首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ladokhin AS  Isas JM  Haigler HT  White SH 《Biochemistry》2002,41(46):13617-13626
We describe a sensitive method for determining the bilayer topology of single-site cysteine-linked NBD fluorescent labels on membrane proteins. Based upon a method developed for peptides [W. C. Wimley and S. H. White (2000) Biochemistry 39, 161-170], it utilizes a novel fluorescence quencher, lysoUB, comprised of a single acyl chain attached to a UniBlue chromophore. The enhanced sensitivity of the method arises from the brightness of the NBD fluorescence and the quenching efficiency of lysoUB, which is not fluorescent. In the course of validating the method, we examined the insertion topology of the D-E helical region of repeat 2 of annexin 12, known to adopt a transbilayer orientation at mildly acidic pH [Langen et al. (1998) Proc. Natl. Acad. Sci. USA 95, 14060-14065]. In the final membrane-inserted state, an NBD label attached to the single-cysteine mutant D134C was found to be in the outer (cis) leaflet, while the one attached to D162C was found in the trans leaflet. But kinetic measurements of NBD fluorescence suggested the existence of a transient intermediate insertion state whose lifetime could be increased by increasing the fraction of anionic lipids in the vesicles. Indeed, the lifetime could be increased for times sufficient for the completion of lysoUB-NBD topology measurements. Such measurements revealed that the D-E region adopts an interfacial topology in the intermediate state with both ends on the cis side of the membrane, consistent with the general concept of interface-directed membrane insertion of proteins [White et al. (2001) J. Biol. Chem. 276, 32395-32398].  相似文献   

2.
The pH (low) insertion peptide (pHLIP) has exceptional characteristics: at neutral pH it is an unstructured monomer in solution or when bound to lipid bilayer surfaces, and it inserts across a lipid bilayer as a monomeric alpha-helix at acidic pH. The peptide targets acidic tissues in vivo and may be useful in cancer biology for delivery of imaging or therapeutic molecules to acidic tumors. To find ways to vary its useful properties, we have designed and analyzed pHLIP sequence variants. We find that each of the Asp residues in the transmembrane segment is critical for solubility and pH-dependent membrane insertion of the peptide. Changing both of the Asp residues in the transmembrane segment to Glu, inserting an additional Asp into the transmembrane segment, or replacing either of the Asp residues with Ala leads to aggregation and/or loss of pH-dependent membrane insertion of the peptide. However, variants with either of the Asp residues changed to Glu remained soluble in an aqueous environment and inserted into the membrane at acidic pH with a higher pKapp of membrane insertion.  相似文献   

3.
Free energy profiles for insertion of a hydrophobic transmembrane protein α-helix (M2 from CFTR) into a lipid bilayer have been calculated using coarse-grained molecular dynamics simulations and umbrella sampling to yield potentials of mean force along a reaction path corresponding to translation of a helix across a lipid bilayer. The calculated free energy of insertion is smaller when a bilayer with a thinner hydrophobic region is used. The free energies of insertion from the potentials of mean force are compared with those derived from a number of hydrophobicity scales and with those derived from translocon-mediated insertion. This comparison supports recent models of translocon-mediated insertion and in particular suggests that: 1), helices in an about-to-be-inserted state may be located in a hydrophobic region somewhat thinner than the core of a lipid bilayer; and/or 2), helices in a not-to-be-inserted state may experience an environment more akin (e.g., in polarity/hydrophobicity) to the bilayer/water interface than to bulk water.  相似文献   

4.
Yano Y  Matsuzaki K 《Biochemistry》2002,41(41):12407-12413
An important subject for elucidating membrane protein (MP) folding is how transmembrane helices (TMHs) insert into and dissociate from membranes. We investigated helix dissociation kinetics and insertion topology by means of intervesicular transfer of the fluorophore-labeled completely hydrophobic model transmembrane helix NBD-(LALAAAA)(3)-NH(2) (NBD = 7-nitro-2-1,3-benzoxadiazol-4-yl). The peptide forms a topologically stable transmembrane helix, which is in a monomer-antiparallel dimer equilibrium [Yano, Y., Takemoto, T., Kobayashi, S., Yasui, H., Sakurai, H., Ohashi, W., Niwa, M., Futaki, S., Sugiura, Y., and Matsuzaki, K. (2002) Biochemistry 41, 3073-3080]. The helix transfer kinetics, representing the helix dissociation process, was monitored by fluorescence recovery of the quenched peptide in donor vesicles containing a quencher upon its transfer to acceptor vesicles without the quencher. The transfer kinetics and vesicle concentration dependence demonstrated that the transfer was mediated by monomer in the aqueous phase. Furthermore, the activation enthalpy was estimated to be +17.7 +/- 1.3 kcal mol(-1). Helix insertion topology, detected by chemical quenching of the NBD group in the outer leaflet by dithionite ions, was found to be controlled by transmembrane electric potential-helix macro dipole interaction. On the basis of these observations, a model for the helix insertion/dissociation processes was discussed.  相似文献   

5.
Accurate determination of the free energy of transfer of a helical segment from an aqueous into a transmembrane (TM) conformation is essential for understanding and predicting the folding and stability of membrane proteins. Until recently, direct thermodynamically sound measurements of free energy of insertion of hydrophobic TM peptides were impossible due to peptide aggregation outside the lipid bilayer. Here, we overcome this problem by using fluorinated surfactants that are capable of preventing aggregation but, unlike detergents, do not themselves interact with the bilayer. We have applied the fluorescence correlation spectroscopy methodology to study surfactant-chaperoned insertion into preformed POPC (palmitoyloleoylphosphatidylcholine) vesicles of the two well-studied dye-labeled TM peptides of different lengths: WALP23 and WALP27. Extrapolation of the apparent free-energy values measured in the presence of surfactants to a zero surfactant concentration yielded free-energy values of -9.0±0.1 and -10.0±0.1 kcal/mol for insertion of WALP23 and WALP27, respectively. Circular dichroism measurements confirmed helical structure of peptides in lipid bilayer, in the presence of surfactants, and in aqueous mixtures of organic solvents. From a combination of thermodynamic and conformational measurements, we conclude that the partitioning of a four-residue L-A-L-A segment in the context of a continuous helical conformation from an aqueous environment into the hydrocarbon core of the membrane has a favorable free energy of 1 kcal/mol. Our measurements, combined with the predictions of two independent experimental hydrophobicity scales, indicate that the per-residue cost of transfer of the helical backbone from water to the hydrocarbon core of the lipid bilayer is unfavorable and is equal to +2.13±0.17 kcal/mol.  相似文献   

6.
Tang J  Gai F 《Biochemistry》2008,47(32):8250-8252
When it is bound to lipid bilayers, the conformation and location of the membrane pH (low) insertion peptide (pHLIP) depend on pH. This unique feature allows us to explicitly measure the kinetics leading to different membrane-bound states of pHLIP using a model membrane and stopped-flow technique. Our results show that the membrane association kinetics of pHLIP are multiexponential and are consistent with a parallel membrane interaction mechanism. Interestingly, our results also show that the overall rate at which the membrane-inserted state is formed is almost identical to that of formation of the surface-bound state, while prebinding slows the rate of peptide insertion.  相似文献   

7.
Yano Y  Yamamoto A  Ogura M  Matsuzaki K 《Biochemistry》2011,50(32):6806-6814
Thermodynamic parameters for the insertion and self-association of transmembrane helices are important for understanding the folding of helical membrane proteins. The lipid composition of bilayers would significantly affect these fundamental processes, although how is not well understood. Experimental systems using model transmembrane helices and lipid bilayers are useful for measuring and interpreting thermodynamic parameters (ΔG, ΔH, ΔS, and ΔC(p)) for the processes. In this study, the effect of the charge, phase, acyl chain unsaturation, and lateral pressure profile of bilayers on the membrane partitioning of the transmembrane helix (AALALAA)(3) was examined. Furthermore, the effect of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (POPE) on the thermodynamics for insertion and self-association of the helix in host membranes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) was investigated in detail. Interbilayer transfer of the helix monomer from POPC to POPC/POPE (1/1) bilayers was unfavorable (ΔG = +4.5 ± 2.9 kJ mol(-1) at 35 °C) due to an increase in enthalpy (ΔH = +31.1 ± 2.1 kJ mol(-1)). On the other hand, antiparallel dimerization of the helices in POPC/POPE (1/1) bilayers was enhanced compared with that in POPC bilayers (ΔΔG = -4.9 ± 0.2 kJ mol(-1) at 35 °C) due to a decrease in enthalpy (ΔΔH = -33.2 ± 1.5 kJ mol(-1)). A greater thickness of POPC/POPE bilayers only partially explained the observed effects. The residual effects could be related to changes in other physical properties such as higher lateral pressure in the hydrocarbon core in the PE-containing membrane. The origin of the enthalpy-driven "lipophobic" force that modulates the insertion and association of transmembrane helices will be discussed.  相似文献   

8.
α-helical integral membrane proteins critically depend on the correct insertion of their transmembrane α helices into the lipid bilayer for proper folding, yet a surprisingly large fraction of the transmembrane α helices in multispanning integral membrane proteins are not sufficiently hydrophobic to insert into the target membrane by themselves. How can such marginally hydrophobic segments nevertheless form transmembrane helices in the folded structure? Here, we show that a transmembrane helix with a strong orientational preference (N(cyt)-C(lum) or N(lum)-C(cyt)) can both increase and decrease the hydrophobicity threshold for membrane insertion of a neighboring, marginally hydrophobic helix. This effect helps explain the "missing hydrophobicity" in polytopic membrane proteins.  相似文献   

9.
Starting from the glycophorin A dimer structure determined by NMR, we performed simulations of both dimer and monomer forms in explicit lipid bilayers with constant normal pressure, lateral area, and temperature using the CHARMM potential. Analysis of the trajectories in four different lipids reveals how lipid chain length and saturation modulate the structural and energetic properties of transmembrane helices. Helix tilt, helix-helix crossing angle, and helix accessible volume depend on lipid type in a manner consistent with hydrophobic matching concepts: the most relevant lipid property appears to be the bilayer thickness. Although the net helix-helix interaction enthalpy is strongly attractive, analysis of residue-residue interactions reveals significant unfavorable electrostatic repulsion between interfacial glycine residues previously shown to be critical for dimerization. Peptide volume is nearly conserved upon dimerization in all lipid types, indicating that the monomeric helices pack equally well with lipid as dimer helices do with one another. Enthalpy calculations indicate that the helix-environment interaction energy is lower in the dimer than in the monomer form, when solvated by unsaturated lipids. In all lipid environments there is a marked preference for lipids to interact with peptide predominantly through one rather than both acyl chains. Although our trajectories are not long enough to allow a full thermodynamic treatment, these results demonstrate that molecular dynamics simulations are a powerful method for investigating the protein-protein, protein-lipid, and lipid-lipid interactions that determine the structure, stability and dynamics of transmembrane alpha-helices in membranes.  相似文献   

10.
The central channel Tom40 of the preprotein translocase of outer membrane (TOM) complex is thought to be responsible for the import of virtually all preproteins synthesized outside the mitochondria. In this study, we analyze the topogenesis of the peripheral benzodiazepine receptor (PBR), which integrates into the mitochondrial outer membrane (MOM) through five hydrophobic transmembrane segments (TMSs) and functions in cholesterol import into the inner membrane. Analyses of in vitro and in vivo import into TOM component–depleted mitochondria reveal that PBR import (1) depends on the import receptor Tom70 but requires neither the Tom20 and Tom22 import receptors nor the import channel Tom40, (2) shares the post-Tom70 pathway with the C-tail–anchored proteins, and (3) requires factors of the mitochondrial intermembrane space. Furthermore, membrane integration of mitofusins and mitochondrial ubiquitin ligase, the MOM proteins with two and four TMSs, respectively, proceeds through the same initial pathway. These findings reveal a previously unidentified pathway of the membrane integration of MOM proteins with multiple TMSs.  相似文献   

11.
Matthews EE  Zoonens M  Engelman DM 《Cell》2006,127(3):447-450
Studying how protein transmembrane domains transmit signals across membranes is beset by unique challenges. Here, we discuss the circumstances that have led to success and reflect on what has been learned from these examples. Such efforts suggest that some of the most interesting properties of transmembrane helix interactions may be the least amenable to study by current techniques.  相似文献   

12.
Experimental structure determination continues to be challenging for membrane proteins. Computational prediction methods are therefore needed and widely used to supplement experimental data. Here, we re‐examined the state of the art in transmembrane helix prediction based on a nonredundant dataset with 190 high‐resolution structures. Analyzing 12 widely‐used and well‐known methods using a stringent performance measure, we largely confirmed the expected high level of performance. On the other hand, all methods performed worse for proteins that could not have been used for development. A few results stood out: First, all methods predicted proteins in eukaryotes better than those in bacteria. Second, methods worked less well for proteins with many transmembrane helices. Third, most methods correctly discriminated between soluble and transmembrane proteins. However, several older methods often mistook signal peptides for transmembrane helices. Some newer methods have overcome this shortcoming. In our hands, PolyPhobius and MEMSAT‐SVM outperformed other methods. Proteins 2015; 83:473–484. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
In membrane proteins, the extent to which polarity, hydrogen bonding, and van der Waals packing interactions of the buried, internal residues direct protein folding and association of transmembrane segments is poorly understood. The energetics associated with these various interactions should differ substantially between membrane versus water-soluble proteins. To help evaluate these energetics, we have altered a water-soluble, two-stranded coiled-coil peptide to render its sequence soluble in membranes. The membrane-soluble peptide associates in a monomer-dimer-trimer equilibrium, in which the trimer predominates at the highest peptide/detergent ratios. The oligomers are stabilized by a buried Asn side chain. Mutation of this Asn to Val essentially eliminates oligomerization of the membrane-soluble peptide. Thus, within a membrane-like environment, interactions involving a polar Asn side chain provide a strong thermodynamic driving force for membrane helix association.  相似文献   

14.
The ability of the pH-Low Insertion Peptide (pHLIP) to insert into lipid membranes in a transbilayer conformation makes it an important tool for targeting acidic diseased tissues. pHLIP can also serve as a model template for thermodynamic studies of membrane insertion. We use intrinsic fluorescence and circular dichroism spectroscopy to examine the effect of replacing pHLIP's central proline on the pH-triggered lipid-dependent conformational switching of the peptide. We find that the P20G variant (pHLIP-P20G) has a higher helical propensity than the native pHLIP (pHLIP-WT), in both water:organic solvent mixtures and in the presence of lipid bilayers. Spectral shifts of tryptophan fluorescence reveal that with both pHLIP-WT and pHLIP-P20G, the deeply penetrating interfacial form (traditionally called State II) is populated only in pure phosphocholine bilayers. The presence of either anionic lipids or phosphatidylethanolamine leads to a much shallower penetration of the peptide (referred to here as State IIS, for “shallow”). This novel state can be differentiated from soluble state by a reduction in accessibility of tryptophans to acrylamide and by FRET to vesicles doped with Dansyl-PE, but not by a spectral shift in fluorescence emission. FRET experiments indicate free energies for interfacial partitioning range from 6.2 to 6.8 kcal/mol and are marginally more favorable for pHLIP-P20G. The effective pKa for the insertion of both peptides depends on the lipid composition, but is always higher for pHLIP-P20G than for pHLIP-WT by approximately one pH unit, which corresponds to a difference of 1.3 kcal/mol in free energy of protonation favoring insertion of pHLIP-P20G.  相似文献   

15.
Most membrane proteins contain a transmembrane (TM) domain made up of a bundle of lipid-bilayer-spanning α-helices. TM α-helices are generally composed of a core of largely hydrophobic amino acids, with basic and aromatic amino acids at each end of the helix forming interactions with the lipid headgroups and water. In contrast, the S4 helix of ion channel voltage sensor (VS) domains contains four or five basic (largely arginine) side chains along its length and yet adopts a TM orientation as part of an independently stable VS domain. Multiscale molecular dynamics simulations are used to explore how a charged TM S4 α-helix may be stabilized in a lipid bilayer, which is of relevance in the context of mechanisms of translocon-mediated insertion of S4. Free-energy profiles for insertion of the S4 helix into a phospholipid bilayer suggest that it is thermodynamically favorable for S4 to insert from water to the center of the membrane, where the helix adopts a TM orientation. This is consistent with crystal structures of Kv channels, biophysical studies of isolated VS domains in lipid bilayers, and studies of translocon-mediated S4 helix insertion. Decomposition of the free-energy profiles reveals the underlying physical basis for TM stability, whereby the preference of the hydrophobic residues of S4 to enter the bilayer dominates over the free-energy penalty for inserting charged residues, accompanied by local distortion of the bilayer and penetration of waters. We show that the unique combination of charged and hydrophobic residues in S4 allows it to insert stably into the membrane.  相似文献   

16.
Integral membrane proteins often contain proline residues in their alpha-helical transmembrane (TM) fragments, which may strongly influence their folding and association. Pro-scanning mutagenesis of the helical domain of glycophorin A (GpA) showed that replacement of the residues located at the center abrogates helix packing while substitution of the residues forming the ending helical turns allows dimer formation. Synthetic TM peptides revealed that a point mutation of one of the residues of the dimerization motif (L75P) located at the N-terminal helical turn of the GpA TM fragment, adopts a secondary structure and oligomeric state similar to the wild-type sequence in detergents. In addition, both glycosylation mapping in biological membranes and molecular dynamics showed that the presence of a proline residue at the lipid/water interface has as an effect the extension of the helical end. Thus, helix packing can be an important factor that determines appearance of proline in TM helices. Membrane proteins might accumulate proline residues at the two ends of their TM segments in order to modulate the exposition of key amino acid residues at the interface for molecular recognition events while allowing stable association and native folding.  相似文献   

17.
Metcalf DG  Law PB  DeGrado WF 《Proteins》2007,67(2):375-384
We present a molecular modeling protocol that selects modeled protein structures based on experimental mutagenesis results. The computed effect of a point mutation should be consistent with its experimental effect for correct models; mutations that do not affect protein stability and function should not affect the computed energy of a correct model while destabilizing mutations should have unfavorable computed energies. On the other hand, an incorrect model will likely display computed energies that are inconsistent with experimental results. We added terms to our energy function which penalize models that are inconsistent with experimental results. This creates a selective advantage for models that are consistent with experimental results in the Monte Carlo simulated annealing protocol we use to search conformational space. We calibrated our protocol to predict the structure of transmembrane helix dimers using glycophorin A as a model system. Inclusion of mutational data in this protocol compensates for the limitations of our force field and the limitations of our conformational search. We demonstrate an application of this structure prediction protocol by modeling the transmembrane region of the BNIP3 apoptosis factor.  相似文献   

18.
Folding, assembly and stability of α-helical membrane proteins is still not very well understood. Several of these membrane proteins contain cofactors, which are essential for their function and which can be involved in protein assembly and/or stabilization. The effect of heme binding on the assembly and stability of the transmembrane b-type cytochrome b559 was studied by fluorescence resonance energy transfer. Cytochrome b559 consists of two monomers of a 44 amino acid long polypeptide, which contains one transmembrane domain. The synthesis of two variants of the b559 monomer, each carrying a specific fluorescent dye, allowed monitoring helix-helix interactions in micelles by resonance energy transfer. The measurements demonstrate that the transmembrane peptides dimerize in detergent in the absence and presence of the heme cofactor. Cofactor binding only marginally enhances dimerization and, apparently, the redox state of the heme group has no effect on dimerization.  相似文献   

19.
Folding, assembly and stability of alpha-helical membrane proteins is still not very well understood. Several of these membrane proteins contain cofactors, which are essential for their function and which can be involved in protein assembly and/or stabilization. The effect of heme binding on the assembly and stability of the transmembrane b-type cytochrome b'559 was studied by fluorescence resonance energy transfer. Cytochrome b'559 consists of two monomers of a 44 amino acid long polypeptide, which contains one transmembrane domain. The synthesis of two variants of the b'559 monomer, each carrying a specific fluorescent dye, allowed monitoring helix-helix interactions in micelles by resonance energy transfer. The measurements demonstrate that the transmembrane peptides dimerize in detergent in the absence and presence of the heme cofactor. Cofactor binding only marginally enhances dimerization and, apparently, the redox state of the heme group has no effect on dimerization.  相似文献   

20.
We describe an effective procedure for modeling the structures of simple transmembrane helix homo-oligomers. The method differs from many previous approaches in that the only structural constraint we use to help select the correct model is the oligomerization state of the protein. The method involves the following steps: (1) perform 100-250 independent Monte Carlo energy minimizations of helix pairs to produce a large collection of well-packed structures; (2) filter the minimized structures to find those that are consistent with the expected symmetry of the oligomer; (3) cluster the structures that pass the symmetry filter; and (4) select a representative of the most populous cluster as the final prediction. We applied the method to the transmembrane helices of five proteins and compare our results to the available experimental data. Our predictions of glycophorin A, neu, the M2 channel and phospholamban resulted in a single model for each protein that agreed with the experimental results. In the case of erbB-2, however, we obtained three structurally distinct clusters of approximately equal sizes, so it was not possible to identify a clearly favored structure. This may reflect a real heterogeneity of packing modes for erbB-2, which is known to interact with different receptor subunits. Our method should be useful for obtaining structural models of transmembrane domains, improving our understanding of structure/function relationships for particular membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号