region in LipAT is very distinct showing only 25% amino acid sequence identity to other homologous lipases in this region. Comparison of lids among lipases from the I.5 family members and LipAT reveals that this region should be a primary target for elucidation, optimisation and prediction of structure–function relationships in lipases.  相似文献   

20.
脂肪酶高产菌株选育和菌种库的建立   总被引:17,自引:0,他引:17  
从山东省济南市植物油厂、肉联厂、乳品厂、菜市场等处的含油土壤中分离筛选到80余株脂肪酶活性较高的产生菌,包括细菌、霉菌、酵母等各种类型,我们对其中的部分菌株进行了形态学及酶学性质的初步研究。一株酶活较高的菌株Y-11经鉴定为丝孢酵母属(Trichosporon),用紫外线及亚硝酸对其进行了双重诱变、然后用制霉菌素及琥珀酸钠筛选耐药性突变株,使酶活提高155%,并将筛选到的菌株建立一个能够产生各具特色的脂肪酶的菌种库,为今后进一步开展脂肪酶应用研究打下基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号