首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Nonalcoholic steatohepatitis (NASH) is a progressive disease and poses a high risk of severe liver damage. However, the pathogenesis of NASH is still unclear. Accumulation of lipid droplets and insulin resistance is the hallmark of NASH. Pyruvate dehydrogenase kinase isoenzyme 4 (PDK4) plays key role in glucose metabolism via regulating the activity of pyruvate dehydrogenase complex (PDC). Here, we demonstrated a novel of PDK4 in NASH by regulating hepatic steatosis and insulin signaling pathway in methionine and choline deficient (MCD) diet induced NASH model. Hepatic PDK4 levels were highly induced in human patients with NASH and MCD diet fed mice, as well as in hepatocytes treated with oleic acid. The glucose and lipid metabolism were impaired in Pdk4?/? mice. Pdk4 deficiency ameliorated the hepatic steatosis significantly in NASH mice. Pdk4?/?-MCD mice had reduced liver weights and triglyceride (TG) levels. And Pdk4 deficiency dramatically reduced the expression of genes related to fatty acid uptake, synthesis and gluconeogenesis. In addition, elevated phosphorylated AMPK (p-AMPK), p-SAPK/JNK and diminished p-ERK, p-P38, p-Akt and p-mTOR/p-4EBP1 proteins were observed. In conclusion, our data indicated that PDK4 potentially contributes to the hepatic steatosis in NASH via regulating several signaling pathway and PDK4 may be a new therapeutic strategy against NAFLD.  相似文献   

2.
Conjugated linoleic acid (CLA) induces insulin resistance preceded by rapid depletion of the adipokines leptin and adiponectin, increased inflammation, and hepatic steatosis in mice. To determine the role of leptin in CLA-mediated insulin resistance and hepatic steatosis, recombinant leptin was coadministered with dietary CLA in ob/ob mice to control leptin levels and to, in effect, negate the leptin depletion effect of CLA. In a 2 x 2 factorial design, 6 week old male ob/ob mice were fed either a control diet or a diet supplemented with CLA and received daily intraperitoneal injections of either leptin or vehicle for 4 weeks. In the absence of leptin, CLA significantly depleted adiponectin and induced insulin resistance, but it did not increase hepatic triglyceride concentrations or adipose inflammation, marked by interleukin-6 and tumor necrosis factor-alpha mRNA expression. Insulin resistance, however, was accompanied by increased macrophage infiltration (F4/80 mRNA) in adipose tissue. In the presence of leptin, CLA depleted adiponectin but did not induce insulin resistance or macrophage infiltration. Despite this, CLA induced hepatic steatosis. In summary, CLA worsened insulin resistance without evidence of inflammation or hepatic steatosis in mice after 4 weeks. In the presence of leptin, CLA failed to worsen insulin resistance but induced hepatic steatosis in ob/ob mice.  相似文献   

3.
Nonalcoholic fatty liver disease (NAFLD) is associated with hepatic steatosis, inflammation and liver fibrosis and has become one of the leading causes of hepatocellular carcinoma and liver failure. However, the underlying molecular mechanism of hepatic steatosis and the progression to nonalcoholic steatohepatitis (NASH) are not fully understood. Herein, we discovered that AMPKα2 catalytic subunit showed reduced expression in the liver following high fat diet (HFD) feeding to mice. Importantly, knockout of AMPKα2 in mice aggravated NAFLD, hepatic steatosis, inflammation and fibrosis. On the other hand, hepatocyte-targeted overexpression of AMPKα2 prevented or reversed NAFLD indications. In vivo mechanistic studies revealed that increased phosphorylation of IKKα/β and NF-κB in HFD-fed AMPKα2−/− mice compared to WT mice, and treatment of these mouse cohorts with an inhibitor of NF-κB signaling for 4 weeks, effectively attenuated the progression of steatohepatitis and metabolic disorder features. In summary, AMPKα2 provides a protective role in the process of hepatic steatosis to NASH progression through suppression of liver NF-κB signaling.  相似文献   

4.
Partial leptin deficiency is not uncommon in the general population. We hypothesized that leptin insufficiency could favor obesity, nonalcoholic steatohepatitis (NASH), and other metabolic abnormalities, particularly under high calorie intake. Thus, mice partially deficient in leptin (ob/+) and their wild-type (+/+) littermates were fed for 4 mo with a standard-calorie (SC) or a high-calorie (HC) diet. Some ob/+ mice fed the HC diet were also treated weekly with leptin. Our results showed that, when fed the SC diet, ob/+ mice did not present significant metabolic abnormalities except for elevated levels of plasma adiponectin. Under high-fat feeding, increased body fat mass, hepatic steatosis, higher plasma total cholesterol, and glucose intolerance were observed in +/+ mice, and these abnormalities were further enhanced in ob/+ mice. Furthermore, some metabolic disturbances, such as blunted plasma levels of leptin and adiponectin, reduced UCP1 expression in brown adipose tissue, increased plasma liver enzymes, beta-hydroxybutyrate and triglycerides, and slight insulin resistance, were observed only in ob/+ mice fed the HC diet. Whereas de novo fatty acid synthesis in liver was decreased in +/+ mice fed the HC diet, it was disinhibited in ob/+ mice along with the restoration of the expression of several lipogenic genes. Enhanced expression of several genes involved in fatty acid oxidation was also observed only in ob/+ animals. Leptin supplementation alleviated most of the metabolic abnormalities observed in ob/+ fed the HC diet. Hence, leptin insufficiency could increase the risk of obesity, NASH, glucose intolerance, and hyperlipidemia in a context of calorie overconsumption.  相似文献   

5.
Although macrophages are thought to be crucial for the pathogenesis of chronic inflammatory diseases, how they are involved in disease progression from simple steatosis to non-alcoholic steatohepatitis (NASH) is poorly understood. Here we report the unique histological structure termed “hepatic crown-like structures (hCLS)” in the mouse model of human NASH; melanocortin-4 receptor deficient mice fed a Western diet. In hCLS, CD11c-positive macrophages aggregate to surround hepatocytes with large lipid droplets, which is similar to those described in obese adipose tissue. Histological analysis revealed that hCLS is closely associated with activated fibroblasts and collagen deposition. When treatment with clodronate liposomes effectively depletes macrophages scattered in the liver, with those in hCLS intact, hepatic expression of inflammatory and fibrogenic genes is unaffected, suggesting that hCLS is an important source of inflammation and fibrosis during the progression of NASH. Notably, the number of hCLS is positively correlated with the extent of liver fibrosis. We also observed increased number of hCLS in the liver of non-alcoholic fatty liver disease/NASH patients. Collectively, our data provide evidence that hCLS is involved in the development of hepatic inflammation and fibrosis, thereby suggesting its pathophysiologic role in disease progression from simple steatosis to NASH.  相似文献   

6.
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. While it is well-accepted that inflammation is central to NAFLD pathogenesis, the immune pathway(s) orchestrating disease progression are poorly defined. Notably, IL-17RA signaling, via IL-17A, plays an important role in obesity-driven NAFLD pathogenesis. However, the role of the IL-17F, another IL-17RA ligand, in NAFLD pathogenesis has not been examined. Further, the cell types expressing IL-17RA and producing IL-17RA ligands in the pathogenesis of NAFLD have not been defined. Here, IL-17RA-/-, IL-17A-/-, IL-17F-/- and wild-type (WT) mice were fed either standard chow diet or methionine and choline deficient diet (MCDD)—a diet known to induce steatosis and hepatic inflammation through beta-oxidation dysfunction—and hepatic inflammation and NAFLD progression were subsequently quantified. MCDD feeding augmented hepatic IL-17RA expression and significantly increased hepatic infiltration of macrophages and IL-17A and IL-17F producing CD4+ and CD8+ T cells in WT mice. In contrast, IL-17RA-/-, IL-17A-/-, and IL-17F-/- mice, despite increased steatosis, exhibited significant protection from hepatocellular damage compared to WT controls. Protection from hepatocellular damage correlated with decreased levels of hepatic T-cell and macrophage infiltration and decreased expression of inflammatory mediators associated with NAFLD. In sum, our results indicate that the IL-17 axis also plays a role in a MCDD-induced model of NAFLD pathogenesis. Further, we show for the first time that IL-17F, and not only IL-17A, plays an important role in NAFLD driven inflammation.  相似文献   

7.
Obesity and type 2 diabetes are associated with nonalcoholic steatohepatitis (NASH), but an obese/diabetic animal model that mimics human NASH remains undefined. We examined the induction of steatohepatitis and liver fibrosis in obese and type 2 diabetic db/db mice in a nutritional model of NASH and determined the relationship of the expressions of osteopontin (OPN) and leptin receptors to the pathogenesis of NASH. db/db mice and the corresponding lean and nondiabetic db/m mice were fed a diet deficient in methionine and choline (MCD diet) or control diet for 4 wk. Leptin-deficient obese and diabetic ob/ob mice fed similar diets were used for comparison. MCD diet-fed db/db mice exhibited significantly greater histological inflammation and higher serum alanine aminotransferase levels than db/m and ob/ob mice. Trichrome staining showed marked pericellular fibrosis in MCD diet-fed db/db mice but no significant fibrosis in db/m or ob/ob mice. Collagen I mRNA expression was increased 10-fold in db/db mice, 4-fold in db/m mice, and was unchanged in ob/ob mice. mRNA expressions of OPN, TNF-alpha, TGF-beta, and short-form leptin receptors (Ob-Ra) were significantly increased in db/db mice compared with db/m or ob/ob mice. Parallel increases in OPN and Ob-Ra protein levels were observed in db/db mice. Cultured hepatocytes expressed only Ob-Ra, and leptin stimulated OPN mRNA and protein expression in these cells. In conclusion, our results demonstrate the development of an obese/diabetic experimental model for NASH in db/db mice and suggest an important role for Ob-Ra and OPN in the pathogenesis of NASH.  相似文献   

8.
Inflammatory cell infiltration in the liver is a hallmark of nonalcoholic steatohepatitis (NASH). The chemokine-chemokine receptor interaction induces inflammatory cell recruitment. CC-chemokine receptor (CCR)2 is expressed on hepatic macrophages and hepatic stellate cells. This study aims to investigate the therapeutic potential of CCR2 to NASH. Twenty-two weeks on a choline-deficient amino acid-defined (CDAA) diet induced steatosis, inflammatory cell infiltration, and liver fibrosis with increased CCR2 and monocyte chemoattractant protein (MCP)-1 expression in the wild-type livers. The infiltrated macrophages expressed CD68, CCR2, and a marker of bone marrow-derived monocytes, Ly6C. CCR2(-/-) mice had less steatosis, inflammatory cell infiltration, and fibrosis, and hepatic macrophages expressing CD68 and Ly6C were decreased. Toll-like receptor (TLR)4(-/-), TLR9(-/-), and MyD88(-/-) mice had reduced hepatic macrophage infiltration with decreased MCP-1 and CCR2 expression because TLR signaling is a potent inducer of MCP-1. To assess the role of Kupffer cells at the onset of NASH, Kupffer cells were depleted by liposomal clodronate. The Kupffer cell depletion ameliorated steatohepatitis with a decrease in the MCP-1 expression and recruitment of Ly6C-expressing macrophages at the onset of NASH. Finally, to test the therapeutic potential of targeting CCR2, a CCR2 inhibitor was administered to mice on a CDAA diet. The pharmaceutical inhibition of CCR2 prevented infiltration of the Ly6C-positive macrophages, resulting in an inhibition of liver inflammation and fibrosis. We concluded that CCR2 and Kupffer cells contribute to the progression of NASH by recruiting bone marrow-derived monocytes.  相似文献   

9.
10.
Oxidative stress contributes towards the development of nonalcoholic steatohepatitis (NASH). Thus, antioxidants may decrease oxidative stress and ameliorate the events contributing to NASH. We hypothesized that α- or γ-tocopherol would protect against lipopolysaccharide (LPS)-triggered NASH in an obese (ob/ob) mouse model. Five-week-old obese mice (n=18/dietary treatment) were provided 15 mg/kg each of α- and γ-tocopherol or 500 mg/kg of α- or γ-tocopherol for 5-weeks. Then, all mice were injected ip once with LPS (250 μg/kg) before being sacrificed at 0, 1.5 or 6 h. Body weight and hepatic steatosis were unaffected by tocopherols and LPS. Hepatic α- and γ-tocopherol increased (P<.05) ~9.8- and 10-fold in respective tocopherol supplemented mice and decreased in response to LPS. LPS increased serum alanine aminotransferase (ALT) by 86% at 6 h and each tocopherol decreased this response by 29–31%. By 6 h, LPS increased hepatic malondialdehyde (MDA) and tumor necrosis factor-α by 81% and 44%, respectively, which were decreased by α- or γ-tocopherol. Serum ALT was correlated (P<.05) to hepatic tumor necrosis factor-α (r=0.585) and MDA (r=0.592), suggesting that inflammation and lipid peroxidation contributed to LPS-triggered hepatic injury. α- and γ-Tocopherol similarly attenuated LPS-triggered increases in serum free fatty acid, and α-tocopherol only maintained the LPS-triggered serum triacylglycerol responses at 6 h. These findings indicate that increasing hepatic α- or γ-tocopherol protected against LPS-induced NASH by decreasing liver damage, lipid peroxidation, and inflammation without affecting body mass or hepatic steatosis. Further study is needed to define the mechanisms by which these tocopherols protected against LPS-triggered NASH.  相似文献   

11.
The pathogenesis of nonalcoholic steatohepatitis (NASH) is poorly defined. Feeding mice a diet deficient in methionine and choline (MCD diet) induces experimental NASH. Osteopontin (OPN) is a Th1 cytokine that plays an important role in several fibroinflammatory diseases. We examined the role of OPN in the development of experimental NASH. A/J mice were fed MCD or control diet for up to 12 wk, and serum alanine aminotransferase (ALT), liver histology, oxidative stress, and the expressions of OPN, TNF-alpha, and collagen I were assessed at various time points. MCD diet-fed mice developed hepatic steatosis starting after 1 wk and inflammation by 2 wk; serum ALT increased from day 3. Hepatic collagen I mRNA expression increased during 1-4 wk, and fibrosis appeared at 8 wk. OPN protein expression was markedly increased on day 1 of MCD diet and persisted up to 8 wk, whereas OPN mRNA expression was increased at week 4. TNF-alpha expression was increased from day 3 to 2 wk, and evidence of oxidative stress did not appear until 8 wk. Increased expression of OPN was predominantly localized in hepatocytes. Hepatocytes in culture also produced OPN, which was stimulated by transforming growth factor-beta and TNF-alpha. Moreover, MCD diet-induced increases in serum ALT levels, hepatic inflammation, and fibrosis were markedly reduced in OPN(-/-) mice when compared with OPN(+/+) mice. In conclusion, our results demonstrate an upregulation of OPN expression early in the development of steatohepatitis and suggest an important role for OPN in signaling the onset of liver injury and fibrosis in experimental NASH.  相似文献   

12.
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of obesity-associated liver diseases and it has become the major cause of cirrhosis in the Western world. The high prevalence of NAFLD-associated advanced liver disease reflects both the high prevalence of obesity-related fatty liver (hepatic steatosis) and the lack of specific treatments to prevent hepatic steatosis from progressing to more serious forms of liver damage, including nonalcoholic steatohepatitis (NASH), cirrhosis, and primary liver cancer. The pathogenesis of NAFLD is complex, and not fully understood. However, compelling evidence demonstrates that dysregulation of the hedgehog (Hh) pathway is involved in both the pathogenesis of hepatic steatosis and the progression from hepatic steatosis to more serious forms of liver damage. Inhibiting hedgehog signaling enhances hepatic steatosis, a condition which seldom results in liver-related morbidity or mortality. In contrast, excessive Hh pathway activation promotes development of NASH, cirrhosis, and primary liver cancer, the major causes of liver-related deaths. Thus, suppressing excessive Hh pathway activity is a potential approach to prevent progressive liver damage in NAFLD. Various pharmacologic agents that inhibit Hh signaling are available and approved for cancer therapeutics; more are being developed to optimize the benefits and minimize the risks of inhibiting this pathway. In this review we will describe the Hh pathway, summarize the evidence for its role in NAFLD evolution, and discuss the potential role for Hh pathway inhibitors as therapies to prevent NASH, cirrhosis and liver cancer.  相似文献   

13.
14.
Reduced early alcohol-induced liver injury in CD14-deficient mice   总被引:11,自引:0,他引:11  
Activation of Kupffer cells by gut-derived endotoxin is associated with alcohol-induced liver injury. Recently, it was shown that CD14-deficient mice are more resistant to endotoxin-induced shock than wild-type controls. Therefore, this study was designed to investigate the role of CD14 receptors in early alcohol-induced liver injury using CD14 knockout and wild-type BALB/c mice in a model of enteral ethanol delivery. Animals were given a high-fat liquid diet continuously with ethanol or isocaloric maltose-dextrin as control for 4 wk. The liver to body weight ratio in wild-type mice (5.8 +/- 0.3%) was increased significantly by ethanol (7.3 +/- 0.2%) but was not altered by ethanol in CD14-deficient mice. Ethanol elevated serum alanine aminotransferase levels nearly 3-fold in wild-type mice, but not in CD14-deficient mice. Wild-type and knockout mice given the control high-fat diet had normal liver histology, whereas ethanol caused severe liver injury (steatosis, inflammation, and necrosis; pathology score = 3.8 +/- 0.4). In contrast, CD14-deficient mice given ethanol showed minimal hepatic changes (score = 1.6 +/- 0.3, p < 0.05). Additionally, NF-kappa B, TGF-beta, and TNF-alpha were increased significantly in wild-type mice fed ethanol but not in the CD14 knockout. Thus, chronic ethanol feeding caused more severe liver injury in wild-type than CD14 knockouts, supporting the hypothesis that endotoxin acting via CD14 plays a major role in the development of early alcohol-induced liver injury.  相似文献   

15.
Chronic low-grade infection has been suggested to be associated with metabolic disorder such as diabetes. However, the molecular mechanism underlying this important association is largely unknown. The only clue established so far is that many subjects exhibit elevated levels of C-reactive protein as measured by highly sensitive assay. Here, we hypothesized that adipocyte-macrophage interaction plays a key role in amplifying such low grade infection to the level of influencing metabolic disorders. The presence of macrophages in abdominal adipose tissues was investigated by immunohistochemistry. To see whether molecules associated with acute phase protein, LPS signaling, and persistent recruitment of monocytes, are produced at higher amounts in adipocytes co-cultured with macrophages stimulated with low concentration of LPS (1 ng/ml), we measured serum amyloid A (SAA), LPS binding protein (LBP), soluble CD14 (sCD14), and RANTES levels in culture supernatant of co-cultures. Lastly, we investigated in vivo effect of low-grade LPS infusion on the production of these molecules using obese model mice. The macrophages were certainly identified in abdominal adipose tissues. Investigated molecules, especially LBP, SAA, and RANTES were produced at higher amounts in co-cultures stimulated with LPS compared with the cells without LPS. The ob/ob, and high-fat diet-induced obesity mice produced higher amounts of LBP, SAA, and RANTES one day after LPS infusion (1 ng/ml/g body weight) compared with ob/- and normal-fat fed control mice. Thus, adipocytes and infiltrated macrophages, and their interaction with low endotoxin stimulation appear to play an important role in amplifying and maintaining LPS-induced low-grade inflammation.  相似文献   

16.
Chou MH  Chuang JH  Eng HL  Tsai PC  Hsieh CS  Liu HC  Wang CH  Lin CY  Lin TM 《PloS one》2012,7(4):e34903
Cholestasis is frequently related to endotoxemia and inflammatory response. Our previous investigation revealed a significant increase in plasma endotoxin and CD14 levels during biliary atresia. We therefore propose that lipopolysacharides (LPS) may stimulate CD14 production in liver cells and promote the removal of endotoxins. The aims of this study are to test the hypothesis that CD14 is upregulated by LPS and investigate the pathophysiological role of CD14 production during cholestasis. Using Western blotting, qRT-PCR, and promoter activity assay, we demonstrated that LPS was associated with a significant increase in CD14 and MD2 protein and mRNA expression and CD14 promoter activity in C9 rat hepatocytes but not in the HSC-T6 hepatic stellate cell line in vitro. To correlate CD14 expression and endotoxin sensitivity, in vivo biliary LPS administration was performed on rats two weeks after they were subjected to bile duct ligation (BDL) or a sham operation. CD14 expression and endotoxin levels were found to significantly increase after LPS administration in BDL rats. These returned to basal levels after 24 h. In contrast, although endotoxin levels were increased in sham-operated rats given LPS, no increase in CD14 expression was observed. However, mortality within 24 h was more frequent in the BDL animals than in the sham-operated group. In conclusion, cholestasis and LPS stimulation were here found to upregulate hepatic CD14 expression, which may have led to increased endotoxin sensitivity and host proinflammatory reactions, causing organ failure and death in BDL rats.  相似文献   

17.
Although it is clear that bile acid accumulation is the major initiator of fibrosis caused by cholestatic liver disease, endotoxemia is a common side effect. However, the depletion of hepatic macrophages with gadolinium chloride blunts hepatic fibrosis. Because endotoxin is a key activator of hepatic macrophages, this study was designed to test the hypothesis that LPS signaling through CD14 contributes to hepatic fibrosis caused by experimental cholestasis. Wild-type mice and CD14 knockout mice (CD14(-/-)) underwent sham operation or bile duct ligation and were killed 3 wk later. Measures of liver injury, such as focal necrosis, biliary cell proliferation, and inflammatory cell influx, were not significantly different among the strains 3 wk after bile duct ligation. Markers of liver fibrosis such as Sirius red staining, liver hydroxyproline, and alpha-smooth muscle actin expression were blunted in CD14(-/-) mice compared with wild-type mice after bile duct ligation. Despite no difference in lymphocyte infiltration, the macrophage/monocyte activation marker OX42 (CD11b) and the oxidative stress/lipid peroxidation marker 4-hydroxynonenal were significantly upregulated in wild-type mice after bile duct ligation but not in CD14(-/-) mice. Increased profibrogenic cytokine mRNA expression in the liver after bile duct ligation was significantly blunted in CD14(-/-) mice compared with the wild type. The hypothesis that LPS was involved in experimental cholestatic liver fibrosis was tested using mice deficient in LPS-binding protein (LBP(-/-)). LBP(-/-) mice had less liver injury and fibrosis (Siruis red staining and hydroxyproline content) compared with wild-type mice after bile duct ligation. In conclusion, these data demonstrate that endotoxin in a CD14-dependent manner exacerbates hepatic fibrogenesis and macrophage activation to produce oxidants and cytokines after bile duct ligation.  相似文献   

18.
Several studies suggest that low levels of hepatic phosphatidylcholine (PC) play a role in the pathogenesis of non-alcoholic steatohepatitis (NASH). CTP: phosphocholine cytidylyltransferase (CT) is the key regulatory enzyme in the CDP-choline pathway for PC biosynthesis. Liver-specific elimination of CTα (LCTα(-/-)) in mice fed a chow diet decreases very-low-density lipoprotein secretion, reduces lipid efflux from liver, and causes mild steatosis. We fed LCTα(-/-) mice a high fat diet to determine if impaired PC biosynthesis played a role in development of NASH. LCTα(-/-) mice developed NASH within one week of high fat feeding. Hepatic CTα deficiency caused hepatic steatosis, a 2-fold increase in ceramide mass, and a 20% reduction in PC content. In an attempt to prevent NASH, LCTα(-/-) mice were either injected daily with CDP-choline or fed the high fat diet supplemented with betaine. In addition, LCTα(-/-) mice were injected with adenoviruses expressing CTα. CDP-choline injections and adenoviral expression of CTα increased hepatic PC, while dietary betaine supplementation normalized hepatic triacylglycerol but did not alter hepatic PC mass in LCTα(-/-) mice. Interestingly, none of the treatments normalized hepatic ceramide mass or fully prevented the development of NASH in LCTα(-/-) mice. These results show that normalizing the amount of hepatic PC is not sufficient to prevent NASH in LCTα(-/-) mice.  相似文献   

19.
p53 involvement in the pathogenesis of fatty liver disease   总被引:1,自引:0,他引:1  
Obesity is a major health problem in industrialized societies, and fatty liver disease (hepatic steatosis) is common in obese individuals. Oxidative stress originating from increased intracellular levels of fatty acids has been implicated as a cause of hepatocellular injury in steatosis, although the precise mechanisms remain to be elucidated. p53, widely known as a tumor suppressor, has been shown often to be activated in stressed cells, inducing cell cycle arrest or death. Here we demonstrate that p53 is involved in the molecular mechanisms of hepatocellular injury associated with steatosis. We found that p53 in the nucleus is induced in the liver from two mouse models of fatty liver disease, ob/ob and a transgenic mouse model that overexpresses an active form of sterol regulatory element-binding protein-1 in the liver (TgSREBP-1), the one with obesity and the other without obesity. This activation of the p53 pathway leads to the elevation of p21 mRNA expression, which can be considered an indicator of p53 activity, because ob/ob mice lacking p53 generated by targeting gene disruption exhibited the complete restoration of the p21 elevation to wild type levels. Consistent with these results, the amelioration of hepatic steatosis caused by Srebp-1 gene disruption in ob/ob mice lowered the p21 expression in a triglyceride content-dependent manner. Moreover, p53 deficiency in ob/ob mice resulted in a marked improvement of plasma alanine aminotransferase levels, demonstrating that p53 is involved in the mechanisms of hepatocellular injury. In conclusion, we revealed that p53 plays an important role in the pathogenesis of fatty liver disease.  相似文献   

20.
Rapamycin, a mammalian target of rapamycin (mTOR)-specific inhibitor, has the effect of anti-lipid deposition on non-alcoholic fatty liver disease (NAFLD), but the mechanisms with which rapamycin alleviates hepatic steatosis are not fully disclosed. CD36 is known to facilitate long-chain fatty acid uptake and contribute to NAFLD progression. Hepatic CD36 expression is closely associated with hepatic steatosis, while mTOR pathway is involved in CD36 translational control. This study was undertaken to investigate whether rapamycin alleviates hepatic steatosis via the inhibition of mTOR pathway-dependent CD36 translation. Human hepatoblastoma HepG2 cells were treated with palmitate and C57BL/6J mice were fed with high fat diet (HFD) to induce hepatic steatosis. Hepatic CD36 protein expression was significantly increased with lipid accumulation in palmitate-treated HepG2 cells or HFD-fed C57BL/6J mice. Rapamycin reduced hepatic steatosis and CD36 protein expression, but it had no influence on CD36 mRNA expression. Rapamycin had no effect on CD36 protein stability, but it significantly decreased CD36 translational efficiency. We further confirmed that rapamycin inhibited the phosphorylation of mTOR and its downstream translational regulators including p70 ribosomal protein S6 kinase (p70S6K), eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), and eukaryotic initiation factor 4E (eIF4E). This study demonstrates that rapamycin inhibits hepatic CD36 translational efficiency through the mTOR pathway, resulting in reduction of CD36 protein expression and alleviation of hepatic steatosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号