首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The tokay lizard (Gekko gecko) possesses singlechambered lungs, eacch of which is a mirror image of the other reflected in the midsagittal body plane. When standard techniques are employed for instilling 2% phosphate-buffered glutaraldehyde to three-quarters of the total lung capacity, neither the left nor the right lung is consistently larger. Internally, the lungs are characterized by a row of 11 dorsomedial niches and by honeycomb-like (faveolar) gas exchange tissue, which is deeper cranially than caudally. Based upon mean values for all experimental animals, a 100-g tokay would have an overall anatomical diffusion factor (respiratory surface area divided by the appropriate ht) of 203 cm2·m-1·100 g-1, 61% of which is located on the interfaveolar septa. Of the total septal anatomical diffusion factor, 94% is evenly divided between the anterior and middle thirds of the lung, with 6% in the posterior third. The 39% of the anatomical diffusion factor located on the inner lung wall is predominantly (76%) in the middle and posterior lung thirds, with only 24% in the anterior region. These tendencies toward heterogeneous distribution of anatomical diffusion factor were most pronounced in a 55 g juvenile animal. In this animal the total anatomical diffusion faxtor/body mass was 3.6 times that of a 197 g adult. This difference was attributable to a greater body massspecific lung volume and respiratory surface area as well as to a greater surface-to-volume ratio in the parenchyma and to a thinner air-blood diffusion barrier in the juvenile animal.Abbreviations ADF anatomical diffusion factor - %AR percentage of potential respiratory surface area which makes up SAR - DtO2 diffusing capacity for air-blood tissue barrier - IUR isotropic uniform randomly distributed - bm body mass - %P percentage of lung volume devoted to parenchyma - S A potential respiratory surface area (S L minus the surface area of the trabeculae) - S ANR non-respiratory surface area - S AR respiratory surface area - S L total internal surface area of the lung - S v surface area-to-volume ratio in parenchyma - ht harmonic mean thickness of the air-blood tissue barrier - V L morphometrically determined volume of both lungs, fixed at 0.75· V Lm - V Lm maximal lung volume, similar to total lung capacity in mammals - V Lr resting lung volume, similar to functional residual capacity in mammals - VP morphometrically determined volume of parenchyma of both lungs, fixed at three-quarters of VLm  相似文献   

2.
We investigated the energy source fuelling the post-feeding metabolic upregulation (specific dynamic action, SDA) in pythons (Python regius). Our goal was to distinguish between two alternatives: (i) snakes fuel SDA by metabolizing energy depots from their tissues; or (ii) snakes fuel SDA by metabolizing their prey. To characterize the postprandial response of pythons we used transcutaneous ultrasonography to measure organ-size changes and respirometry to record oxygen consumption. To discriminate unequivocally between the two hypotheses, we enriched mice (= prey) with the stable isotope of carbon (13C). For two weeks after feeding we quantified the CO2 exhaled by pythons and determined its isotopic 13C/12C signature. Ultrasonography and respirometry showed typical postprandial responses in pythons. After feeding, the isotope ratio of the exhaled breath changed rapidly to values that characterized enriched mouse tissue, followed by a very slow change towards less enriched values over a period of two weeks after feeding. We conclude that pythons metabolize their prey to fuel SDA. The slowly declining delta13C values indicate that less enriched tissues (bone, cartilage and collagen) from the mouse become available after several days of digestion.  相似文献   

3.
1. The lungs of four species of bats, Phyllostomus hastatus (PH, mean body mass, 98 g), Pteropus lylei (PL, 456 g), Pteropus alecto (PA, 667 g), and Pteropus poliocephalus (PP, 928 g) were analysed by morphometric methods. These data increase fivefold the range of body masses for which bat lung data are available, and allow more representative allometric equations to be formulated for bats. 2. Lung volume ranged from 4.9 cm3 for PH to 39 cm3 for PP. The volume density of the lung parenchyma (i.e. the volume proportion of the parenchyma in the lung) ranged from 94% in PP to 89% in PH. Of the components of the parenchyma, the alveoli composed 89% and the blood capillaries about 5%. 3. The surface area of the alveoli exceeded that of the blood-gas (tissue) barrier and that of the capillary endothelium whereas the surface area of the red blood cells as well as that of the capillary endothelium was greater than that of the tissue barrier. PH had the thinnest tissue barrier (0.1204 microns) and PP had the thickest (0.3033 microns). 4. The body mass specific volume of the lung, that of the volume of pulmonary capillary blood, the surface area of the blood-gas (tissue) barrier, the diffusing capacity of the tissue barrier, and the total morphometric pulmonary diffusing capacity in PH all substantially exceeded the corresponding values of the pteropid species (i.e. PL, PA and PP). This conforms with the smaller body mass and hence higher unit mass oxygen consumption of PH, a feature reflected in the functionally superior gas exchange performance of its lungs. 5. Morphometrically, the lungs of different species of bats exhibit remarkable differences which cannot always be correlated with body mass, mode of flight and phylogeny. Conclusive explanations of these pulmonary structural disparities in different species of bats must await additional physiological and flight biomechanical studies. 6. While the slope, the scaling factor (b), of the allometric equation fitted to bat lung volume data (b = 0.82) exceeds the value for flight VO2max (b = 0.70), those for the surface area of the blood-gas (tissue) barrier (b = 0.74), the pulmonary capillary blood volume (b = 0.74), and the total morphometric lung diffusing capacity for oxygen (b = 0.69) all correspond closely to the VO2max value. 7. Allometric comparisons of the morphometric pulmonary parameters of bats, birds and non-flying mammals reveal that superiority of the bat lung over that of the non-flying mammal.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The lungs of five female domestic Muscovy ducks, mean body weight 1.627 kg, total lung volume 48.07 cm3, were analysed by standard morphometric methods. Principal results obtained are: lung volume per unit body weight, 30.17 cm3/g; volume densities of exchange tissue relative to lung volume, 49.24%, blood capillaries relative to exchange tissue, 29.63%, tissue of the blood gas (tissue) barrier relative to exchange tissue, 5.88%; surface area of the blood-gas (tissue) barrier per unit body weight, 30.04 cm2/g; ratios of the surface area of the blood-gas (tissue) barrier per unit volume of the lung and per unit volume of exchange area, 979 cm2/cm3 and 200.06 mm2/mm3, respectively; harmonic and arithmetic mean thicknesses of the tissue barrier, 0.199 μm and 0.303 μm, respectively. The anatomical diffusing capacity of the tissue barrier for oxygen ( DtO2 ) and the total pulmonary diffusing capacity ( DLO2 ), 49.58 ml O2/min/mmHg/kg and 4.55 ml O2/min/mm Hg/kg, respectively. The lungs of the domestic Muscovy duck appear to be about as well adapted anatomically for gas exchange as the lungs of wild anatid species, and there is no clear evidence that domestication has been associated with any deterioration in the anatomical capacity for oxygen uptake. The weight-specific anatomical diffusing capacity of the lung for oxygen ( DLO2/W ) was about 3.6 times greater than the weight-specific physiological value, a factor which falls within the expected range.  相似文献   

5.
The respiratory system of the wolf spider Pardosa lugubris consists of a pair of well-developed lungs and four unbranched tube tracheae. We used stereological morphometric methods to investigate the morphological diffusing capacity of the lungs and of the walls of the tracheae ('lateral diffusing capacity'). We examined three groups of female P. lugubris with different mean body masses. The barrier thickness of the gas-exchange epithelium of the lungs was 0.17 microm for the total diffusion barrier and the calculated oxygen diffusing capacity (D(O2)) for the lungs was between 12.9 and 13.4 microl min(-1)g(-1)kPa(-1). Measured metabolic rates compared with the D(O2) of the lungs result in necessary oxygen partial pressure differences of 0.2 kPa during rest and 2.1 kPa during maximum measured activity. The diffusion barrier of the entire tracheal walls was 0.31-0.50 microm and the calculated lateral D(O2) was 0.05-0.2 microl min(-1)g(-1)kPa(-1). Therefore, tracheae are of no importance for the overall oxygen exchange. However, they might be of some importance in local oxygen supply or in overall carbon dioxide release. The comparison with the respiratory system of the jumping spider Salticus scenicus reveals that the lungs have very similar mass-specific D(O2) in both species, and that, in addition, jumping spiders possess a much better developed tracheal system.  相似文献   

6.
Comprehensive pulmonary morphometric data from 42 species of birds representing ten orders were compared with those of other vertebrates, especially mammals, relating the comparisons to the varying biological needs of these avian taxa. The total lung volume was strongly correlated with body mass. The volume density of the exchange tissue was lowest in the charadriiform and anseriform species and highest in the piciform, cuculiform and passeriform species. The surface area of the blood-gas (tissue) barrier, the volume of the pulmonary capillary blood and the total morphometric pulmonary diffusing capacity were all strongly correlated with body mass. The harmonic mean thickness of both the blood-gas (tissue) barrier and the plasma layer were weakly correlated with body mass. The mass-specific surface area of the blood-gas (tissue) barrier (surface area per gram body mass) and the surface density of the blood-gas (tissue) barrier (i.e. its surface area per unit volume of exchange tissue) were inversely correlated (though weakly) with body mass. The passeriform species exhibited outstanding pulmonary morphometric adaptations leading to a high specific total diffusing capacity per gram body mass, consistent with the comparatively small size and energetic mode of life which typify passeriform birds. The relatively inactive, ground-dwelling domestic fowl (Gallus gallus) had the lowest pulmonary diffusing capacity per gram body mass. The specific total lung volume is about 27% smaller in birds than in mammals but the specific surface area of the blood-gas (tissue) barrier is about 15% greater in birds. The ratio of the surface area of the tissue barrier to the volume of the exchange tissue was also much greater in the birds (170-305%). The harmonic mean thickness of the tissue barrier was 56-67% less in the birds, but that of the plasma layer was about 66% greater in the birds. The pulmonary capillary blood volume was also greater (22%) in the birds. Except for the thickness of the plasma layer, these morphometric parameters all favour the gas exchange capacity of birds. Consequently, the total specific mean morphometric pulmonary diffusing capacity for oxygen was estimated to be about 22% greater in birds than in mammals of similar body mass. This estimate was obtained by employing oxygen permeation constants for mammalian tissue, plasma and erythrocytes, as avian constants were not then available.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Among the air-breathing vertebrates, the avian respiratory apparatus, the lung-air sac system, is the most structurally complex and functionally efficient. After intricate morphogenesis, elaborate pulmonary vascular and airway (bronchial) architectures are formed. The crosscurrent, countercurrent, and multicapillary serial arterialization systems represent outstanding operational designs. The arrangement between the conduits of air and blood allows the respiratory media to be transported optimally in adequate measures and rates and to be exposed to each other over an extensive respiratory surface while separated by an extremely thin blood-gas barrier. As a consequence, the diffusing capacity (conductance) of the avian lung for oxygen is remarkably efficient. The foremost adaptive refinements are: (1) rigidity of the lung which allows intense subdivision of the exchange tissue (parenchyma) leading to formation of very small terminal respiratory units and consequently a vast respiratory surface; (2) a thin blood-gas barrier enabled by confinement of the pneumocytes (especially the type II cells) and the connective tissue elements to the atria and infundibulae, i.e. away from the respiratory surface of the air capillaries; (3) physical separation (uncoupling) of the lung (the gas exchanger) from the air sacs (the mechanical ventilators), permitting continuous and unidirectional ventilation of the lung. Among others, these features have created an incredibly efficient gas exchanger that supports the highly aerobic lifestyles and great metabolic capacities characteristic of birds. Interestingly, despite remarkable morphological heterogeneity in the gas exchangers of extant vertebrates at maturity, the processes involved in their formation and development are very similar. Transformation of one lung type to another is clearly conceivable, especially at lower levels of specialization. The crocodilian (reptilian) multicameral lung type represents a Bauplan from which the respiratory organs of nonavian theropod dinosaurs and the lung-air sac system of birds appear to have evolved. However, many fundamental aspects of the evolution, development, and even the structure and function of the avian respiratory system still remain uncertain.  相似文献   

8.
Snakes can ingest large meals and exhibit marked increases in metabolic rate during digestion. Because postprandial oxygen consumption in some snakes may surpass that attained during exercise, studies of digestion offers an alternative avenue to understand the cardio-respiratory responses to elevated metabolic rate in reptiles. The effects of feeding on metabolic rate, arterial oxygen levels, and arterial acid-base status in the snake Python molorus are described. Four snakes (180-250 g) were cannulated in the dorsal aorta and blood samples were obtained during 72 h following ingestion of a meal (rat pups) exceeding 20% of body weight. Oxygen consumption increased from a fasting value of 1.71 +/- 0.08 to 5.54 +/- 0.42 ml kg-1 min-1 at 48 h following feeding, and the respiratory gas exchange ratio increased from 0.67 +/- 0.02 to a maximum of 0.92 +/- 0.03 at 32 h. Plasma lactate was always less than 0.5 mM, so the postprandial increase in metabolic rate was met by aerobic respiration. In fasting animals, arterial PO2 was 66 +/- 4 mmHg and haemoglobin-O2 saturation was 92 +/- 3%; similar values were recorded during digestion, but haematocrit decreased from 15.8 +/- 1.0 to 9.8 +/- 0.8 due to repeated blood sampling. Plasma [HCO3-] increased from a fasting level of 19.3 +/- 0.8 to 25.8 +/- 1.0 mmol l-1 at 24 h after feeding. However, because arterial PCO2 increased from 21.1 +/- 0.5 to 27.9 +/- 1.4 mmHg, there was no significant change in arterial pH from the fasting value of 7.52 +/- 0.01. Acid-base status returned to pre-feeding levels at 72 h following feeding. The increased arterial PCO2 is most likely explained by a reduction in ventilation relative to metabolism, but we predict that lung PO2 does not decrease below 115 mmHg. Although ingestion of large meals is associated with large metabolic changes in pythons, the attendant changes in blood gases are relatively small. In particular, the small changes in plasma [HCO3-] and stable pH show that pythons respond very differently to digestion than alligators where very large alkaline tides have been observed. It is unclear why pythons and alligators differ in the magnitude of their responses, but given these interspecific differences it seems worthwhile to describe arterial blood gases during digestion in other species of ectothermic vertebrates.  相似文献   

9.
The lungs of four adult specimens of the vervet monkey (Cercopithecus aethiops) have been examined by transmission and scanning electron microscopy. A morphometric evaluation of the structural components directly involved in gas exchange has been carried out and the data have been modelled to estimate the anatomical diffusing capacity of the lung. The upper air-conducting airways of the lung were lined by an epithelium characterized by ciliated cells among which were dispersed goblet cells. The alveolar surface was lined by squamous type I pneumocytes and cuboidal type II granular pneumocytes. The blood-gas (tissue) barrier consisted of an epithelial cell, a common basal lamina, and an endothelial cell in the thin parts of the interalveolar septum. In the thicker parts of the septum, an interstitial space interposed between the basal laminae of the epithelial and endothelial cells contained supportive elements such as collagen, elastic tissue, and fibrocytes. The alveoli, the blood capillaries, and septal tissue composed 73%, 16%, and 11%, respectively, of the parenchyma. The harmonic and arithmetic mean thicknesses of the blood-gas (tissue) barrier were 0.311 micron and 1.048 microns; the surface area of the blood-gas (tissue) barrier per unit body weight was 50 cm2g-1, and the surface density was 117 mm2.mm3-1. The weight-specific total morphometric diffusing capacity was 0.11 mlO2 (sec.mbar.kg)-1. In comparison, the pulmonary morphometric characteristics of vervet monkey lung were superior to those of the other primates (Macaca irus, M. mulatta, and Homo sapiens) for which equivalent data are available. The gas-exchange potential of the lungs of the nonhuman primates as revealed by morphometric studies surpasses that of man, a feature that can be attributed to the relatively less energetic human lifestyle.  相似文献   

10.
The presence of obesity in COPD appears not to be a disadvantage with respect to dyspnea and weight-supported cycle exercise performance. We hypothesized that one explanation for this might be that the volume-reducing effects of obesity convey mechanical and respiratory muscle function advantages. Twelve obese chronic obstructive pulmonary disease (COPD) (OB) [forced expiratory volume in 1 s (FEV(1)) = 60%predicted; body mass index (BMI) = 32 ± 1 kg/m(2); mean ± SD] and 12 age-matched, normal-weight COPD (NW) (FEV(1) = 59%predicted; BMI = 23 ± 2 kg/m(2)) subjects were compared at rest and during symptom-limited constant-work-rate exercise at 75% of their maximum. Measurements included pulmonary function tests, operating lung volumes, esophageal pressure, and gastric pressure. OB vs. NW had a reduced total lung capacity (109 vs. 124%predicted; P < 0.05) and resting end-expiratory lung volume (130 vs. 158%predicted; P < 0.05). At rest, there was no difference in respiratory muscle strength but OB had greater (P < 0.05) static recoil and intra-abdominal pressures than NW. Peak ventilation, oxygen consumption, and exercise endurance times were similar in OB and NW. Pulmonary resistance fell (P < 0.05) at the onset of exercise in OB but not in NW. Resting inspiratory capacity, dyspnea/ventilation plots, and the ratio of respiratory muscle effort to tidal volume displacement were similar, as was the dynamic performance of the respiratory muscles including the diaphragm. In conclusion, the lack of increase in dyspnea and exercise intolerance in OB vs. NW could not be attributed to improvement in respiratory muscle function. Potential contributory factors included alterations in the elastic properties of the lungs, raised intra-abdominal pressures, reduced lung hyperinflation, and preserved inspiratory capacity.  相似文献   

11.
In adult dogs following right pneumonectomy (PNX) and receiving all-trans-retinoic acid (RA) supplementation for 4 mo, we found modestly enhanced alveolar-capillary growth in the remaining lung without enhanced resting lung function (J Appl Physiol 96: 1080-1089 and 96: 1090-1096, 2004). Since alveolar remodeling progresses beyond this period and the lipid-soluble RA continues to be released from tissue stores, we hypothesized that RA supplementation may exert additional long-term effects. To examine this issue, adult male litter-matched foxhounds underwent right PNX followed by RA supplementation (2 mg/kg po 4 days/wk, n = 6) or placebo (n = 4) for 4 mo. Cardiopulmonary function was measured at rest and during exercise at 4 and 20 mo post-PNX. The remaining lung was fixed under a constant airway pressure for morphometric analysis. Comparing RA treatment to placebo controls, there were no differences in aerobic capacity, cardiopulmonary function, or lung volume at rest or exercise. Alveolar-capillary basal lamina thickness and mean harmonic thickness of air-blood diffusion barrier were 23-29% higher. The prevalence of double-capillary profiles remained 82% higher. Absolute volumes of septal interstitium, collagen fibers, cells, and matrix were 32% higher; the relative volumes of other septal components and alveolar-capillary surface areas expressed as ratios to control values were up to 24% higher. Thus RA supplementation following right PNX modestly and persistently enhanced long-term alveolar-capillary structural dimensions, especially the deposition of interstitial and connective tissue elements, in such a way that caused a net increase in barrier resistance to diffusion without improving lung mechanics or gas exchange.  相似文献   

12.
The avian embryo exchanges the oxygen and carbon dioxide withthe ambient air by diffusion. The respiratory organ is the chorioallantois,endowed with a rich circulation. Between ambient air and chorioallantoiccapillary blood are interposed the porous shell fibrous shellmembranes, and the chorioendothelium which compose the diffusionbarrier. The air cell is formed between the two shell membranesin the blunt end of the egg. The diffusion barrier is dividedinto an outer barrier (shell plus outer membrane) and an innerbarrier (inner membrane plus chorioendothelium and capillaryblood). The resistance to gas diffusion (the reciprocal of thediffusive conductance) in the outer barrier is almost fixedthroughout incubation while that in the inner barrier decreasesas the embryo develops. Because of the fixed outer barrier conductance,the embryo is obliged to take up oxygen under hypoxic conditionsagainst increasing metabolism with development and encountersa relative respiratory acidosis. In connection with the diffusivehypoventilation caused by the fixed outer barrier conductancethe respiratory factors of the allantoic circulation changeprogressively with development to moderate the restraint ofgas exchange through the shell. Blood oxygen capacity and hemoglobinincrease with development in association with an increase inerythrocyte count and hematocrit value. In addition, a progressiveleftward shift of the oxygen dissociation curve occurs. Theincreases in the allantoic blood flow and chorioallantoic capillaryvolume contribute to the increasing conductance of the innerbarrier. Furthermore regulation of acid base balance is inferredin the developing embryo.  相似文献   

13.
The aquatic larvae of anisopteran dragonflies possess tracheal gills located in the rectum. Using stereological methods, we estimated the morphometric diffusing capacity for oxygen (D(MO2)) across the gill epithelium, i.e., from rectal water to the gill tracheoles, in the larvae of Aeshna cyanea. A 271-mg larva has a total branchial surface area of approximately 12 cm(2). Tracheoles make up 6% of the epithelial volume of the gills; the harmonic mean thickness of the water-tracheolar diffusion barrier is 0.27 microm and consists mainly of cuticle. The calculated D(MO2) is 23.0 microl min(-1) g(-1) kPa(-1), which, using published values for oxygen consumption in a similar species, would result in a mean driving pressure of 0.2 kPa at rest and 1.3 kPa during activity. Since these driving pressures are similar to those reported for other arthropods, we conclude that the D(MO2) of the gill is not rate-limiting for aerobic metabolism in Aeshna cyanea larvae. J Morphol. 261:81-91, 2004.  相似文献   

14.
Pythons are renowned for a rapid and pronounced postprandial growth of the heart that coincides with a several-fold elevation of cardiac output that lasts for several days. Here we investigate whether ventricular morphology is affected by digestive state in two species of pythons (Python regius and Python molurus) and we determine the cardiac right-to-left shunt during the postprandial period in P. regius. Both species experienced several-fold increases in metabolism and mass of the digestive organs by 24 and 48 h after ingestion of meals equivalent to 25% of body mass. Surprisingly there were no changes in ventricular mass or dimensions as we used a meal size and husbandry conditions similar to studies finding rapid and significant growth. Based on these data and literature we therefore suggest that postprandial cardiac growth should be regarded as a facultative rather than obligatory component of the renowned postprandial response. The cardiac right-to-left shunt, calculated on the basis of oxygen concentrations in the left and right atria and the dorsal aorta, was negligible in fasting P. regius, but increased to 10-15% during digestion. Such shunt levels are very low compared to other reptiles and does not support a recent proposal that shunts may facilitate digestion in reptiles.  相似文献   

15.
Alveolar formation or alveolarization is orchestrated by a finely regulated and complex interaction between growth factors and extracellular matrix proteins. The lung parenchyma contains various extracellular matrix proteins including proteoglycans, which are composed of glycosaminoglycans (GAGs) linked to a protein core. Although GAGs are known to regulate growth factor distribution and activity according to their degree of sulfation the role of sulfated GAG in the respiratory system is not well understood. The degree of sulfation of GAGs is regulated in part, by sulfatases that remove sulfate groups. In vertebrates, the enzyme Sulfatase-Modifying Factor 1 (Sumf1) activates all sulfatases. Here we utilized mice lacking Sumf1(-/-) to study the importance of proteoglycan desulfation in lung development. The Sumf1(-/-) mice have normal lungs up until the onset of alveolarization at post-natal day 5 (P5). We detected increased deposition of sulfated GAG throughout the lung parenchyma and a decrease in alveolar septa formation. Moreover, stereological analysis showed that the alveolar volume is 20% larger in Sumf1(-/-) as compared to wild type (WT) mice at P10 and P30. Additionally, pulmonary function test was consistent with increased alveolar volume. Genetic experiments demonstrate that in Sumf1(-/-) mice arrest of alveolarization is independent of fibroblast growth factor signaling. In turn, the Sumf1(-/-) mice have increased transforming growth factor β (TGFβ) signaling and in vivo injection of TGFβ neutralizing antibody leads to normalization of alveolarization. Thus, absence of sulfatase activity increases sulfated GAG deposition in the lungs causing deregulation of TGFβ signaling and arrest of alveolarization.  相似文献   

16.
The ability to detect infrared (IR) radiation is a characteristic trait in boids and pitvipers. These snakes possess highly sensitive IR receptors, which enable them to perceive IR sources and assess their direction and distance independently of visual cues. Electrophysiological studies have been conducted to determine IR detection thresholds in boids and pitvipers. This, however, is the first behavioural study that focuses on the detection threshold of a boid snake to IR stimuli. Blindfolded ball pythons Python regius were exposed to a moving IR stimulus of constant size and temperature at various distances (10–100 cm). Distinct behavioural changes during stimulus presentation (S-form posture, freeze and fix, follow and fix) allowed quantification of the behavioural responses. The threshold to elicit behavioural responses was used to assess the IR detection threshold. The results revealed that P. regius can detect a moving IR stimulus resembling a mouse in temperature and size up to a distance of 30 cm, which corresponds to an irradiance contrast of 38.83 × 10−6 W cm−2. This irradiance contrast detection threshold value is about one-third lower (reveals a 1.5 times higher sensitivity) than the results from earlier electrophysiological studies.  相似文献   

17.
Identification of the origin of parasites of nonindigenous species (NIS) can be complex. NIS may introduce parasites from their native range and acquire parasites from within their invaded range. Determination of whether parasites are non‐native or native can be complicated when parasite genera occur within both the NIS’ native range and its introduced range. We explored potential for spillover and spillback of lung parasites infecting Burmese pythons (Python bivittatus) in their invasive range (Florida). We collected 498 indigenous snakes of 26 species and 805 Burmese pythons during 2004–2016 and examined them for lung parasites. We used morphology to identify three genera of pentastome parasites, Raillietiella, a cosmopolitan form, and Porocephalus and Kiricephalus, both New World forms. We sequenced these parasites at one mitochondrial and one nuclear locus and showed that each genus is represented by a single species, R. orientalis, P. crotali, and K. coarctatus. Pythons are host to R. orientalis and P. crotali, but not K. coarctatus; native snakes are host to all three species. Sequence data show that pythons introduced R. orientalis to North America, where this parasite now infects native snakes. Additionally, our data suggest that pythons are competent hosts to P. crotali, a widespread parasite native to North and South America that was previously hypothesized to infect only viperid snakes. Our results indicate invasive Burmese pythons have affected parasite‐host dynamics of native snakes in ways that are consistent with parasite spillover and demonstrate the potential for indirect effects during invasions. Additionally, we show that pythons have acquired a parasite native to their introduced range, which is the initial condition necessary for parasite spillback.  相似文献   

18.
Variability of parenchymal expansion measured by computed tomography   总被引:1,自引:0,他引:1  
Computed tomography scans of isolated dog lung lobes at different lobe volumes were used to determine the variability of parenchymal tissue density and the variability of parenchymal volume changes on the scale of a voxel, a cube 1.5 mm on a side. The variability of tissue density increased with decreasing lobe volume. The variability of tissue density of neighboring voxels was positively correlated; the spatial correlation decreased exponentially with distance with an exponential scale of 0.3 cm. The ratio of the volume of the parenchyma within a voxel to its volume at total lobe capacity was calculated from the tissue density data at two lobe volumes. At a lobe volume of 40% total lobe capacity, the local fractional volumes were 0.42 +/- 0.12. The variability of ventilation that corresponds to this variability of fractional volume is large enough to explain the inefficiency of mixing in the isolated lobe and the slope of the alveolar plateau of nitrogen concentration in the expirate after a breath of oxygen. These results are consistent with data reported earlier on the variability of parenchymal volumes at a scale of 1-10 cm3.  相似文献   

19.
Structural aspects of gas exchange   总被引:1,自引:0,他引:1  
The lung is composed of several million small air spaces, lined by a delicate tissue membrane separating air from capillary blood. The design features of the gas exchange region in the lung are optimal for gaseous diffusion, by having a very extensive contact surface but with a minimal tissue barrier composed of an epithelial and endothelial layer separating an interstitial layer. The extent of the gas exchange surface in adult lungs is determined by general maturation which in turn is influenced by metabolic requirements of the organism. Environmental factors can modulate the pattern of ultimate lung development. Lung inflation causes air spaces to expand mainly by a process of tissue unfolding beneath an extremely thin layer of alveolar surfactant. This ensures cellular integrity during extreme deformations while at the same time providing a reserve of gas exchange surface so that functional diffusion capacity at all lung volumes is less than the structural maximum.  相似文献   

20.
Specific ventilation (SV) is the ratio of fresh gas entering a lung region divided by its end-expiratory volume. To quantify the vertical (gravitationally dependent) gradient of SV in eight healthy supine subjects, we implemented a novel proton magnetic resonance imaging (MRI) method. Oxygen is used as a contrast agent, which in solution changes the longitudinal relaxation time (T1) in lung tissue. Thus alterations in the MR signal resulting from the regional rise in O(2) concentration following a sudden change in inspired O(2) reflect SV-lung units with higher SV reach a new equilibrium faster than those with lower SV. We acquired T1-weighted inversion recovery images of a sagittal slice of the supine right lung with a 1.5-T MRI system. Images were voluntarily respiratory gated at functional residual capacity; 20 images were acquired with the subject breathing air and 20 breathing 100% O(2), and this cycle was repeated five times. Expired tidal volume was measured simultaneously. The SV maps presented an average spatial fractal dimension of 1.13 ± 0.03. There was a vertical gradient in SV of 0.029 ± 0.012 cm(-1), with SV being highest in the dependent lung. Dividing the lung vertically into thirds showed a statistically significant difference in SV, with SV of 0.42 ± 0.14 (mean ± SD), 0.29 ± 0.10, and 0.24 ± 0.08 in the dependent, intermediate, and nondependent regions, respectively (all differences, P < 0.05). This vertical gradient in SV is consistent with the known gravitationally induced deformation of the lung resulting in greater lung expansion in the dependent lung with inspiration. This SV imaging technique can be used to quantify regional SV in the lung with proton MRI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号