首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tolerable duration of high-intensity, constant-load cycle ergometry is a hyperbolic function of power, with an asymptote termed critical power (CP) and a curvature constant (W') with units of work. It has been suggested that continued exercise after exhaustion may only be performed below CP, where predominantly aerobic energy transfer can occur and W' can be partially replenished. To test this hypothesis, six volunteers each performed cycle-ergometer exercise with breath-by-breath determination of ventilatory and pulmonary gas exchange variables. Initially, four exercise tests to exhaustion were made: 1). a ramp-incremental and 2). three high-intensity constant-load bouts at different work rates, to estimate lactate (theta(L)) and CP thresholds, W', and maximum oxygen uptake (Vo2 max). Subsequently, subjects cycled to the limit of tolerance (for approximately 360 s) on three occasions, each followed by a work rate reduction to 1). 110% CP, 2). 90% CP, and 3). 80% theta(L) for a 20-min target. W' averaged 20.9 +/- 2.35 kJ or 246 +/- 30 J/kg. After initial fatigue, 110% CP was tolerated for only 30 +/- 12 s. Each subject completed 20 min at 80% theta(L), but only two sustained 20 min at 90% CP; the remaining four subjects fatigued at 577 +/- 306 s, with oxygen consumption at 89 +/- 8% Vo2 max. The results support the suggestion that replenishing W' after fatigue necessitates a sub-CP work rate. The variation in subjects' responses during 90% CP was unexpected but consistent with mechanisms such as reduced CP consequent to prior high-intensity exercise, variation in lactate handling, and/or regional depletion of energy substrates, e.g., muscle glycogen.  相似文献   

2.
Tolerance to high-intensity constant-power (P) exercise is well described by a hyperbola with two parameters: a curvature constant (W') and power asymptote termed "critical power" (CP). Since the ability to sustain exercise is closely related to the ability to meet the ATP demand in a steady state, we reasoned that pulmonary O(2) uptake (Vo(2)) kinetics would relate to the P-tolerable duration (t(lim)) parameters. We hypothesized that 1) the fundamental time constant (τVo(2)) would relate inversely to CP; and 2) the slow-component magnitude (ΔVo(2sc)) would relate directly to W'. Fourteen healthy men performed cycle ergometry protocols to the limit of tolerance: 1) an incremental ramp test; 2) a series of constant-P tests to determine Vo(2max), CP, and W'; and 3) repeated constant-P tests (WR(6)) normalized to a 6 min t(lim) for τVo(2) and ΔVo(2sc) estimation. The WR(6) t(lim) averaged 365 ± 16 s, and Vo(2max) (4.18 ± 0.49 l/min) was achieved in every case. CP (range: 171-294 W) was inversely correlated with τVo(2) (18-38 s; R(2) = 0.90), and W' (12.8-29.9 kJ) was directly correlated with ΔVo(2sc) (0.42-0.96 l/min; R(2) = 0.76). These findings support the notions that 1) rapid Vo(2) adaptation at exercise onset allows a steady state to be achieved at higher work rates compared with when Vo(2) kinetics are slower; and 2) exercise exceeding this limit initiates a "fatigue cascade" linking W' to a progressive increase in the O(2) cost of power production (Vo(2sc)), which, if continued, results in attainment of Vo(2max) and exercise intolerance. Collectively, these data implicate Vo(2) kinetics as a key determinant of high-intensity exercise tolerance in humans.  相似文献   

3.
The purpose of this study was to examine how oxygen uptake (Vo2) in decrement-load exercise (DLE) is affected by changing rate of decrease in power output. DLE was performed at three different rates of decrease in power output (10, 20 and 30 watts.min(-1): DLE10, DLE20 and DLE30, respectively) from power output corresponding to 90 % of peak Vo2. Vo2 exponentially increased and then decreased, and the rate of its decrease was reduced at low power output. The values of Vo2 in the three DLE tests were not different for the first 2 min despite the difference in power output. The relationship between Vo2 and power output below 50 watts was obtained as a slope to estimate excessive Vo2 (ex-Vo2) above 50 watts. The slopes were 10.0+/-0.9 for DLE10, 9.9+/-0.7 for DLE20 and 10.2+/-1.0 ml.min(-1).watt(-1) for DLE30. The difference between Vo2 estimated from the slope and measured Vo2 was defined as ex-Vo2. The peak value of ex-Vo2 for DLE10 (189+/-116 ml.min(-1)) was significantly greater than those for DLE20 and for DLE30 (93+/-97 and 88+/-34 ml.min(-1)). The difference between Vo2 in DLE and that in incremental-load exercise (ILE) below 50 watts (DeltaVo2) was greater in DLE30 and smallest in DLE10. There were significant differences in DeltaVo2 among the three DLE tests. The values of DeltaVo2 at 30 watts were 283+/-152 for DLE10, 413+/-136 for DLE20 and 483+/-187 ml.min(-1) for DLE30. Thus, a faster rate of decrease in power output resulted in no change of Vo2 at the onset of DLE, smaller ex-Vo2 and greater DeltaVo2. These results suggest that Vo2 is disposed in parallel in each motor unit released from power output or recruited in DLE.  相似文献   

4.
Quechua in the Andes may be genetically adapted to altitude and able to resist decrements in maximal O2 consumption in hypoxia (DeltaVo2 max). This hypothesis was tested via repeated measures of Vo2 max (sea level vs. 4338 m) in 30 men of mixed Spanish and Quechua origins. Individual genetic admixture level (%Spanish ancestry) was estimated by using ancestry-informative DNA markers. Genetic admixture explained a significant proportion of the variability in DeltaVo2 max after control for covariate effects, including sea level Vo2 max and the decrement in arterial O2 saturation measured at Vo2 max (DeltaSpO2 max) (R2 for admixture and covariate effects approximately 0.80). The genetic effect reflected a main effect of admixture on DeltaVo2 max (P = 0.041) and an interaction between admixture and DeltaSpO2 max (P = 0.018). Admixture predicted DeltaVo2 max only in subjects with a large DeltaSpO2 max (P = 0.031). In such subjects, DeltaVo2 max was 12-18% larger in a subgroup of subjects with high vs. low Spanish ancestry, with least squares mean values (+/-SE) of 739 +/- 71 vs. 606 +/- 68 ml/min, respectively. A trend for interaction (P = 0.095) was also noted between admixture and the decrease in ventilatory threshold at 4338 m. As previously, admixture predicted DeltaVo2 max only in subjects with a large decrease in ventilatory threshold. These findings suggest that the genetic effect on DeltaVo2 max depends on a subject's aerobic fitness. Genetic effects may be more important (or easier to detect) in athletic subjects who are more likely to show gas-exchange impairment during exercise. The results of this study are consistent with the evolutionary hypothesis and point to a better gas-exchange system in Quechua.  相似文献   

5.
The aim of this study was to test the hypothesis that prior heavy exercise results in a higher oxygen cost during a subsequent bout of moderate exercise due to changes in muscle activity. Eight male subjects (25+/-2 yr, +/-SE) performed moderate-moderate and moderate-heavy-moderate transitions in work rate (cycling intensity, moderate=90% LT, heavy=80% VO(2) peak). The second bout of moderate exercise was performed after 6 min (C) or 30s (D) of recovery. Pulmonary gas exchange was measured breath-by-breath and surface electromyography was obtained from the vastus lateralis and medialis muscles. Root mean square (RMS) and median power frequency (MDPF) were computed. Prior heavy exercise increased DeltaVO(2)/DeltaWR (C: +2.0+/-0.8 ml min(-1)W(-1), D: +3.4+/-0.8 ml min(-1)W(-1); P<0.05) and decreased exercise efficiency (C: -13.3+/-5.6%, D: -22.2 +/-4.9%; P<0.05) during the second bout of moderate exercise in the absence of changes in RMS. MDPF was slightly elevated ( approximately 2%) during the second bout of moderate exercise, but MDPF was not correlated with V O(2) (r=0.17). These findings suggest that the increased oxygen cost during moderate exercise following heavy exercise is not due to increased muscle activity as assessed by surface electromyography.  相似文献   

6.
The purpose of this study was to investigate the effect of single bouts of exercise at three different intensities on the redox state of human serum albumin (HSA) and on carbonyl groups on protein (CP) concentrations in plasma. Trained men [n = 44, maximal oxygen consumption (Vo(2max)): 55 +/- 5 ml.kg(-1).min(-1), nonsmokers, 34 +/- 5 years of age] from a homogenous population, volunteers from a police special forces unit, were randomly assigned to perform on a cycle ergometer either at 70% (n = 14), 75% (n = 14), or 80% (n = 16) of Vo(2max) for 40 min. Blood was collected before exercise, immediately after the exercise test (IE), and 30 min after each test (30M) and 30 h after each test (30H). The reduced fraction of HSA, human mercaptalbumin (HMA), decreased at all three exercise intensities IE and 30M, returning to preexercise values by 30H (P < 0.05). HMA was primarily oxidized to its reversible fraction human nonmercaptalbumin 1 (HNA1). CP concentrations increased at 75% of Vo(2max) IE and 30M with a tendency (P < 0.1) and at 80% Vo(2max) IE and 30M significantly, returning to preexercise concentrations by 30H (P < 0.01). These results indicate that the HSA redox system in plasma is activated after a single bout of cycle ergometer exercise at 70% Vo(2max) and 40 min duration. The extent of the HSA modification increased with exercise intensity. Oxidative protein damage, as indicated by CP, was only significantly increased at 80% Vo(2max) intensity in this homogenous cohort of trained men.  相似文献   

7.
The tolerable work duration (t) for high-intensity cycling is well described as a hyperbolic function of power (W): W = (W'.t-1) + Wa, where Wa is the upper limit for sustainable power (lying between maximum W and the threshold for sustained blood [lactate] increase, theta lac), and W' is a constant which defines the amount of work which can be performed greater than Wa. As training increases the tolerable duration of high-intensity cycling, we explored whether this reflected an alteration of Wa, W' or both. Before and after a 7-week regimen of intense interval cycle-training by healthy males, we estimated ( ) theta lac and determined maximum O2 uptake (mu VO2); Wa; W'; and the temporal profiles of pulmonary gas exchange, blood gas, acid-base and metabolic response to constant-load cycling at and above Wa. Although training increased theta lac (24%), mu VO2 (15%) and Wa (15%), W' was unaffected. For exercise at Wa, a steady state was attained for VO2, [lactate] and pH both pre- and post-training, despite blood [norepinephrine] and [epinephrine] ([NE], [E]) and rectal temperature continuing to rise. For exercise greater than Wa, there was a progressive increase in VO2 (resulting in mu VO2 at fatigue), [lactate], [NE], [E] and rectal temperature, and a progressive decrease for pH. We conclude that the increased endurance capacity for high-intensity exercise following training reflects an increased W asymptote of the W-t relationship with no effect on its curvature; consequently, there is no appreciable change in the amount of work which can be performed above Wa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Circadian rhythm has an influence on several physiological functions that contribute to athletic performance. We tested the hypothesis that circadian rhythm would affect blood pressure (BP) responses but not O(2) uptake (Vo(2)) kinetics during the transitions to moderate and heavy cycling exercises. Nine male athletes (peak Vo(2): 60.5 ± 3.2 ml·kg(-1)·min(-1)) performed multiple rides of two different cycling protocols involving sequences of 6-min bouts at moderate or heavy intensities interspersed by a 20-W baseline in the morning (7 AM) and evening (5 PM). Breath-by-breath Vo(2) and beat-by-beat BP estimated by finger cuff plethysmography were measured simultaneously throughout the protocols. Circadian rhythm did not affect Vo(2) onset kinetics determined from the phase II time constant (τ(2)) during either moderate or heavy exercise bouts with no prior priming exercise (τ(2) moderate exercise: morning 22.5 ± 4.6 s vs. evening 22.2 ± 4.6 s and τ(2) heavy exercise: morning 26.0 ± 2.7 s vs. evening 26.2 ± 2.6 s, P > 0.05). Priming exercise induced the same robust acceleration in Vo(2) kinetics during subsequent moderate and heavy exercise in the morning and evening. A novel finding was an overshoot in BP (estimated from finger cuff plethysmography) in the first minutes of each moderate and heavy exercise bout. After the initial overshoot, BP declined in association with increased skin blood flow between the third and sixth minute of the exercise bout. Priming exercise showed a greater effect in modulating the BP responses in the evening. These findings suggest that circadian rhythm interacts with priming exercise to lower BP during exercise after an initial overshoot with a greater influence in the evening associated with increased skin blood flow.  相似文献   

9.
The mechanism(s) underlying the attenuation of the slow component of pulmonary O2 uptake (Vo2) by prior heavy-intensity exercise is (are) poorly understood but may be ascribed to either an intramuscular-metabolic or a circulatory modification resulting from "priming" exercise. We investigated the effects of altering the circulatory dynamics by delayed vagal withdrawal to the circulation induced by the cold face stimulation (CFS) on the Vo2 kinetics during repeated bouts of heavy-intensity cycling exercise. Five healthy subjects (aged 21-43 yr) volunteered to participate in this study and initially performed two consecutive 6-min leg cycling exercise bouts (work rate: 50% of the difference between lactate threshold and maximal Vo2) separated by 6-min baseline rest without CFS as a control (N1 and N2). CFS was then applied separately, by gel-filled cold compresses to the face for 2-min spanning the rest-exercise transition, to each of the first bout (CFS1) or second bout (CFS2) of repeated heavy-intensity exercise. In the control protocol, Vo2 responses in N2 showed a facilitated adaptation compared with those in N1, mainly attributable to the reduction of slow component. CFS application successfully slowed and delayed the heart rate (HR) kinetics (P < 0.05) on transition to exercise [HR time constant; N1: 55.6 +/- 16.0 (SD) vs. CFS1: 69.0 +/- 12.8 s and N2: 55.5 +/- 11.8 vs. CFS2: 64.0 +/- 17.5 s]; however, it did not affect the "primary" Vo2 kinetics [Vo2 time constant; N1: 23.7 +/- 7.9 (SD) vs. CFS1: 20.9 +/- 3.8 s, and N2: 23.3 +/- 10.3 vs. CFS2: 17.4 +/- 6.3 s]. In conclusion, increased vagal withdrawal delayed and slowed the circulatory response but did not alter the Vo2 kinetics at the onset of supra-lactate threshold cycling exercise. As the facilitation of Vo2 subsequent to prior heavy leg cycling exercise is not attenuated by slowing the central circulation, it seems unlikely that this facilitation is exclusively determined by a blood flow-related mechanism.  相似文献   

10.
We tested the hypothesis that elevation in heart rate (HR) during submaximal exercise in the heat is related, in part, to increased percentage of maximal O(2) uptake (%Vo(2 max)) utilized due to reduced maximal O(2) uptake (Vo(2 max)) measured after exercise under the same thermal conditions. Peak O(2) uptake (Vo(2 peak)), O(2) uptake, and HR during submaximal exercise were measured in 22 male and female runners under four environmental conditions designed to manipulate HR during submaximal exercise and Vo(2 peak). The conditions involved walking for 20 min at approximately 33% of control Vo(2 max) in 25, 35, 40, and 45 degrees C followed immediately by measurement of Vo(2 peak) in the same thermal environment. Vo(2 peak) decreased progressively (3.77 +/- 0.19, 3.61 +/- 0.18, 3.44 +/- 0.17, and 3.13 +/- 0.16 l/min) and HR at the end of the submaximal exercise increased progressively (107 +/- 2, 112 +/- 2, 120 +/- 2, and 137 +/- 2 beats/min) with increasing ambient temperature (T(a)). HR and %Vo(2 peak) increased in an identical fashion with increasing T(a). We conclude that elevation in HR during submaximal exercise in the heat is related, in part, to the increase in %Vo(2 peak) utilized, which is caused by reduced Vo(2 peak) measured during exercise in the heat. At high T(a), the dissociation of HR from %Vo(2 peak) measured after sustained submaximal exercise is less than if Vo(2 max) is assumed to be unchanged during exercise in the heat.  相似文献   

11.
The aim of this study was to determine whether excessive oxygen uptake (Vo2) occurs not only during exercise but also during recovery after heavy exercise. After previous exercise at zero watts for 4 min, the main exercise was performed for 10 min. Then recovery exercise at zero watts was performed for 10 min. The main exercises were moderate and heavy exercises at exercise intensities of 40 % and 70 % of peak Vo2, respectively. Vo2 kinetics above zero watts was obtained by subtracting Vo2 at zero watts of previous exercise (DeltaVo2). Delta Vo2 in moderate exercise was multiplied by the ratio of power output performed in moderate and heavy exercises so as to estimate the Delta Vo2 applicable to heavy exercise. The difference between Delta Vo2 in heavy exercise and Delta Vo2 estimated from the value of moderate exercise was obtained. The obtained Vo2 was defined as excessive Vo2. The time constant of excessive Vo2 during exercise (1.88+/-0.70 min) was significantly shorter than that during recovery (9.61+/-6.92 min). Thus, there was excessive Vo2 during recovery from heavy exercise, suggesting that O2/ATP ratio becomes high after a time delay in heavy exercise and the high ratio continues until recovery.  相似文献   

12.
Cardiopulmonary exercise testing for peak oxygen uptake (Vo(2peak)) can evaluate prognosis in chronic heart failure (CHF) patients, with the peak respiratory exchange ratio (RER(peak)) commonly used to confirm maximal effort and maximal oxygen uptake (Vo(2max)). We determined the precision of RER(peak) in confirming Vo(2max), and whether a novel ramp-incremental (RI) step-exercise (SE) (RISE) test could better determine Vo(2max) in CHF. Male CHF patients (n = 24; NYHA class I-III) performed a symptom-limited RISE-95 cycle ergometer test in the format: RI (4-18 W/min; ~10 min); 5 min recovery (10 W); SE (95% peak RI work rate). Patients (n = 18) then performed RISE-95 tests using slow (3-8 W/min; ~15 min) and fast (10-30 W/min; ~6 min) ramp rates. Pulmonary gas exchange was measured breath-by-breath. Vo(2peak) was compared within patients by unpaired t-test of the highest 12 breaths during RI and SE phases to confirm Vo(2max) and its 95% confidence limits (CI(95)). RER(peak) was significantly influenced by ramp rate (fast, medium, slow: 1.21 ± 0.1 vs. 1.15 ± 0.1 vs. 1.09 ± 0.1; P = 0.001), unlike Vo(2peak) (mean n = 18; 14.4 ± 2.6 ml·kg(-1)·min(-1); P = 0.476). Group Vo(2peak) was similar between RI and SE (n = 24; 14.5 ± 3.0 vs. 14.7 ± 3.1 ml·kg(-1)·min(-1); P = 0.407); however, within-subject comparisons confirmed Vo(2max) in only 14 of 24 patients (CI(95) for Vo(2max) estimation averaged 1.4 ± 0.8 ml·kg(-1)·min(-1)). The RER(peak) in CHF was significantly influenced by ramp rate, suggesting its use to determine maximal effort and Vo(2max) be abandoned. In contrast, the RISE-95 test had high precision for Vo(2max) confirmation with patient-specific CI(95) (without secondary criteria), and showed that Vo(2max) is commonly underestimated in CHF. The RISE-95 test was well tolerated by CHF patients, supporting its use for Vo(2max) confirmation.  相似文献   

13.
This study was designed to investigate the effect of exercise intensity on cardiorespiratory fitness and coronary heart disease risk factors. Maximum oxygen consumption (Vo(2 max)), lipid, lipoprotein, and fibrinogen concentrations were measured in 64 previously sedentary men before random allocation to a nonexercise control group, a moderate-intensity exercise group (three 400-kcal sessions per week at 60% of Vo(2 max)), or a high-intensity exercise group (three 400-kcal sessions per week at 80% of Vo(2 max)). Subjects were instructed to maintain their normal dietary habits, and training heart rates were represcribed after monthly fitness tests. Forty-two men finished the study. After 24 wk, Vo(2 max) increased by 0.38 +/- 0.14 l/min in the moderate-intensity group and by 0.55 +/- 0.27 l/min in the high-intensity group. Repeated-measures analysis of variance identified a significant interaction between monthly Vo(2 max) score and exercise group (F = 3.37, P < 0.05), indicating that Vo(2 max) responded differently to moderate- and high-intensity exercise. Trend analysis showed that total cholesterol, low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and fibrinogen concentrations changed favorably across control, moderate-intensity, and high-intensity groups. However, significant changes in total cholesterol (-0.55 +/- 0.81 mmol/l), low-density lipoprotein cholesterol (-0.52 +/- 0.80 mmol/l), and non-high-density lipoprotein cholesterol (-0.54 +/- 0.86 mmol/l) were only observed in the high-intensity group (all P < 0.05 vs. controls). These data suggest that high-intensity training is more effective in improving cardiorespiratory fitness than moderate-intensity training of equal energy cost. These data also suggest that changes in coronary heart disease risk factors are influenced by exercise intensity.  相似文献   

14.
The purpose of this study was to examine the effects of exercise on extravascular lung water as it may relate to pulmonary gas exchange. Ten male humans underwent measures of maximal oxygen uptake (Vo2 max) in two conditions: normoxia (N) and normobaric hypoxia of 15% O2 (H). Lung density was measured by quantified MRI before and 48.0 +/- 7.4 and 100.7 +/- 15.1 min following 60 min of cycling exercise in N (intensity = 61.6 +/- 9.5% Vo2 max) and 55.5 +/- 9.8 and 104.3 +/- 9.1 min following 60 min cycling exercise in H (intensity = 65.4 +/- 7.1% hypoxic Vo2 max), where Vo2 max = 65.0 +/- 7.5 ml x kg(-1) x min(-1) (N) and 54.1 +/- 7.0 ml x kg(-1) x min(-1) (H). Two subjects demonstrated mild exercise-induced arterial hypoxemia (EIAH) [minimum arterial oxygen saturation (SaO2 min) = 94.5% and 93.8%], and seven subjects demonstrated moderate EIAH (SaO2 min = 91.4 +/- 1.1%) as measured noninvasively during the Vo2 max test in N. Mean lung densities, measured once preexercise and twice postexercise, were 0.177 +/- 0.019, 0.181 +/- 0.019, and 0.173 +/- 0.019 g/ml (N) and 0.178 +/- 0.021, 0.174 +/- 0.022, and 0.176 +/- 0.019 g/ml (H), respectively. No significant differences (P > 0.05) were found in lung density following exercise in either condition or between conditions. Transient interstitial pulmonary edema did not occur following sustained steady-state cycling exercise in N or H, indicating that transient edema does not result from pulmonary capillary leakage during sustained submaximal exercise.  相似文献   

15.
The purposes of this study were to compare the patterns of the work rate (WR)-Vo2 and WR-heart rate (HR) relationships in incremental cycling, to ascertain the occurrence of a Vo2 deflection (Vo2def) coinciding with the HR deflection point (HRdef ), and to determine whether the Vo2def, if present, coincides with the ventilatory anaerobic threshold (VT). Twenty-four professional cyclists performed a maximal incremental test on a wind-load cycle ergometer. Work rate, HR, Vo2, and Vco2 were recorded. The WR-Vo2 relationships obtained were linear up to submaximal WR and curvilinear thereafter and thus described a Vo2def. The WR and Vo2 at Vo2def were mathematically determined for all subjects. The ratio of DeltaWR.DeltaVo2 up to Vo2def was significantly lower than that above Vo2def (90 +/- 11 W.L.min versus 133 +/- 35 W.L.min, p < 0.0001). The WR-HR relationships obtained were linear up to submaximal WR and curvilinear thereafter. The WR and HR at HRdef were mathematically determined for all subjects. The WR values at Vo2def and at HRdef (329 +/- 32 W and 326 +/- 34 W) were significantly correlated (R = 0.96, p < 0.0001) and in good concordance (limits of agreement from -4.7% to 3.2%, Bland-Altman analysis). The Vo2 at VT was then determined for all subjects. The Vo2 values at Vo2def and at VT were significantly correlated (R = 0.99, p < 0.0001) and in strong concordance (limits of agreement from -1.9% to 1.0%, Bland-Altman analysis). In conclusion, a Vo2def coinciding with HRdef and VT was shown. This confirms that the determination of the WR-HR relationship and of HRdef is a practical and noninvasive means of identifying anaerobic threshold.  相似文献   

16.
The purpose of this study was to compare energy expenditure of resistance and aerobic exercise matched for total time and relative intensity. Ten trained men (24.3 +/- 3.8 years) performed 30 minutes of intermittent free-weight squatting at 70% of 1 repetition maximum and continuous cycling at 70% of Vo(2)max, in a crossover design. Vo(2), kilocalories (kcal), work, respiratory exchange ratio (RER), V(E), heart rate (HR), and rating of perceived exertion (RPE) data were recorded. Cycling resulted in greater total Vo(2) (87 +/- 3 vs. 53 +/- 3 L, mean +/- SEM), kcal expenditure (441 +/- 17 vs. 269 +/- 13), and work (335 +/- 11 vs. 128 +/- 11 kJ) than squatting did. The mean RER was greater during squatting (1.03 +/- 0.01 vs. 0.94 +/- 0.01), and the V(E) values were greater during cycling (82 +/- 3 vs. 70 +/- 3 L.min(-1)). The HR response was nearly identical between exercise modes (160 +/- 5 vs. 160 +/- 4 bpm), whereas the RPE was greater during squatting (16.96 +/- 0.41 vs. 14.88 +/- 0.42). These data suggest that although lower than similarly matched aerobic exercise, resistance exercise resulted in an energy cost that would meet the recommendations for kcal expenditure as suggested by the American College of Sports Medicine, if performed 4-5 days per week. These findings should be considered by coaches and trainers working with individuals mutually interested in muscular development and weight management, because programs of structured resistance exercise may assist with both.  相似文献   

17.
Regulation of maximal Na(+)-K(+)-ATPase activity in vastus lateralis muscle was investigated in response to prolonged exercise with (G) and without (NG) oral glucose supplements. Fifteen untrained volunteers (14 males and 1 female) with a peak aerobic power (Vo(2)(peak)) of 44.8 +/- 1.9 ml.kg(-1).min(-1); mean +/- SE cycled at approximately 57% Vo(2)(peak) to fatigue during both NG (artificial sweeteners) and G (6.13 +/- 0.09% glucose) in randomized order. Consumption of beverage began at 30 min and continued every 15 min until fatigue. Time to fatigue was increased (P < 0.05) in G compared with NG (137 +/- 7 vs. 115 +/- 6 min). Maximal Na(+)-K(+)-ATPase activity (V(max)) as measured by the 3-O-methylfluorescein phosphatase assay (nmol.mg(-1).h(-1)) was not different between conditions prior to exercise (85.2 +/- 3.3 or 86.0 +/- 3.9), at 30 min (91.4 +/- 4.7 vs. 91.9 +/- 4.1) and at fatigue (92.8 +/- 4.3 vs. 100 +/- 5.0) but was higher (P < 0.05) in G at 90 min (86.7 +/- 4.2 vs. 109 +/- 4.1). Na(+)-K(+)-ATPase content (beta(max)) measured by the vanadate facilitated [(3)H]ouabain-binding technique (pmol/g wet wt) although elevated (P < 0.05) by exercise (0<30, 90, and fatigue) was not different between NG and G. At 60 and 90 min of exercise, blood glucose was higher (P < 0.05) in G compared with NG. The G condition also resulted in higher (P < 0.05) serum insulin at similar time points to glucose and lower (P < 0.05) plasma epinephrine and norepinephrine at 90 min of exercise and at fatigue. These results suggest that G results in an increase in V(max) by mechanisms that are unclear.  相似文献   

18.
We tested the hypothesis that O(2) uptake (Vo(2)) kinetics at the onset of heavy exercise would be altered in a state of muscle fatigue and prior metabolic acidosis. Eight well-trained cyclists completed two identical bouts of 6-min cycling exercise at >85% of peak Vo(2) separated by three successive bouts of 30 s of sprint cycling. Not only was baseline Vo(2) elevated after prior sprint exercises but also the time constant of phase II Vo(2) kinetics was faster (28.9 +/- 2.4 vs. 22.2 +/- 1.7 s; P < 0.05). CO(2) output (Vco(2)) was significantly reduced throughout the second exercise bout. Subsequently Vo(2) was greater at 3 min and increased less after this after prior sprint exercise. Cardiac output, estimated by impedance cardiography, was significantly higher in the first 2 min of the second heavy exercise bout. Normalized integrated surface electromyography of four leg muscles and normalized mean power frequency were not different between exercise bouts. Vo(2) and Vco(2) kinetic responses to heavy exercise were markedly altered by prior multiple sprint exercises.  相似文献   

19.
Nineteen healthy male subjects, differing in training status and Vo2max (52 +/- 1 ml.min-1.kg-1, mean +/- SEM; 43-64 ml.min-1.kg-1, range), exercised for 1 h at an absolute workload of 192 +/- 8 W (140-265 W); this was equivalent to 70 +/- 1% Vo2max (66-74%). Each exercise test was performed on an electrically braked cycle ergometer at a constant ambient temperature (22.5 +/- 0.0 degrees C) and relative humidity (85 +/- 0%). Nude body weight was recorded prior to and after each exercise test. Absolute sweat loss (body weight loss corrected for respiratory weight loss) during each test was 910 +/- 82 g (426-1665 g); this was equivalent to 1.3 +/- 0.1% (0.7-2.2%) of pre-exercise body weight (relative sweat loss). Weighted mean skin temperature and rectal temperature increased after 5 min of exercise from 30.5 +/- 0.3 degrees C and 37.2 +/- 0.1 degrees C respectively to 32.5 +/- 0.2 degrees C and 38.8 +/- 0.1 degrees C respectively, recorded immediately prior to the end of exercise. Bivariate linear regression and Pearson's correlation demonstrated absolute sweat loss was related to Vo2max (r = 0.72, p less than 0.001), absolute exercise workload (r = 0.66, p less than 0.01), body surface area (r = 0.62, p less than 0.01), weight (r = 0.60, p less than 0.01) and height (r = 0.53, p less than 0.05). Relative sweat loss was related to VO2max (r = 0.77, P less than 0.001) and absolute exercise workload (R = 0.59, P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The mechanisms underlying the oxygen uptake (Vo(2)) slow component during supra-lactate threshold (supra-LT) exercise are poorly understood. Evidence suggests that the Vo(2) slow component may be caused by progressive muscle recruitment during exercise. We therefore examined whether leg muscle activation patterns [from the transverse relaxation time (T2) of magnetic resonance images] were associated with supra-LT Vo(2) kinetic parameters. Eleven subjects performed 6-min cycle ergometry at moderate (80% LT), heavy (70% between LT and critical power; CP), and very heavy (7% above CP) intensities with breath-by-breath pulmonary Vo(2) measurement. T2 in 10 leg muscles was evaluated at rest and after 3 and 6 min of exercise. During moderate exercise, nine muscles achieved a steady-state T2 by 3 min; only in the vastus medialis did T2 increase further after 6 min. During heavy exercise, T2 in the entire vastus group increased between minutes 3 and 6, and additional increases in T2 were seen in adductor magnus and gracilis during this period of very heavy exercise. The Vo(2) slow component increased with increasing exercise intensity (being functionally zero during moderate exercise). The distribution of T2 was more diverse as supra-LT exercise progressed: T2 variance (ms) increased from 3.6 +/- 0.2 to 6.5 +/- 1.7 between 3 and 6 min of heavy exercise and from 5.5 +/- 0.8 to 12.3 +/- 5.4 in very heavy exercise (rest = 3.1 +/- 0.6). The T2 distribution was significantly correlated with the magnitude of the Vo(2) slow component (P < 0.05). These data are consistent with the notion that the Vo(2) slow component is an expression of progressive muscle recruitment during supra-LT exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号