首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polar, COOH-terminal c-region of signal peptides has been considered to be most important for influencing the efficiency and fidelity of signal peptidase cleavage while the hydrophobic core or h-region appears indispensable for initiating translocation. To identify structural features of residues flanking the c-region that influence the fidelity and efficiency of signal peptidase cleavage as well as co-translational translocation, we introduced six amino acid substitutions into the COOH terminus of the hydrophobic core and seven substitutions at the NH2 terminus of the mature region (the +1 position) of a model eukaryotic preprotein-human pre(delta pro)apoA-II. This preprotein contains several potential sites for signal peptidase cleavage. The functional consequences of these mutations were assayed using an in vitro co-translational translocation/processing system and by post-translational cleavage with purified, detergent-solubilized, hen oviduct signal peptidase. The efficiency of translocation could be correlated with the hydrophobic character of the residue introduced at the COOH terminus of the h-region. Some h/c boundary mutants underwent co-translational translocation across the microsomal membrane with only minimal cleavage yet they were cleaved post-translationally by hen oviduct signal peptidase more efficiently than other mutants which exhibited a high degree of coupling of co-translational translocation and cleavage. These data suggest that features at the COOH terminus of the h-domain can influence "presentation" of the cleavage site to signal peptidase. The +1 residue substitutions had minor effects on the extent of co-translational translocation and processing. However, these +1, as well as h/c boundary mutations, had dramatic effects on the site of cleavage chosen by signal peptidase, indicating that residues flanking the c-region of this prototypic eukaryotic signal peptide can affect the fidelity of its proteolytic processing. The site(s) selected by canine microsomal and purified hen oviduct signal peptidase were very similar, suggesting that "intrinsic" structural features of this prepeptide can influence the selectivity of eukaryotic signal peptidase cleavage, independent of the microsomal membrane and associated translocation apparatus.  相似文献   

2.
The signal peptide of the outer membrane lipoprotein (OMLP) of Escherichia coli was shown to be capable of promoting protein translocation across mammalian microsomal membranes in vitro. We assayed translocation of a fusion protein containing the OMLP signal peptide and nine amino acids of OMLP fused in frame to beta-lactamase. The efficiency with which the mammalian translocation machinery recognizes and accepts the OMLP signal peptide as substrate is indistinguishable from that of mammalian secretory proteins. Upon translocation mammalian signal peptidase processes the pre-OMLP-beta-lactamase protein at different sites than are utilized in vivo by E. coli OMLP signal peptidase (signal peptidase II) but that can be predicted as mammalian signal peptidase cleavage sites. Mutants in the OMLP signal peptide were tested for their ability to promote translocation of the fusion protein in this assay system. It has been shown previously that mutants in the positively charged amino acids at the amino terminus of the signal peptide severely delay the translocation of OMLP in vivo in E. coli. However, these mutants had no detectable effect either on signal recognition by mammalian signal recognition particle or on the efficiency of translocation itself.  相似文献   

3.
4.
The human cytomegalovirus US2 gene product targets major histocompatibility class I molecules for degradation in a proteasome-dependent fashion. Degradation requires interaction between the endoplasmic reticulum (ER) lumenal domains of US2 and class I. While ER insertion of US2 is essential for US2 function, US2 lacks a cleavable signal peptide. Radiosequence analysis of glycosylated US2 confirms the presence of the NH(2) terminus predicted on the basis of the amino acid sequence, with no evidence for processing by signal peptidase. Despite the absence of cleavage, the US2 NH(2)-terminal segment constitutes its signal peptide and is sufficient to drive ER translocation of chimeric reporter proteins, again without further cleavage. The putative US2 signal peptide c-region is responsible for the absence of cleavage, despite the presence of a suitable -3,-1 amino acid motif for signal peptidase recognition. In addition, the US2 signal peptide affects the early processing events of the nascent polypeptide, altering the efficiency of ER insertion and subsequent N-linked glycosylation. To our knowledge, US2 is the first example of a membrane protein that does not contain a cleavable signal peptide, yet otherwise behaves like a type I membrane glycoprotein.  相似文献   

5.
It is shown that the signal sequence of carp preproinsulin is functional with the dog pancreatic signal recognition particle (SRP) both when present at its normal location at the amino-terminus of the protein or when engineered to an internal location. Inhibition of translation by SRP in the absence of microsomal membranes, reconstitution by SRP of the translocation competence of high-salt inactivated microsomes and signal peptide cleavage all occur with the signal sequence being preceded by a highly charged peptide segment of 39 amino acid residues (the distance from the amino-terminus to the cleavage site of the signal peptidase is increased to 56 residues).  相似文献   

6.
The length of the hydrophobic core of the bovine parathyroid hormone signal peptide was modified by in vitro mutagenesis. Extension of the hydrophobic core by three amino acids at the NH2-terminal end had little effect on the proteolytic processing of the signal peptide by microsomal membranes. Deletion of 6 of the 12 amino acids in the core eliminated translocation and processing of the modified protein. Deletion of pairs of amino acids across the core resulted in position-dependent inhibition of signal activity unrelated to hydrophobicity but inversely related to the hydrophobic moments of the modified cores. Deletions in the NH2-terminal region of the core were strongly inhibitory for proteolytic processing whereas deletions in the COOH-terminal region had no effect or increased processing when assessed either co-translationally with microsomal membranes or post-translationally with purified hen oviduct signal peptidase. Deletion of cysteine 18 and alanine 19 increased processing, but deletion of cysteine alone or substitution of leucine for cysteine did not increase processing more than deletion of both residues at 18 and 19. Translations of the translocation-defective mutants with pairs of amino acids deleted in a wheat germ system were inhibited by addition of exogenous signal recognition particle suggesting that interactions of the modified signal peptides with signal recognition particle were normal. The position-dependent effects of the hydrophobic core modifications indicate that structural properties of the core in addition to hydrophobicity are important for signal activity. The parallel effects of the modifications on co-translational translocation and post-translational processing by purified signal peptidase suggest that proteins in the signal peptidase complex might be part of, or intimately associated with, membrane proteins involved in the translocation. A model is proposed in which the NH2-terminal region of the hydrophobic core binds to one subunit of the signal peptidase while the other subunit catalyzes the cleavage.  相似文献   

7.
Sequences beyond the cleavage site influence signal peptide function   总被引:8,自引:0,他引:8  
The earliest events in protein secretion include targeting to and translocation across the endoplasmic reticulum membrane. To dissect the mechanism by which signal sequences mediate translocation in eukaryotes, we are examining the behavior of fusion proteins and deletion mutants in cell-free systems. We demonstrate that the protein domain being translocated can have profound impact on the efficiency of the translocation process. Specifically, deletions in the mature prolactin "passenger" domain, beyond the signal cleavage site, reduce the efficiency of signal function. The effect of these deletions on signal function is observed when this signal sequence is in its normal position, at the amino terminus, and when internalized by the addition of 117 amino acids of chimpanzee alpha-globin. Alterations in the interaction of the deletion mutants with the signal recognition particle and with another component of the translocation system, signal peptidase, were observed. Our results suggest that subtle changes in sequences beyond the signal cleavage site can alter the efficiency of co-translational translocation by affecting various signal-receptor interactions.  相似文献   

8.
The translocation into Escherichia coli cytoplasmic membrane vesicles of a protein containing an uncleavable signal peptide was studied. The signal peptide cleavage site of the ompF-lpp chimeric protein, a model secretory protein, was changed from Ala-Ala to Phe-Pro through oligonucleotide-directed site-specific mutagenesis of the ompF-lpp gene on a plasmid. The mutant protein was no longer processed by the signal peptidase. When proteinase K treatment was adopted as a probe for protein translocation into inverted membrane vesicles, the mutant protein exhibited rapid and almost complete translocation, most likely due to the lack of premature cleavage of the signal peptide before the translocation. This result also indicates that cleavage of the signal peptide is not required for translocation of the mature domain of the protein. The establishment of an efficient system made it possible to perform precise and quantitative analysis of the translocation process. The translocation was time-dependent, vesicle-dependent, and required ATP and NADH. Translocation into membrane vesicles was also observed with the uncleavable precursor protein purified by means of immunoaffinity chromatography, although the efficiency was appreciably low. The translocation required only ATP and NADH. Addition of the cytosolic fraction did not enhance the translocation.  相似文献   

9.
Type I signal peptidase (SPase I) catalyzes the cleavage of the amino-terminal signal sequences from preproteins destined for cell export. Preproteins contain a signal sequence with a positively charged n-region, a hydrophobic h-region, and a neutral but polar c-region. Despite having no distinct consensus sequence other than a commonly found c-region "Ala-X-Ala" motif preceding the cleavage site, signal sequences are recognized by SPase I with high fidelity. Remarkably, other potential Ala-X-Ala sites are not cleaved within the preprotein. One hypothesis is that the source of this fidelity is due to the anchoring of both the SPase I enzyme (by way of its transmembrane segment) and the preprotein substrate (by the h-region in the signal sequence) in the membrane. This limits the enzyme-substrate interactions such that cleavage occurs at only one site. In this work we have, for the first time, successfully isolated Bacillus subtilis type I signal peptidase (SipS) and a truncated version lacking the transmembrane domain (SipS-P2). With purified full-length as well as truncated constructs of both B. subtilis and Escherichia coli (Lep) SPase I, in vitro specificity studies indicate that the transmembrane domains of either enzyme are not important determinants of in vitro cleavage fidelity, since enzyme constructs lacking them reveal no alternate site processing of pro-OmpA nuclease A substrate. In addition, experiments with mutant pro-OmpA nuclease A substrate constructs indicate that the h-region of the signal peptide is also not critical for substrate specificity. In contrast, certain mutants in the c-region of the signal peptide result in alternate site cleavage by both Lep and SipS enzymes.  相似文献   

10.
11.
A functional interaction between the signal sequence and the translation apparatus which may serve as a first step in chain targeting to the membrane is described. To this end, we exploited the powerful technique of molecular cloning in a procaryotic system and the well characterized translocation system of mammalian endoplasmic reticulum. The signal peptide of subunit B of the heat labile enterotoxin of Escherichia coli (EltB) was fused to several proteins. Single base substitutions were introduced in the signal peptide and their effect on protein synthesis and translocation was studied. We sought a single amino acid substitution which may define certain steps in the coordinated regulation of chain synthesis and targeting to the membrane. The substitution of proline for leucine at residue -8 in the signal peptide abolished all known functions of the signal peptide. In contrast to wild type signal peptide, the mutant signal peptide did not lead to arrest of nascent chain synthesis by signal recognition particle or translocation of the precursor protein across the membrane of the endoplasmic reticulum. Furthermore, the mutant signal peptide was not cleaved by purified E. coli signal peptidase. Interestingly, the mutation resulted in about a 2-fold increase in the rate of synthesis of the precursor protein, suggesting a role for the signal peptide in regulating the synthesis of the nascent secretory chain as a means of ensuring early and efficient targeting of this chain to the membrane. This role might involve interaction of the signal peptide with components of the translation apparatus and/or endogenous signal recognition particle. These results were obtained with three different fusion proteins carrying the signal peptide of EltB thus leading to the conclusion that the effect of the mutation on the structure and function of the signal peptide is independent of the succeeding sequence to which the signal peptide is attached.  相似文献   

12.
13.
The amino-terminal domain of a eukaryotic signal peptide, from bovine parathyroid hormone, was altered by in vitro mutagenesis of the cDNA. The function of "internalized" signal sequence mutants and of deletion mutants was assayed using an in vitro translation-translocation system. The addition of 11 amino acids to the NH2 terminus of the signal peptide did not prevent normal processing of the precursor protein, whereas a 23-amino acid extension blocked processing. These data suggest that the NH2-terminal sequences of internal signal peptides must be permissive of the signal function. Deletion of 6 NH2-terminal amino acids from the signal peptide had no effect on its cleavage by microsomal membranes, but removal of 10 or 13 amino acids, including all charged residues prior to the hydrophobic core, prevented processing. For both the extension and deletion mutations, processed proteins were protected from proteolytic digestion, whereas unprocessed forms were not, which indicated that the unprocessed mutant proteins were not translocated across the microsomal membrane. Translation of both the extension and deletion translocation-deficient mutants was arrested by signal recognition particle, and salt-washed microsomal membranes reversed the translational arrest. These data demonstrate that the NH2-terminal domain is not required for the interaction of signal recognition particle with the signal peptide or with signal recognition particle receptor, but is required for formation of a maximally translocation-competent complex with the microsomal membrane.  相似文献   

14.
The 20-amino acid signal peptide of human pre (delta pro)apolipoprotein A-II contains the tripartite domain structure typical of eukaryotic prepeptides, i.e. a positively charged NH2-terminal (n) region, a hydrophobic core (h) region, and a COOH-terminal polar domain (c region). This signal sequence has multiple potential sites for cotranslational processing making it an attractive model for assessing the consequences of systematic structural alterations on the site selected for signal peptidase cleavage. We previously analyzed 40 mutant derivatives of this model preprotein using an in vitro translation/canine microsome processing assay. The results showed that the position of the boundary between the h and c regions and properties of the -1 residue are critical in defining the site of cotranslational cleavage. To investigate whether structural features in the NH2-terminal region of signal peptides play a role in cleavage specificity, we have now inserted various amino acids between the positively charged n region (NH2-Met-Lys) and the h region of a "parental" pre(delta pro)apoA-II mutant that has roughly equal cleavage between Gly18 decreases and Gly20 decreases. Movement of the n/h boundary toward the NH2 terminus results in a dramatic shift in cleavage to Gly18 decreases. Replacement of the Lys2 residue with hydrophilic, negatively charged residues preserves the original sites of cleavage. Replacement with a hydrophobic residue causes cleavage to shift "upstream." Simultaneous alteration of the position of n/h and h/c boundaries has an additive effect on the site of signal peptidase cleavage. None of these mutations produced a marked decrease in the efficiency of in vitro cotranslational translocation or cleavage. However, in sequence contexts having poor signal function, introduction of hydrophobic residues between the n and h regions markedly improved the efficiency of translocation/processing. We conclude that the position of the n/h boundary as well as positioning of the h/c boundary affects the site of cleavage chosen by signal peptidase.  相似文献   

15.
The proteolytic processes involved in the cotranslational production of the Semliki Forest virus proteins p62, 6K, and E1 from a common precursor polypeptide were analyzed by an in vitro translation-translocation assay. By studying the behavior of wild-type and mutant variants of the polyprotein, we show that the signal sequences responsible for membrane translocation of the 6K and E1 proteins reside in the C-terminal regions of p62 and 6K, respectively. We present evidence suggesting that the polyprotein is processed on the luminal side by signal peptidase at consensus cleavage sites immediately following the signal sequences. Our results also lead us to conclude that the 6K protein is a transmembrane polypeptide with its N terminus on the luminal side of the membrane (type I). Thus, the production of all three membrane proteins is directed by alternating signal and stop-transfer (anchor) sequences that function in translocation and cleavage of the virus precursor polyprotein. This also shows conclusively that internally located signal sequences can be cleaved by signal peptidase.  相似文献   

16.
17.
The signal recognition particle (SRP)-mediated elongation arrest of the synthesis of nascent secretory proteins can be released by salt- extracted rough microsomal membranes (Walter, P., and G. Blobel, 1981, J. Cell Biol, 91:557-561). Both the arrest-releasing activity and the signal peptidase activity were solubilized from rough microsomal membranes using the nonionic detergent Nikkol in conjunction with 250 mM KOAc. Chromatography of this extract on SRP-Sepharose separated the arrest-releasing activity from the signal peptidase activity. Further purification of the arrest-releasing activity using sucrose gradient centrifugation allowed the identification of a 72,000-dalton polypeptide as the protein responsible for the activity. Based upon its affinity for SRP, we refer to the 72,000-dalton protein as the SRP receptor. A 60,000-dalton protein fragment (Meyer, D. I., and B. Dobberstein, 1980, J. Cell Biol., 87:503-508) that had been shown previously to reconstitute the translocation activity of protease- digested membranes, was shown here by peptide mapping and immunological criteria to be derived from the SRP receptor. Findings that are in part similar, and in part different from these reported here and in our preceding paper were made independently (Meyer, D. I., E. Krause, and B. Dobberstein, 1982, Nature (Lond.). 297:647-650) and the term "docking protein" was proposed for the SRP receptor. A lower membrane content of both SRP and the SRP receptor than that of membrane bound ribosomes suggests that the SRP-SRP receptor interaction may exist transiently during the formation of a ribosome-membrane junction and during translocation.  相似文献   

18.
The effects of five single-amino-acid substitution mutations within the signal sequence of yeast prepro-alpha-factor were tested in yeast cells. After short pulse-labelings, virtually all of the alpha-factor precursor proteins from a wild-type gene were glycosylated and processed by signal peptidase. In contrast, the signal sequence mutations resulted in the accumulation of mostly unglycosylated prepro-alpha-factor after a short labeling interval, indicating a defect in translocation of the protein into the endoplasmic reticulum. Confirming this interpretation, unglycosylated mutant prepro-alpha-factor in cell extracts was sensitive to proteinase K and therefore in a cytosolic location. The signal sequence mutations reduced the rate of translocation into the endoplasmic reticulum by as much as 25-fold or more. In at least one case, mutant prepro-alpha-factor molecules were translocated almost entirely posttranslationally. Four of the five mutations also reduced the rate of proteolytic processing by signal peptidase in vivo, even though the signal peptide alterations are not located near the cleavage site. This study demonstrates that a single-amino-acid substitution mutation within a eucaryotic signal peptide can affect both translocation and proteolytic processing in vivo and may indicate that the recognition sequences for translocation and processing overlap within the signal peptide.  相似文献   

19.
Y Akiyama  T Inada  Y Nakamura    K Ito 《Journal of bacteriology》1990,172(6):2888-2893
SecY is an Escherichia coli integral membrane protein required for efficient translocation of other proteins across the cytoplasmic membrane; it is embedded in this membrane by the 10 transmembrane segments. Among several SecY-alkaline phosphatase (PhoA) fusion proteins that we constructed previously, SecY-PhoA fusion 3-3, in which PhoA is fused to the third periplasmic region of SecY just after the fifth transmembrane segment, was found to be subject to rapid proteolytic processing in vivo. Both the SecY and PhoA products of this cleavage have been identified immunologically. In contrast, cleavage of SecY-PhoA 3-3 was barely observed in a lep mutant with a temperature-sensitive leader peptidase. The full-length fusion protein accumulated in this mutant was cleaved in vitro by the purified leader peptidase. A sequence Ala-202-Ile-Ala located near the proposed interface between transmembrane segment 5 and periplasmic domain 3 of SecY was found to be responsible for the recognition and cleavage by the leader peptidase, since a mutated fusion protein with Phe-Ile-Phe at this position was no longer cleaved even in the wild-type cells. These results indicate that SecY contains a potential leader peptidase cleavage site that undergoes cleavage if the PhoA sequence is attached carboxy terminally. Thus, transmembrane segment 5 of SecY can fulfill both of the two important functions of the signal peptide, translocation and cleavage, although the latter function is cryptic in the normal SecY protein.  相似文献   

20.
Production of hepatitis C virus (HCV) core protein requires the cleavages of polyprotein by signal peptidase and signal peptide peptidase (SPP). Cleavage of signal peptide at the C-terminus of HCV core protein by SPP was characterized in this study. The spko mutant (mutate a.a. 189–193 from ASAYQ to PPFPF) is more efficient than the A/F mutant (mutate a.a 189 and 191 from A to F) in blocking the cleavage of signal peptide by signal peptidase. The cleavage efficiency of SPP is inversely proportional to the length of C-terminal extension of the signal peptide: the longer the extension, the less efficiency the cleavage is. Thus, reducing the length of C-terminal extension of signal peptide by signal peptidase cleavage could facilitate further cleavage by SPP. The recombinant core protein fused with signal peptide from the C-terminus of p7 protein, but not those from the C-termini of E1 and E2, could be cleaved by SPP. Therefore, the sequence of the signal peptide is important but not the sole determinant for its cleavage by SPP. Replacement of the HCV core protein E.R.-associated domain (a.a. 120–150) with the E.R.-associated domain (a.a.1–50) of SARS-CoV membrane protein results in the failure of cleavage of this recombinant protein by SPP, though this protein still is E.R.-associated. This result suggests that not only E.R.-association but also specific protein sequence is important for the HCV core protein signal peptide cleavage by SPP. Thus, our results suggest that both sequences of the signal peptide and the E.R.-associated domain are important for the signal peptide cleavage of HCV core protein by SPP. Electronic Supplementary MaterialThe online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号