首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here we show that yeast strains with reduced target of rapamycin (TOR) signaling have greater overall mitochondrial electron transport chain activity during growth that is efficiently coupled to ATP production. This metabolic alteration increases mitochondrial membrane potential and reactive oxygen species (ROS) production, which we propose supplies an adaptive signal during growth that extends chronological life span (CLS). In strong support of this concept, uncoupling respiration during growth or increasing expression of mitochondrial manganese superoxide dismutase significantly curtails CLS extension in tor1Δ strains, and treatment of wild-type strains with either rapamycin (to inhibit TORC1) or menadione (to generate mitochondrial ROS) during growth is sufficient to extend CLS. Finally, extension of CLS by reduced TORC1/Sch9p-mitochondrial signaling occurs independently of Rim15p and is not a function of changes in media acidification/composition. Considering the conservation of TOR-pathway effects on life span, mitochondrial ROS signaling may be an important mechanism of longevity regulation in higher organisms.  相似文献   

2.
Increased replicative longevity in Saccharomyces cerevisiae because of calorie restriction has been linked to enhanced mitochondrial respiratory activity. Here we have further investigated how mitochondrial respiration affects yeast life span. We found that calorie restriction by growth in low glucose increased respiration but decreased mitochondrial reactive oxygen species production relative to oxygen consumption. Calorie restriction also enhanced chronological life span. The beneficial effects of calorie restriction on mitochondrial respiration, reactive oxygen species release, and replicative and chronological life span could be mimicked by uncoupling agents such as dinitrophenol. Conversely, chronological life span decreased in cells treated with antimycin (which strongly increases mitochondrial reactive oxygen species generation) or in yeast mutants null for mitochondrial superoxide dismutase (which removes superoxide radicals) and for RTG2 (which participates in retrograde feedback signaling between mitochondria and the nucleus). These results suggest that yeast aging is linked to changes in mitochondrial metabolism and oxidative stress and that mild mitochondrial uncoupling can increase both chronological and replicative life span.  相似文献   

3.
We found that mitochondrial alternative oxidase (AOX) protein and the capacity for CN-resistant respiration are dramatically increased in wild-type tobacco (Nicotiana tabacum) suspension-cultured cells in response to growth under P limitation, and antisense (AS8) tobacco cells unable to induce AOX under these conditions have altered growth and metabolism. Specifically, we found that the respiration of AS8 cells was restricted during P-limited growth, when the potential for severe adenylate control of respiration (at the level of C supply to the mitochondrion and/or at the level of oxidative phosphorylation) is high due to the low cellular levels of ADP and/or inorganic P. As a result of this respiratory restriction, AS8 cells had altered growth, morphology, cellular composition, and patterns of respiratory C flow to amino acid synthesis compared with wild-type cells with abundant AOX protein. Also, AS8 cells under P limitation displayed high in vivo rates of generation of active oxygen species compared with wild-type cells. This difference could be abolished by an uncoupler of mitochondrial oxidative phosphorylation. Our results suggest that induction of non-phosphorylating AOX respiration (like induction of adenylate and inorganic P-independent pathways in glycolysis) is an important plant metabolic adaptation to P limitation. By preventing severe respiratory restriction, AOX acts to prevent both redirections in C metabolism and the excessive generation of harmful active oxygen species in the mitochondrion.  相似文献   

4.
Calorie restriction (CR) extends the mean and maximum lifespan of a wide variety of organisms ranging from yeast to mammals, although the molecular mechanisms of action remain unclear. For the budding yeast Saccharomyces cerevisiae reducing glucose in the growth medium extends both the replicative and chronological lifespans (CLS). The conserved NAD(+)-dependent histone deacetylase, Sir2p, promotes replicative longevity in S. cerevisiae by suppressing recombination within the ribosomal DNA locus and has been proposed to mediate the effects of CR on aging. In this study, we investigated the functional relationships of the yeast Sirtuins (Sir2p, Hst1p, Hst2p, Hst3p and Hst4p) with CLS and CR. SIR2, HST2, and HST4 were not major regulators of CLS and were not required for the lifespan extension caused by shifting the glucose concentration from 2 to 0.5% (CR). Deleting HST1 or HST3 moderately shortened CLS, but did not prevent CR from extending lifespan. CR therefore works through a Sirtuin-independent mechanism in the chronological aging system. We also show that low temperature or high osmolarity additively extends CLS when combined with CR, suggesting that these stresses and CR act through separate pathways. The CR effect on CLS was not specific to glucose. Restricting other simple sugars such as galactose or fructose also extended lifespan. Importantly, growth on nonfermentable carbon sources that force yeast to exclusively utilize respiration extended lifespan at nonrestricted concentrations and provided no additional benefit when restricted, suggesting that elevated respiration capacity is an important determinant of chronological longevity.  相似文献   

5.
As yeast cultures enter stationary phase in rich, glucose-based medium, differentiation of two major subpopulations of cells, termed quiescent and nonquiescent, is observed. Differences in mRNA abundance between exponentially growing and stationary-phase cultures and quiescent and nonquiescent cells are known, but little was known about protein abundance in these cells. To measure protein abundance in exponential and stationary-phase cultures, the yeast GFP-fusion library (4159 strains) was examined during exponential and stationary phases, using high-throughput flow cytometry (HyperCyt). Approximately 5% of proteins in the library showed twofold or greater changes in median fluorescence intensity (abundance) between the two conditions. We examined 38 strains exhibiting two distinct fluorescence-intensity peaks in stationary phase and determined that the two fluorescence peaks distinguished quiescent and nonquiescent cells, the two major subpopulations of cells in stationary-phase cultures. GFP-fusion proteins in this group were more abundant in quiescent cells, and half were involved in mitochondrial function, consistent with the sixfold increase in respiration observed in quiescent cells and the relative absence of Cit1p:GFP in nonquiescent cells. Finally, examination of quiescent cell-specific GFP-fusion proteins revealed symmetry in protein accumulation in dividing quiescent and nonquiescent cells after glucose exhaustion, leading to a new model for the differentiation of these cells.  相似文献   

6.
Summary The effect of cultivation and dehydration conditions on the adenosine phosphate content of yeast cells has been studied. Irrespective of the cultivation conditions the total pool of adenosine phosphates was found to increase, mainly due to accumulation of ATP, during the exponential phase of cell growth and to decrease during transition of the culture into the stationary phase. Changes in the intracellular content of adenosine phosphates were parallel with changes in the respiratory activity of yeast cells cultivated under batch conditions. Yeast cells harvested at the exponential growth phase were sensitive to dehydration, losing a notable amount of adenosine phosphates as well as respiratory capacity during drying, leading to a massive dying-off of the cells. Yeast at the stationary phase was resistant to drying, and, during this process, accumulated ATP by mitochondrial oxidation of endogenous carbohydrates. The accumulated ATP was used by the dried yeast cells as an energy source in the first minutes of reactivation. On the basis of our results we recommend that the ATP content of dried yeast cells should be used as an indicator of their capacity to recover their viability by reactivation.  相似文献   

7.
Caloric restriction mimetics (CRMs) have been developed to mimic the effects of caloric restriction (CR). However, research reports for the effects of CRMs are often times inconsistent across different research groups. Therefore, in this study, we compared seven identified CRMs which extend the lifespans of various organisms including caffeine, curcumin, dapsone, metformin, rapamycin, resveratrol, and spermidine to CR for mitochondrial function in a single model, Saccharomyces cerevisiae. In this organism, rapamycin extended chronological lifespan (CLS), but other CRMs failed to extend CLS. Rapamycin enhanced mitochondrial function like CR did, but other CRMs did not. Both CR and rapamycin worked on mitochondrial function, but they worked at different windows of time during the chronological aging process.  相似文献   

8.
9.
10.
Our studies revealed that LCA (lithocholic bile acid) extends yeast chronological lifespan if added to growth medium at the time of cell inoculation. We also demonstrated that longevity in chronologically aging yeast is programmed by the level of metabolic capacity and organelle organization that they developed before entering a quiescent state and, thus, that chronological aging in yeast is likely to be the final step of a developmental program progressing through at least one checkpoint prior to entry into quiescence. Here, we investigate how LCA influences longevity and several longevity-defining cellular processes in chronologically aging yeast if added to growth medium at different periods of the lifespan. We found that LCA can extend longevity of yeast under CR (caloric restriction) conditions only if added at either of two lifespan periods. One of them includes logarithmic and diauxic growth phases, whereas the other period exists in early stationary phase. Our findings suggest a mechanism linking the ability of LCA to increase the lifespan of CR yeast only if added at either of the two periods to its differential effects on various longevity-defining processes. In this mechanism, LCA controls these processes at three checkpoints that exist in logarithmic/diauxic, post-diauxic and early stationary phases. We therefore hypothesize that a biomolecular longevity network progresses through a series of checkpoints, at each of which (1) genetic, dietary and pharmacological anti-aging interventions modulate a distinct set of longevity-defining processes comprising the network; and (2) checkpoint-specific master regulators monitor and govern the functional states of these processes.  相似文献   

11.
Our studies revealed that LCA (lithocholic bile acid) extends yeast chronological lifespan if added to growth medium at the time of cell inoculation. We also demonstrated that longevity in chronologically aging yeast is programmed by the level of metabolic capacity and organelle organization that they developed before entering a quiescent state and, thus, that chronological aging in yeast is likely to be the final step of a developmental program progressing through at least one checkpoint prior to entry into quiescence. Here, we investigate how LCA influences longevity and several longevity-defining cellular processes in chronologically aging yeast if added to growth medium at different periods of the lifespan. We found that LCA can extend longevity of yeast under CR (caloric restriction) conditions only if added at either of two lifespan periods. One of them includes logarithmic and diauxic growth phases, whereas the other period exists in early stationary phase. Our findings suggest a mechanism linking the ability of LCA to increase the lifespan of CR yeast only if added at either of the two periods to its differential effects on various longevity-defining processes. In this mechanism, LCA controls these processes at three checkpoints that exist in logarithmic/diauxic, post-diauxic and early stationary phases. We therefore hypothesize that a biomolecular longevity network progresses through a series of checkpoints, at each of which (1) genetic, dietary and pharmacological anti-aging interventions modulate a distinct set of longevity-defining processes comprising the network; and (2) checkpoint-specific master regulators monitor and govern the functional states of these processes.  相似文献   

12.
TNFR1/Fas engagement results in the cleavage of cytosolic Bid to truncated Bid (tBid), which translocates to mitochondria. We demonstrate that recombinant tBid induces in vitro immediate destabilization of the mitochondrial bioenergetic homeostasis. These alterations result in mild uncoupling of mitochondrial state-4 respiration, associated with an inhibition the adenosine diphosphate (ADP)-stimulated respiration and phosphorylation rate. tBid disruption of mitochondrial homeostasis was inhibited in mitochondria overexpressing Bcl-2 and Bcl-XL. The inhibition of state-3 respiration is mediated by the reorganization of cardiolipin within the mitochondrial membranes, which indirectly affects the activity of the ADP/ATP translocator. Cardiolipin-deficient yeast mitochondria did not exhibit any respiratory inhibition by tBid, proving the absolute requirement for cardiolipin for tBid binding and activity. In contrast, the wild-type yeast mitochondria underwent a similar inhibition of ADP-stimulated respiration associated with reduced ATP synthesis. These events suggest that mitochondrial lipids rather than proteins are the key determinants of tBid-induced destabilization of mitochondrial bioenergetics.  相似文献   

13.
Dietary restriction increases life span and delays the development of age-related diseases in rodents. We have recently demonstrated that chronic dietary restriction is beneficial on recovery of heart function following ischemia. We studied whether the metabolic basis of this benefit is associated with alterations in mitochondrial respiration. Male Wistar rats were assigned to an ad libitum-fed (AL) group and a food restricted (FR) group, in which food intake was reduced to 55% of the amount consumed by the AL group. Following an 8-month period of restricted caloric intake, isolated working hearts perfused with glucose and high levels of fatty acids were subjected to global ischemia followed by reperfusion. At the end of reperfusion, total heart mitochondria was respiration was assessed in the presence of pyruvate, tricarboxylic acid intermediates, and palmitoylcarnitine. Recovery of heart function following ischemia was greater in FR hearts compared to AL hearts. Paralleling these changes in heart function was in increase in state 3 respiration with pyruvate. The respiratory control ratios in the presence of pyruvate and tricarboxylic acid intermediates were higher in FR hearts compared to AL hearts, indicating well-coupled mitochondria. Overall energy production, expressed as the ADP:O ratio and the oxidative phosphorylation rate, was also improved in FR hearts. Our results indicate that the beneficial effect of FR on recovery of heart function following ischemia is associated with changes in mitochondrial respiration.  相似文献   

14.
While moderate caloric restriction has beneficial effects on animal health state, fasting may be harmful. The present investigation was designed to test how fasting affects oxidative stress, and to find out whether the effects are opposite to those previously found in caloric restriction studies. We have focused on one of the main determinants of aging rate: the rate of mitochondrial free radical generation. Different parameters related to lipid and protein oxidative damage were also analyzed. Liver mitochondria from rats subjected to 72 h of fasting leaked more electrons per unit of O2 consumed at complex III, than mitochondria from ad libitum fed rats. This increased leak led to a higher free radical generation under state 3 respiration using succinate as substrate. Regarding lipids, fasting altered fatty acid composition of hepatic membranes, increasing the double bond and the peroxidizability indexes. In accordance with this, we observed that hepatic membranes from the fasted animals were more sensitive to lipid peroxidation. Hepatic protein oxidative damage was also increased in fasted rats. Thus, the levels of oxidative modifications, produced either indirectly by reactive carbonyl compounds (Nepsilon- malondialdehyde-lysine), or directly through amino acid oxidation (glutamic and aminoadipic semialdehydes) were elevated due to the fasting treatment in both liver tissue and liver mitochondria. The current study shows that severe food deprivation increases oxidative stress in rat liver, at least in part, by increasing mitochondrial free radical generation during state 3 respiration and by increasing the sensitivity of hepatic membranes to oxidative damage, suggesting that fasting and caloric restriction have different effects on liver mitochondrial oxidative stress.  相似文献   

15.
16.
Ubiquinone Function in Neurospora crassa   总被引:2,自引:1,他引:1       下载免费PDF全文
Mitochondria of cytoplasmic respiratory mutants [mi-1] (poky) and [mi-4] contain about a fourfold molar excess of ubiquinone as compared to the wild-type strain of Neurospora crassa. In the wild type and [mi-1] cultures the concentration of ubiquinone remains constant during the exponential and stationary phase of growth. In [mi-4] cultures it markedly decreases in the stationary phase. The reduction of ubiquinone by substrates is approximately the same in the three strains tested and amounts 60 to 70% of total ubiquinone present in mitochondria, independent of its absolute amount. The reduction of ubiquinone on addition of substrates is accompanied by the similar reduction of cytochrome c. These indicate that mitochondrial ubiquinone and cytochrome c are involved in processes of oxidation in Neurospora and that ubiquinone belongs mainly if not entirely to the cytochrome system of electron transport in these strains.  相似文献   

17.
Changes in respiratory activity and in the contents of adenine nucleotides (ATP, ADP, AMP) were studied in cells of the yeast Yarrowia lipolytica during the development of cyanide-resistant respiration. The transition of the yeast from the logarithmic to the stationary growth phase due to exhaustion of glucose was associated with decreased endogenous respiration and with the activation of a cyanide-resistant oxidase. Cyanide activated cell respiration during the stationary growth phase. The cyanide-resistant respiration was inhibited by benzohydroxamic acid (BHA), an inhibitor of the alternative oxidase. In the absence of cyanide, BHA had no effect on the cells which had the cyanide-resistant oxidase. This indicates that the cells do not use the alternative pathway in vivo. The decreased endogenous respiration of the cells was accompanied by decreased contents of adenine nucleotides. Addition of cyanide resulted in a sharp decrease in the content of ATP, in a twofold increase in the content of ADP, and in a fivefold increase in the content of AMP. In the absence of cyanide, BHA had virtually no effect on the contents of adenine nucleotides. The decreased rate of oxygen consumption during the transition of the cells to the stationary growth phase was caused by the decreased activity of the main cytochrome-containing respiratory chain (2,4-dinitrophenol (DNP) stimulated respiration). The alternative oxidase was synthesized in the cell but was inactive. Cyanide stimulated respiration due to activation of the alternative oxidase via the AMP produced. The decrease in the cell content of ATP is suggested to be a factor inducing the synthesis of the alternative oxidase.  相似文献   

18.
Chronological life span (CLS) has been studied as an aging paradigm in yeast. A few conserved aging genes have been identified that modulate both chronological and replicative longevity in yeast as well as longevity in the nematode Caenorhabditis elegans; however, a comprehensive analysis of the relationship between genetic control of chronological longevity and aging in other model systems has yet to be reported. To address this question, we performed a functional genomic analysis of chronological longevity for 550 single-gene deletion strains, which accounts for approximately 12% of the viable homozygous diploid deletion strains in the yeast ORF deletion collection. This study identified 33 previously unknown determinants of CLS. We found no significant enrichment for enhanced CLS among deletions corresponding to yeast orthologs of worm aging genes or among replicatively long-lived deletion strains, although a trend toward overlap was noted. In contrast, a subset of gene deletions identified from a screen for reduced acidification of culture media during growth to stationary phase was enriched for increased CLS. These results suggest that genetic control of CLS under the most commonly utilized assay conditions does not strongly overlap with longevity determinants in C. elegans, with the existing confined to a small number of genetic pathways. These data also further support the model that acidification of the culture medium plays an important role in survival during chronological aging in synthetic medium, and suggest that chronological aging studies using alternate medium conditions may be more informative with regard to aging of multicellular eukaryotes.  相似文献   

19.
Farge G  Touraille S  Debise R  Alziari S 《Biochimie》2002,84(12):1189-1197
Analysis of a mutant strain of Drosophila subobscura revealed that most (80%) mitochondrial genomes have undergone a large scale deletion (5 kb) in the coding region. Compared with the wild-type strain, complex I and III activities are, respectively, reduced by 50% and 30% in the mutant. However, the ATP synthesis capacities remain unchanged. In order to elucidate how the ATP synthesis is maintained at a normal level, despite a significant decrease in complex I and III activities, we progressively inhibited respiratory chain complex activities, respiration rate and ATP synthesis. Complex I, III and IV activities were inhibited by rotenone, antimycin and KCN, respectively. Threshold curves were thus determined for each complex. Our results demonstrated that in the mutant strain, both mitochondrial respiration and ATP synthesis had decreased when complex I activity was inhibited by more than 20%, whereas 70% inhibition is required to induce similar changes in the wild-type. The complex I inhibition pattern of the wild-type was restored by a backcross (mutant female/wild-type male). The complex III activity threshold is below 20% in both strains, and we observed some difference in antimycin sensitivity, suggesting a modification of the complex enzymatic properties in the mutant. In contrast, threshold values of 70% were measured for complex IV inhibition. Our data suggest that the difference in the complex I threshold curves between the wild-type and mutant strains could partially account for the absence of pathological phenotype in the mutant.  相似文献   

20.
The assembly of cytochrome c oxidase (COX) is essential for a functional mitochondrial respiratory chain, although the consequences of a loss of assembled COX at yeast stationary phase, an excellent model for terminally differentiated cells in humans, remain largely unexamined. In this study, we show that a wild-type respiratory competent yeast strain at stationary phase is characterized by a decreased oxidative capacity, as seen by a reduction in the amount of assembled COX and by a decrease in protein levels of several COX assembly factors. In contrast, loss of assembled COX results in the decreased abundance of many mitochondrial proteins at stationary phase, which is likely due to decreased membrane potential and changes in mitophagy. In addition to an altered mitochondrial proteome, COX assembly mutants display unexpected changes in markers of cellular oxidative stress at stationary phase. Our results suggest that mitochondria may not be a major source of reactive oxygen species at stationary phase in cells lacking an intact respiratory chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号