首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resveratrol may protect against metabolic disease through activating SIRT1 deacetylase. Because we have recently defined AMPK activation as a key mechanism for the beneficial effects of polyphenols on hepatic lipid accumulation, hyperlipidemia, and atherosclerosis in type 1 diabetic mice, we hypothesize that polyphenol-activated SIRT1 acts upstream of AMPK signaling and hepatocellular lipid metabolism. Here we show that polyphenols, including resveratrol and the synthetic polyphenol S17834, increase SIRT1 deacetylase activity, LKB1 phosphorylation at Ser(428), and AMPK activity. Polyphenols substantially prevent the impairment in phosphorylation of AMPK and its downstream target, ACC (acetyl-CoA carboxylase), elevation in expression of FAS (fatty acid synthase), and lipid accumulation in human HepG2 hepatocytes exposed to high glucose. These effects of polyphenols are largely abolished by pharmacological and genetic inhibition of SIRT1, suggesting that the stimulation of AMPK and lipid-lowering effect of polyphenols depend on SIRT1 activity. Furthermore, adenoviral overexpression of SIRT1 stimulates the basal AMPK signaling in HepG2 cells and in the mouse liver. AMPK activation by SIRT1 also protects against FAS induction and lipid accumulation caused by high glucose. Moreover, LKB1, but not CaMKKbeta, is required for activation of AMPK by polyphenols and SIRT1. These findings suggest that SIRT1 functions as a novel upstream regulator for LKB1/AMPK signaling and plays an essential role in the regulation of hepatocyte lipid metabolism. Targeting SIRT1/LKB1/AMPK signaling by polyphenols may have potential therapeutic implications for dyslipidemia and accelerated atherosclerosis in diabetes and age-related diseases.  相似文献   

2.
3.
Energy depletion activates AMP-activated protein kinase (AMPK) and inhibits cell growth via TSC2-dependent suppression of mTORC1 signaling. Long term energy depletion also induces apoptosis by mechanisms that are not well understood to date. Here we show that AMPK, activated by energy depletion, inhibited cell survival by binding to and phosphorylating IRS-1 at Ser-794. Phosphorylation of IRS-1 at this site inhibited phosphatidylinositol 3-kinase/Akt signaling, suppressed the mitochondrial membrane potential, and promoted apoptosis. Of the treatments promoting energy depletion, glucose deprivation, hypoxia, and inhibition of ATP synthesis in the mitochondria stimulated phosphorylation of IRS-1 at Ser-794 via an LKB1/AMPK-dependent manner, whereas oxidative stress and 2-deoxyglucose stimulated phosphorylation at this site via a Ca2+/calmodulin-dependent protein kinase kinase beta/AMPK axis. These data define a novel pathway that cooperates with other adaptive mechanisms to formulate the cellular response to energy depletion.  相似文献   

4.
According to the classical view, the cytoprotective effect of inhibitors of poly(ADP-ribose)polymerase (PARP) in oxidative stress was based on the prevention of NAD+ and ATP depletion, thus the attenuation of necrosis. Our previous data on PARP inhibitors in an inflammatory model suggested that PARP-catalyzed ADP-ribosylations may affect signaling pathways, which can play a significant role in cell survival. To clarify the molecular mechanism of cytoprotection, PARP activity was inhibited pharmacologically by suppressing PARP-1 expression by a small interfering RNA (siRNA) technique or by transdominantly expressing the N-terminal DNA-binding domain of PARP-1 (PARP-DBD) in cultured cells. Cell survival, activation of the phosphatidylinositol 3-kinase (PI3-kinase)/Akt system, and the preservation of mitochondrial membrane potential were studied in hydrogen peroxide-treated WRL-68 cells. Our data showed that suppression of the single-stranded DNA break-induced PARP-1 activation by pharmacological inhibitor, siRNA, or by the transdominant expression of PARP-DBD protected cells from oxidative stress and induced the phosphorylation and activation of Akt. Furthermore, prevention of Akt activation by inhibiting PI3-kinase counteracted the cytoprotective effect of PARP inhibition. Microscopy data showed that PARP inhibition-induced Akt activation was responsible for protection of mitochondria in oxidative stress because PI3-kinase inhibitors diminished the protective effect of PARP inhibition. Similarly, Src kinase inhibitors, which decrease Akt phosphorylation, also counteracted the protection of mitochondrial membrane potential supporting the pivotal role of Akt in cytoprotection. These data together with the finding that PARP inhibition in the absence of oxidative stress induced the phosphorylation and activation of Akt indicate that PARP inhibition-induced Akt activation is dominantly responsible for the cytoprotection in oxidative stress.  相似文献   

5.
We previously reported the phosphoinositide 3-kinase-dependent activation of the 5'-AMP-activated kinase (AMPK) by peroxynitrite (ONOO-) and hypoxia-reoxygenation in cultured endothelial cells. Here we show the molecular mechanism of activation of this pathway. Exposure of bovine aortic endothelial cells to ONOO- significantly increased the phosphorylation of both Thr172 of AMPK and Ser1179 of endothelial nitric-oxide synthase, a known downstream enzyme of AMPK. In addition, activation of AMPK by ONOO- was accompanied by increased phosphorylation of protein kinase Czeta (PKCzeta) (Thr410/403) and translocation of cytosolic PKCzeta into the membrane. Further, inhibition of PKCzeta abrogated ONOO- -induced AMPK-Thr172 phosphorylation as that of endothelial nitric-oxide synthase. Furthermore, overexpression of a constitutively active PKCzeta mutant enhanced the phosphorylation of AMPK-Thr172, suggesting that PKCzeta is upstream of AMPK activation. In contrast, ONOO- activated PKCzeta in LKB1-deficient HeLa-S3 but affected neither AMPK-Thr172 nor AMPK activity. These data suggest that LKB1 is required for PKCzeta-enhanced AMPK activation. In vitro, recombinant PKCzeta phosphorylated LKB1 at Ser428, resulting in phosphorylation of AMPK at Thr172. Further, direct mutation of Ser428 of LKB1 into alanine, like the kinase-inactive LKB1 mutant, abolished ONOO- -induced AMPK activation. In several cell types originating from human, rat, and mouse, inhibition of PKCzeta significantly attenuated the phosphorylation of both LKB1-Ser428 and AMPK-Thr172 that were enhanced by ONOO-. Taken together, we conclude that PKCzeta can regulate AMPK activity by increasing the Ser428 phosphorylation of LKB1, resulting in association of LKB1 with AMPK and consequent AMPK Thr172 phosphorylation by LKB1.  相似文献   

6.
AMP-activated protein kinase (AMPK) responds to oxidative stress. Previous work has shown that ethanol treatment of cultured hepatoma cells and of mice inhibited the activity of AMPK and reduced the amount of AMPK protein. Ethanol generates oxidative stress in the liver. Since AMPK is activated by reactive oxygen species, it seems paradoxical that ethanol would inhibit AMPK in the hepatoma cells. In an attempt to understand the mechanism whereby ethanol inhibits AMPK, we studied the effect of ethanol on AMPK activation by exogenous hydrogen peroxide. The effects of ethanol, hydrogen peroxide, and inhibitors of protein phosphatase 2A (PP2A) [either okadaic acid or PP2A small interference RNA (siRNA)] on AMPK phosphorylation and activity were examined in rat hepatoma cells (H4IIEC3) and HeLa cells. In H4IIEC3 cells, hydrogen peroxide (H(2)O(2), 1 mM) transiently increased the level of phospho-AMPK to 1.5-fold over control (P < 0.05). Similar findings were observed in HeLa cells, which do not express the upstream AMPK kinase, LKB1. H(2)O(2) markedly increased the phosphorylation of LKB1 in H4IIEC3 cells. Ethanol significantly inhibited the phosphorylation of PKC-zeta, LKB1, and AMPK caused by exposure to H(2)O(2). This inhibitory effect of ethanol required its metabolism. More importantly, the inhibitory effects of ethanol on H(2)O(2)-induced AMPK phosphorylation were attenuated by the presence of the PP2A inhibitor, okadaic acid, or PP2A siRNA. The inhibitory effect of ethanol on AMPK phosphorylation is exerted through the inhibition of PKC-zeta and LKB1 phosphorylation and the activation of PP2A.  相似文献   

7.
Two splice variants of LKB1 exist: LKB1 long form (LKB1L) and LKB1 short form (LKB1S). In a previous study, we demonstrated that phosphorylation of Ser-428/431 (in LKB1L) by protein kinase Cζ (PKCζ) was essential for LKB1-mediated activation of AMP-activated protein kinase (AMPK) in response to oxidants or metformin. Paradoxically, LKB1S also activates AMPK although it lacks Ser-428/431. Thus, we hypothesized that LKB1S contained additional phosphorylation sites important in AMPK activation. Truncation analysis and site-directed mutagenesis were used to identify putative PKCζ phosphorylation sites in LKB1S. Substitution of Ser-399 to alanine did not alter the activity of LKB1S, but abolished peroxynitrite- and metformin-induced activation of AMPK. Furthermore, the phosphomimetic mutation (S399D) increased the phosphorylation of AMPK and its downstream target phospho-acetyl-coenzyme A carboxylase (ACC). PKCζ-dependent phosphorylation of Ser-399 triggered nucleocytoplasmic translocation of LKB1S in response to metformin or peroxynitrite treatment. This effect was ablated by pharmacological and genetic inhibition of PKCζ, by inhibition of CRM1 activity and by substituting Ser-399 with alanine (S399A). Overexpression of PKCζ up-regulated metformin-mediated phosphorylation of both AMPK (Thr-172) and ACC (Ser-79), but the effect was ablated in the S399A mutant. We conclude that, similar to Ser-428/431 (in LKB1L), Ser-399 (in LKB1S) is a PKCζ-dependent phosphorylation site essential for nucleocytoplasmic export of LKB1S and consequent AMPK activation.  相似文献   

8.
Reports on the role of AMP-activated protein kinase (AMPK) in thrombin-mediated activation of endothelial nitric-oxide synthase (eNOS) in endothelial cells have been conflicting. Previously, we have shown that under culture conditions that allow reduction of ATP-levels after stimulation, activation of AMPK contributes to eNOS phosphorylation and activation in endothelial cells after treatment with thrombin. In this paper we examined the signaling pathways mediating phosphorylation and activation of eNOS after stimulation of cultured human umbilical vein endothelial cells (HUVEC) with histamine and the role of LKB1-AMPK in the signaling. In Morgan's medium 199 intracellular ATP was lowered by treatment with histamine or the ionophore A23187 while in medium RMPI 1640 ATP was unchanged after identical treatment. In medium 199 inhibition of Ca+ 2/CaM kinase kinase (CaMKK) by STO-609 only partially inhibited AMPK phosphorylation but after gene silencing of LKB1 with siRNA there was a total inhibition of AMPK phosphorylation by STO-609 after treatment with either histamine or thrombin, demonstrating phosphorylation of AMPK by both upstream kinases, LKB1 and CaMKK. Downregulation of AMPK with siRNA partially inhibited eNOS phosphorylation caused by histamine in cells maintained in medium 199. Downregulation of LKB1 by siRNA inhibited both phosphorylation and activity of eNOS and addition of the AMPK inhibitor Compound C had no further effect on eNOS phosphorylation. When experiments were carried out in medium 1640, STO-609 totally prevented the phosphorylation of AMPK without affecting eNOS phosphorylation. AMPKα2 downregulation resulted in a loss of the integrity of the endothelial monolayer and increased expression of GRP78, indicative of endoplasmic reticular (ER) stress. Downregulation of AMPKα1 had no such effect. The results show that culture conditions affect endothelial signal transduction pathways after histamine stimulation. Under conditions where intracellular ATP is lowered by histamine, AMPK is activated by both LKB1 and CaMKK and, in turn, mediates eNOS phosphorylation in an LKB1 dependent manner. Both AMPKα1 and − α2 are involved in the signaling. Under conditions where intracellular ATP is unchanged after histamine treatment, CaMKK alone activates AMPK and eNOS is phosphorylated and activated independent of AMPK.  相似文献   

9.
Mitochondria are exposed to large fluxes of iron, and reactive oxygen and nitrogen species. Hence they are susceptible to oxidative stress, a process inhibited by vitamin E. Our investigations show that iron uncouples oxidative phosphorylation whereas peroxynitrite and nitrite are inhibitors of oxidative phosphorylation. Oxidation of mitochondrial vitamin E is accompanied by generation of lipid peroxidation products, altered enzyme activity and electrical conductance etc., and result in inefficient oxidative phosphorylation. Vitamin E is important for mitochondrial function because: (1) Prior investigations have shown that vitamin E is essential for maintaining mitochondrial respiration. (2) Vitamin E is the most potent, lipid-soluble antioxidant localized ideally in mitochondrial membranes. (3) The decline in respiratory control ratios (RCR) of rat brain mitochondria exposed to peroxynitrite closely paralleled the oxidative elimination of vitamin E. (4) Finally, iron is a strong uncoupler of oxidative phosphorylation in brain mitochondria from vitamin E deficient animals and not from controls.Special issue dedicated to Lawrence F. Eng.  相似文献   

10.
LKB1 has been identified as a component of the major upstream kinase of AMP-activated protein kinase (AMPK) in skeletal muscle. To investigate the roles of LKB1 in skeletal muscle, we used muscle-specific LKB1 knockout (MLKB1KO) mice that exhibit low expression of LKB1 in heart and skeletal muscle, but not in other tissues. The importance of LKB1 in muscle physiology was demonstrated by the observation that electrical stimulation of the muscle in situ increased AMPK phosphorylation and activity in the wild-type (WT) but not in the muscle-specific LKB1KO mice. Likewise, phosphorylation of acetyl-CoA carboxylase (ACC) was markedly attenuated in the KO mice. The LKB1KO mice had difficulty running on the treadmill and exhibited marked reduction in distance run in voluntary running wheels over a 3-wk period (5.9 +/- 0.9 km/day for WT vs. 1.7 +/- 0.7 km/day for MLKB1KO mice). The MLKB1KO mice anesthetized at rest exhibited significantly decreased phospho-AMPK and phospho-ACC compared with WT mice. KO mice exhibited lower levels of mitochondrial protein expression in the red and white regions of the quadriceps. These observations, along with previous observations from other laboratories, clearly demonstrate that LKB1 is the major upstream kinase in skeletal muscle and that it is essential for maintaining mitochondrial marker proteins in skeletal muscle. These data provide evidence for a critical role of LKB1 in muscle physiology, one of which is maintaining basal levels of mitochondrial oxidative enzymes. Capacity for voluntary running is compromised with muscle and heart LKB1 deficiency.  相似文献   

11.
How cells degenerate from oxidative stress in aging-related disease is incompletely understood. This study’s intent was to identify key cytoprotective pathways activated by oxidative stress and determine the extent of their protection. Using an unbiased strategy with microarray analysis, we found that retinal pigmented epithelial (RPE) cells treated with cigarette smoke extract (CSE) had overrepresented genes involved in the antioxidant and unfolded protein response (UPR). Differentially expressed antioxidant genes were predominantly located in the cytoplasm, with no induction of genes that neutralize superoxide and H2O2 in the mitochondria, resulting in accumulation of superoxide and decreased ATP production. Simultaneously, CSE induced the UPR sensors IRE1α, p-PERK, and ATP6, including CHOP, which was cytoprotective because CHOP knockdown decreased cell viability. In mice given intravitreal CSE, the RPE had increased IRE1α and decreased ATP and developed epithelial–mesenchymal transition, as suggested by decreased LRAT abundance, altered ZO-1 immunolabeling, and dysmorphic cell shape. Mildly degenerated RPE from early age-related macular degeneration (AMD) samples had prominent IRE1α, but minimal mitochondrial TOM20 immunolabeling. Although oxidative stress is thought to induce an antioxidant response with cooperation between the mitochondria and the ER, herein we show that mitochondria become impaired sufficiently to induce epithelial–mesenchymal transition despite a protective UPR. With similar responses in early AMD samples, these results suggest that mitochondria are vulnerable to oxidative stress despite a protective UPR during the early phases of aging-related disease.  相似文献   

12.
Mitochondrial perturbation and oxidative stress are key factors in neuronal vulnerability in several neurodegenerative diseases or during brain ischemia. Here we have investigated the protective mechanism of action of guanosine, the guanine nucleoside, in a human neuroblastoma cell line, SH-SY5Y, subjected to mitochondrial oxidative stress. Blockade of mitochondrial complexes I and V with rotenone plus oligomycin (Rot/oligo) caused a significant decrease in cell viability and an increase in ROS production. Guanosine that the protective effect of guanosine incubated concomitantly with Rot/oligo abolished Rot/oligo-induced cell death and ROS production in a concentration dependent manner; maximum protection was achieved at the concentration of 1mM. The cytoprotective effect afforded by guanosine was abolished by adenosine A(1) or A(2A) receptor antagonists (DPCPX or ZM241385, respectively), or by a large (big) conductance Ca(2+)-activated K(+) channel (BK) blocker (charybdotoxin). Evaluation of signaling pathways showed that the protective effect of guanosine was not abolished by a MEK inhibitor (PD98059), by a p38(MAPK) inhibitor (SB203580), or by a PKC inhibitor (cheleritrine). However, when blocking the PI3K/Akt pathway with LY294002, the neuroprotective effect of guanosine was abolished. Guanosine increased Akt and p-Ser-9-GSK-3β phosphorylation confirming this pathway plays a key role in guanosine's neuroprotective effect. Guanosine induced the antioxidant enzyme heme oxygenase-1 (HO-1) expression. The protective effects of guanosine were prevented by heme oxygenase-1 inhibitor, SnPP. Moreover, bilirubin, an antioxidant and physiologic product of HO-1, is protective against mitochondrial oxidative stress. In conclusion, our results show that guanosine can afford protection against mitochondrial oxidative stress by a signaling pathway that implicates PI3K/Akt/GSK-3β proteins and induction of the antioxidant enzyme HO-1.  相似文献   

13.
High glucose-induced protein synthesis in the glomerular epithelial cell (GEC) is partly dependent on reduction in phosphorylation of AMP-activated protein kinase (AMPK). We evaluated the effect of resveratrol, a phytophenol known to stimulate AMPK, on protein synthesis. Resveratrol completely inhibited high glucose stimulation of protein synthesis and synthesis of fibronectin, an important matrix protein, at 3 days. Resveratrol dose-dependently increased AMPK phosphorylation and abolished high glucose-induced reduction in its phosphorylation. We examined the effect of resveratrol on critical steps in mRNA translation, a critical event in protein synthesis. Resveratrol inhibited high glucose-induced changes in association of eIF4E with eIF4G, phosphorylation of eIF4E, eEF2, eEF2 kinase and, p70S6 kinase, indicating that it affects important events in both initiation and elongation phases of mRNA translation. Upstream regulators of AMPK in high glucose-treated GEC were explored. High glucose augmented acetylation of LKB1, the upstream kinase for AMPK, and inhibited its activity. Resveratrol prevented acetylation of LKB1 and restored its activity in high glucose-treated cells; this action did not appear to depend on SIRT1, a class III histone deacetylase. Our data show that resveratrol ameliorates protein synthesis by regulating the LKB1–AMPK axis.  相似文献   

14.
BackgroundSince non-alcoholic fatty liver disease (NAFLD) pathogenesis is multi-factorial, pharmacotherapy with a specific target commonly exhibits limited efficacy. Phytotherapy, whose therapeutic efficacy is based on the combined action of several active compounds, offers new treatment opportunity for NAFLD. As a representative, many natural polyphenols could be utilized in phytotherapy for NAFLD.PurposeIn present work, we aimed to investigate the therapeutic effects and underlying mechanism of polyphenols in blueberry leaves (PBL) on NAFLD from a mitochondria-centric perspective since mitochondrial dysfunction could play a dominant role in NAFLD.MethodsIdentification and quantification of PBL were performed using liquid chromatography coupled with tandem mass spectrometry. The beneficial effects, especially improving mitochondrial function, and potential mechanism of PBL on NAFLD were studied by in vitro and in vivo study.ResultsPolyphenols were abundant in blueberry leaves making it advantaged in NAFLD phytotherapy. PBL effectively alleviated hepatic steatosis, oxidative stress and inflammation as indicated by both in vitro and in vivo study. Furthermore, PBL mediated improvement of mitochondrial dysfunction and antioxidant capability through activation of AMPK/PGC-1α/SIRT3 signaling axis.ConclusionConsidering that mitochondrial dysfunction takes precedence over hepatic steatosis and induces NAFLD development, we conclude that PBL improve mitochondrial dysfunction and oxidative defense, subsequently alleviate hepatic steatosis, oxidative stress and inflammation, and eventually alleviate NAFLD.  相似文献   

15.
The aim of the present study is to determine the effects and molecular mechanisms by which activation of LKB1-AMP-activated protein kinase (AMPK) by metformin regulates vascular smooth muscle contraction. The essential ability of vascular smooth muscle cells (VSMCs) to contract and relax in response to an elevation and reduction in intravascular pressure is necessary for appropriate blood flow regulation. Thus, vessel contraction is a critical mechanism for systemic blood flow regulation. In cultured rat VSMCs, AMPK activation through LKB1 by metformin-inhibited phenylephrine-mediated myosin light chain kinase (MLCK) and myosin light chain phosphorylation (p-MLC). Conversely, inhibition of AMPK and LKB1 reversed phenylephrine-induced MLCK and p-MLC phosphorylation. Measurement of the tension trace in rat aortic rings also showed that the effect of AMPK activation by metformin decreased phenylephrine-induced contraction. Metformin inhibited PE-induced p-MLC and α-smooth muscle actin co-localization. Our results suggest that activation of AMPK by LKB1 decreases VSMC contraction by inhibiting MLCK and p-MLC, indicating that induction by the AMPK-LKB1 pathway may be a new therapeutic target to lower high blood pressure.  相似文献   

16.
The beneficial effects of dietary polyphenols on health are due not only to their antioxidant properties but also to their antibacterial, anti-inflammatory and/or anti-tumoral activities. It has recently been proposed that protection of mitochondrial function (which is altered in several diseases such as Alzheimer, Parkinson, obesity and diabetes) by these compounds, may be important in explaining the beneficial effects of polyphenols on health. The aim of this study was to evaluate the protective effects of dietary polyphenols quercetin, rutin, resveratrol and epigallocatechin gallate against the alterations of mitochondrial function induced by indomethacin (INDO) in intestinal epithelial Caco-2 cells, and to address the mechanism involved in such damaging effect by INDO, which generates oxidative stress. INDO concentration dependently decreases cellular ATP levels and mitochondrial membrane potential in Caco-2 cells after 20min of incubation. INDO also inhibits the activity of mitochondrial complex I and causes accumulation of NADH; leading to overproduction of mitochondrial O(2)()(-), since it is prevented by pyruvate. Quercetin (0.01mg/ml), resveratrol (0.1mg/ml) and rutin (1mg/ml) protected Caco-2 cells against INDO-induced mitochondrial dysfunction, while no protection was observed with epigallocatechin gallate. Quercetin was the most efficient in protecting against mitochondrial dysfunction; this could be due to its ability to enter cells and accumulate in mitochondria. Additionally its structural similarity with rotenone could favor its binding to the ubiquinone site of complex I, protecting it from inhibitors such as INDO or rotenone. These findings suggest a possible new protective role for dietary polyphenols for mitochondria, complementary of their antioxidant property. This new role might expand the preventive and/or therapeutic use of PPs in conditions involving mitochondrial dysfunction and associated with increased oxidative stress at the cellular or tissue levels.  相似文献   

17.
Methionine sulphoxide reductase A (MSRA) that reduces methionine-S-sulphoxide back to methionine constitutes a catalytic antioxidant mechanism to prevent oxidative damage at multiple sub-cellular loci. This study examined the relative importance of protection of the cytoplasm and mitochondria by MSRA using A-10 vascular smooth muscle cells, a cell type that requires a low level of reactive oxygen species (ROS) for normal function but is readily damaged by higher concentrations of ROS. Adenoviral over-expression of human MSRA variants, targeted to either mitochondria or the cytoplasm, did not change basal viability of non-stressed cells. Oxidative stress caused by treatment with the methionine-preferring oxidizing reagent chloramine-T decreased cell viability in a concentration-dependent manner. Cytoplasmic MSRA preserved cell viability more effectively than mitochondrial MSRA and co-application of S-methyl-L-cysteine, an amino acid that acts as a substrate for MSRA when oxidized, further increased the extent of protection. This suggests an important role for an MSRA catalytic antioxidant cycle for protection of the cytoplasmic compartment against oxidative damage.  相似文献   

18.
Few, if any, studies have examined the effect of vitamin E deficiency on brain mitochondrial oxidative phosphorylation. The latter was studied using brain mitochondria isolated from control and vitamin E-deficient rats (13 months of deficiency) after exposure to iron, an inducer of oxidative stress. Mitochondria were treated with iron (2 to 50 microM) added as ferrous ammonium sulfate. Rates of state 3 and state 4 respiration, respiratory control ratios, and ADP/O ratios were not affected by vitamin E deficiency alone. However, iron uncoupled oxidative phosphorylation in vitamin E-deficient mitochondria, but not in controls. In vitamin E-deficient mitochondria, iron decreased ADP/O ratios and markedly stimulated state 4 respiration; iron had only a modest effect on these parameters in control mitochondria. Thus, vitamin E may have an important role in sustaining oxidative phosphorylation. Low concentrations of iron (2 to 5 microM) oxidized mitochondrial tocopherol that exists in two pools. The release of iron in brain may impair oxidative phosphorylation, which would be exacerbated by vitamin E deficiency. The results are important for understanding the pathogenesis of human brain disorders known to be associated with abnormalities in mitochondrial function as well as iron homeostasis (e.g., Parkinson's disease).  相似文献   

19.
Energy deprivation in the myocardium is associated with impaired heart function and increased morbidity. LKB1 is a kinase that is required for activation of AMP-activated protein kinase (AMPK) as well as 13 AMPK-related protein kinases. AMPK stimulates ATP production during ischemia and prevents post-ischemic dysfunction. We used the Cre–Lox system to generate mice where LKB1 was selectively knocked out in cardiomyocytes and muscle cells (LKB1-KO) to assess the role of LKB1 on cardiac function in these mice.Heart rates of LKB1-KO mice were reduced and ventricle diameter was increased. Ex vivo, cardiac function was impaired during aerobic perfusion of isolated working hearts, and recovery of function after ischemia was reduced. Although oxidative metabolism and mitochondrial function were normal, the AMP/ATP ratio was increased in LKB1-KO hearts. This was associated with a complete ablation of AMPKα2 activity, and a stimulation of signaling through the mammalian target of rapamycin. Our results establish a critical role for LKB1 for normal cardiac function under both aerobic conditions and during recovery after ischemia. Ablation of LKB1 leads to a decreased cardiac efficiency despite normal mitochondrial oxidative metabolism.  相似文献   

20.
The Liver Kinase B1 (LKB1) tumor suppressor acts as a metabolic energy sensor to regulate AMP-activated protein kinase (AMPK) signaling and is commonly mutated in various cancers, including non-small cell lung cancer (NSCLC). Tumor cells deficient in LKB1 may be uniquely sensitized to metabolic stresses, which may offer a therapeutic window in oncology. To address this question we have explored how functional LKB1 impacts the metabolism of NSCLC cells using 13C metabolic flux analysis. Isogenic NSCLC cells expressing functional LKB1 exhibited higher flux through oxidative mitochondrial pathways compared to those deficient in LKB1. Re-expression of LKB1 also increased the capacity of cells to oxidize major mitochondrial substrates, including pyruvate, fatty acids, and glutamine. Furthermore, LKB1 expression promoted an adaptive response to energy stress induced by anchorage-independent growth. Finally, this diminished adaptability sensitized LKB1-deficient cells to combinatorial inhibition of mitochondrial complex I and glutaminase. Together, our data implicate LKB1 as a major regulator of adaptive metabolic reprogramming and suggest synergistic pharmacological strategies for mitigating LKB1-deficient NSCLC tumor growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号