首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purpurinimide methyl esters, bearing variable lengths of N-substitutions, were conjugated individually to a cyanine dye with a carboxylic acid functionality. The results obtained from in vitro and in vivo studies showed a significant impact of the linkers joining the phototherapeutic and fluorescence imaging moieties. The photosensitizer-fluorophore conjugate with a PEG linker showed the highest uptake in the liver, whereas the conjugate linked with two carbon units showed excellent tumor-imaging and PDT efficacy at 24 h postinjection. Whole body imaging and biodistribution studies at variable time points portrayed enhanced fluorescent uptake of the conjugates in the tumor compared to that in the skin. Interestingly, the conjugate with the shortest linker and the one joining with two carbon units showed faster clearance from normal organs, e.g., the liver, kidney, spleen, and lung, compared to that in tumors. Both imaging and PDT efficacy of the conjugates were performed in BALB/c mice bearing Colon26 tumors. Compared to the others, the short linker conjugate showed poor tumor fluorescent properties and as a corollary does not exhibit the dual functionality of the photosensitizer-fluorophore conjugate. For this reason, it was not evaluated for in vivo PDT efficacy. However, in Colon26 tumor cells (in vitro), the short linker was highly effective. Among the conjugates with variable linkers, the rate of energy transfer from the purpurinimide moiety to the cyanine moiety increased with deceasing linker length, as examined by femtosecond laser flash photolysis measurements. No electron transfer from the purpurinimide moiety to the singlet excited state of the cyanine moiety or from the singlet excited state of the cyanine moiety to the purpurinimide moiety occurred as indicated by a comparison of transient absorption spectra with spectra of the one-electron oxidized and one-electron reduced species of the conjugate obtained by spectroelectrochemical measurements.  相似文献   

2.
The total syntheses of 14 porphyrin conjugates containing one to four positively charged amino acids and two distinct linkers are described. All conjugates were fully characterized using spectroscopic methods, and the X-ray structure of a porphyrin isothiocyanate precursor was obtained. In vitro studies using HEp2 cells show that these conjugates have low cytotoxicity (IC50 > 250 microM) and that the extent of their cellular uptake depends significantly on the number, nature, and sequence of amino acids in the peptide, and on the presence of a centrally chelated metal ion. Metal-free conjugates bearing three consecutive arginine residues accumulated the most within cells. On the other hand, the preferential sites of subcellular localization were found to be independent from the number, nature, and sequence of amino acids in the conjugate, the linker, and coordinated metal ion; it is suggested, based on theoretical calculations, that the peptides in these conjugates fold over the porphyrin macrocycle in order to maximize intramolecular hydrophobic interactions.  相似文献   

3.
Two meso-tetra[(nido-carboranylmethyl)phenyl]porphyrins (para- and meta-regioisomers) and their corresponding Zn(II) complexes have been synthesized with the aim of studying the effect of carborane distribution and metalation on the biological properties of this series of compounds. In vitro cell toxicity, uptake/efflux, and subcellular localization using rat 9L, mouse B16 and/or human U-373MG cells were evaluated. All four amphiphilic porphyrins display very low cytotoxicities and time- and concentration-dependent uptake by cells, which is influenced by serum proteins. Preliminary subcellular localization studies suggest that one of these compounds localizes in close proximity to the cell nucleus. All four nido-carboranylporphyrins show promise as boron-carriers for the boron neutron capture therapy of cancers, particularly the metal-free nido-carboranylporphyrins 5 and 12, which are able to deliver higher amount of boron to cells in vitro than the corresponding zinc complexes.  相似文献   

4.
To enable concurrent whole body scintigraphy and direct imaging of subcellular localization of permeation peptides, dual-labeled Tat-peptides useful for both radiometric analysis and fluorescence microscopy are desired for molecular imaging applications. Thus, novel dual-labeled D-Tat-peptides comprising Tat-basic domain (hgrkkrrqrrrgc), C-terminus conjugated with fluorescein-5-maleimide (FM) and N-terminus chelated with [(99m)Tc(CO)(3)] via histidine coordination, were synthesized and characterized. In human Jurkat cells, radiotracer uptake and washout studies revealed concentration-dependent accumulation of the dual-labeled Tat-peptide within cells. Subcellular localization of Tat-peptide was confirmed by fluorescence microscopy using an analogous [Re(CO)(3)] dual-labeled Tat-peptide. As seen with C-terminus single-labeled Tat-peptides, localization to the nucleoli was observed with the dual-labeled Tat-peptide, suggesting that the mechanism of Tat-peptide uptake and localization was not dependent on free peptide termini at either end. In Balb/c mice, biodistribution studies performed with the dual-labeled Tat-peptide showed fluorescence intensity by microscopic analysis that visually confirmed and correlated directly with scintigraphic and radiometric data. Of note, following intravenous administration, little brain penetration of these permeation sequences was observed in vivo. His[(99m)Tc(CO)(3)]-, DTPA[(99m)Tc(CO)(3)]-, and epsilon-lys-gly-cys[(99m)Tc(O)]-labeled Tat-peptides showed significant pharmacokinetic differences in liver and kidney depending on labeling strategy, indicating that Tat-peptide biodistribution can be impacted by the chelation moiety coordinated with (99m)Tc. Thus, we have shown that dual-labeled (99m)Tc-tricarbonyl Tat-peptide-FM conjugates can be conveniently synthesized and enable direct comparison of quantitative radiometric and qualitative fluorescence data both in vitro as well as in vivo.  相似文献   

5.
Phthalocyanine-nanoparticle conjugates have been designed and synthesised for the delivery of hydrophobic photosensitizers for photodynamic therapy (PDT) of cancer. The phthalocyanine photosensitizer stabilized gold nanoparticles have an average diameter of 2-4 nm. The synthetic strategy interdigitates a phase transfer reagent between phthalocyanine molecules on the particle surface that solubilises the hydrophobic photosensitizer in polar solvents enabling delivery of the nanoparticle conjugates to cells. The phthalocyanine is present in the monomeric form on the nanoparticle surface, absorbs radiation maximally at 695 nm and catalytically produces the cytotoxic species singlet oxygen with high efficiency. These properties suggest that the phthalocyanine-nanoparticle conjugates are ideally suited for PDT. In a process that can be considered as cancer therapy using a 'Trojan horse', when the nanoparticle conjugates are incubated with HeLa cells (a cervical cancer cell line), they are taken up thus delivering the phthalocyanine photosensitizer directly into the cell interior. Irradiation of the nanoparticle conjugates within the HeLa cells induced substantial cell mortality through the photodynamic production of singlet oxygen. The PDT efficiency of the nanoparticle conjugates, determined using colorimetric assay, was twice that obtained using the free phthalocyanine derivative. Following PDT with the nanoparticle conjugates, morphological changes to the HeLa cellular structure were indicative of cell mortality via apoptosis. Further evidence of apoptosis was provided through the bioluminescent assay detection of caspase 3/7. Our results suggest that gold nanoparticle conjugates are an excellent vehicle for the delivery of surface bound hydrophobic photosensitizers for efficacious photodynamic therapy of cultured tumour cells.  相似文献   

6.
Novel cyclotriphosphazene-platinum(II) conjugates were prepared by hydrolysis and platination of the amphiphilic cyclotriphosphazenes grafted with equimolar hydrophilic methoxy-poly(ethylene glycol) (MPEG) and hydrophobic oligopeptide. These macromolecular conjugates were found to form stable nanoparticles with a mean diameter of approximately 90-200 nm depending on the hydrophobicity of the conjugated (diamine)platinum moieties. The nanoparticulate platinum(II) conjugates have shown temperature and concentration dependent particle sizes. However, the particle sizes of the conjugates were found to decrease to a certain size as the solution concentration was decreased but remained stable even at 10 microM, which is enough for systemic delivery by injection. The conjugates exhibited lower in vitro cytotoxicity than cisplatin but reasonably good activity against selected human tumor cell lines.  相似文献   

7.
Mitochondria-specific photosensitizers were designed by taking advantage of the preferential localization of delocalized lipophilic cations (DLCs) in mitochondria. Three DLC-porphyrin conjugates: CMP-Rh (a core modified porphyrin-rhodamine B cation), CMP-tPP (a core modified porphyrin-mono-triphenyl phosphonium cation), CMP-(tPP)2 (a core modified porphyrin-di-tPP cation) were prepared. The conjugates were synthesized by conjugating a monohydroxy core modified porphyrin (CMP-OH) to rhodamine B (Rh B), or either one or two tPPs, respectively, via a saturated hydrocarbon linker. Their ability for delivering photosensitizers to mitochondria was evaluated using dual staining fluorescence microscopy. In addition, to evaluate the efficiency of the conjugates as photosensitizers, their photophysical properties and in vitro biological activities were studied in comparison to those of CMP-OH. Fluorescence imaging study suggested that CMP-Rh specifically localized in mitochondria. On the other hand, CMP-tPP and CMP-(tPP)2 showed less significant mitochondrial localization. All conjugates were capable of generating singlet oxygen at rates comparable to CMP-OH. Interestingly, all cationic conjugates showed dramatic increase in cellular uptake and phototoxicity compared to CMP-OH. This improved photodynamic activity might be primarily due to an enhanced cellular uptake. Our study suggests that Rh B cationic group is better at least for CMP than tPP as a mitochondrial targeting vector.  相似文献   

8.
An amphiphilic porphyrin appended with a Ru(II)-polypyridyl complex (Ru-P) showing a moderate two-photon absorption cross-section (178.0 ± 26.8 GM), high singlet oxygen quantum yield and rapid cellular uptake was synthesized. In vitro study using human nasopharyngeal carcinoma cells showed that Ru-P exhibited a strong two-photon induced fluorescence upon uptake, lysosomal localization and potent two-photon induced cytotoxicity. These results show that Ru-P, which was designed to enhance its cellular uptake, can potentially be used as an efficacious bifunctional two-photon tumor-imaging and photodynamic therapeutic agent despite its moderate two-photon absorption cross-section.  相似文献   

9.
We have evaluated the applicability of the [(4-isothiocyanatobenzylammonio)undecahydro-closo-dodecaborate (1-)] (DABI) linker molecule for antibody radiohalogenation and compared it to radiohalogenation using the linker N-succinimidyl 4-iodobenzoate (PIB) and to direct radiohalogenation using Chloramine T. These studies were performed to assess the potential of DABI conjugates and to optimize the biological properties of halogen-labeled cMAb U36. The three conjugates were evaluated in vitro for their specificity and affinity and in vivo for their biodistribution patterns in normal mice at 1.5, 6, 24, and 96 h pi. Labeling efficiencies of direct CAT labeling, indirect PIB labeling, and indirect DABI labeling were 90-95%, 60%, and 68%, respectively. This resulted in a PIB:cMAb U36 molar ratio of 1.8-2.5 and a DABI:cMAb U36 molar ratio of 4.1. The in vitro data demonstrated specific binding for all conjugates and similar affinities with values around 1 x 10(8) M(-)(1). However, the in vivo data revealed accumulation of the radioiodine uptake in thyroid for the directly labeled conjugate, with a value 10 times higher than the indirectly labeled conjugates 96 h pi. Both the (125)I-PIB-cMAb U36 and (125)I-DABI-cMAb U36 conjugates yielded a low thyroid uptake with no accumulation, indicating different catabolites for these conjugates. This may favor the use of the indirectly labeled conjugates for future studies. Apart from the specific results obtained, these findings also demonstrate how the right linker molecule will provide additional opportunities to further improve the properties of an antibody-radionuclide conjugate.  相似文献   

10.
Properties and applications of photodynamic therapy   总被引:3,自引:0,他引:3  
Photodynamic therapy (PDT) is the treatment of malignant lesions with visible light following the systemic administration of a tumor-localizing photosensitizer. Pharmacological and photochemical properties of the photosensitizer are combined with precise delivery of laser-generated light to produce a treatment which can offer selective tumoricidal action. Hematoporphyrin derivative (HD) and a purified component called Photofrin II are currently being used in clinical PDT. Initial patient results have been encouraging, and considerable interest has developed in the synthesis and evaluation of new photosensitizers with improved photochemical and pharmacological characteristics. In addition, there has been a gradual increase in knowledge related to in vitro and in vivo mechanisms of action of PDT. This report provides an overview of the properties and applications of PDT. Information and data related to drug development, photochemistry, subcellular targets, in vivo responses, and clinical trials of PDT are presented.  相似文献   

11.
The total syntheses of five new porphyrin-cobaltacarborane conjugates (1-5) have been achieved in 88-98% yields in a single-step reaction between a nucleophilic meso-pyridyl-containing porphyrin and zwitterionic cobaltacarborane [3,3'-Co(8-C(4)H(8)O(2)-1,2-C(2)B(9)H(10))(1',2'-C(2)B(9)H(11))]. These unique zwitterionic compounds have one to four cobaltabisdicarbollide anions conjugated to the porphyrin macrocycle via (CH(2)CH(2)O)(2) chains. The X-ray structure of one of these conjugates (1) is presented and discussed. The cellular uptake, cytotoxicity, and subcellular localization of cobaltacarboraneporphyrins 1-5 were investigated in human HEp2 cells. The number and distribution of cobaltacarborane residues linked to the porphyrin macrocycle has a significant effect on the cellular uptake of the conjugates.  相似文献   

12.
Daunorubicin (DRB) and its two analogues containing a trisubstituted amidino group at the C-3′ position of the daunosamine moiety have been compared regarding their cytotoxic activity, cellular uptake, subcellular localization and DNA damaging properties. An analogue containing in the amidino group a morpholine moiety (DRBM) as well as an analogue with a hexamethyleneimine moiety (DRBH), tested against cultured L1210 cells, exhibited lower cytotoxicity then DRB. The decrease of cytotoxic activity was not related to cellular uptake and subcellular localization of drugs. Although all tested drugs were active in the induction of DNA breaks and DNA–protein crosslinks, they differed in the mechanism of induction of DNA lesions. DRB produced DNA breaks mediated solely by topoisomerase II, whereas DRBM and DRBH induced two types of DNA breaks by two separate processes. The first is related to the inhibition of topoisomerase II and the second presumably reflects a covalent binding of drug metabolites to DNA. It is hypothesized that the replacement of the primary amino group (–NH2) at the C-3′ position of the daunosamine moiety by a trisubstituted amidino group (–N=CH–NRR) may be a route to the synthesis of anthracycline derivatives with enhanced ability to form covalent adducts to DNA.  相似文献   

13.
Li F  Na K 《Biomacromolecules》2011,12(5):1724-1730
Acetylated-chondroitin sulfate/chlorin e6 conjugates (Ac-CS/Ce6 1, 2, 3) were synthesized via the formation of an ester linkage between CS and Ce6 and evaluated as nanoscale drugs for photodynamic therapy. Ac-CS/Ce6 2 and 3 with higher Ce6 contents of 11.7 and 17.6%, respectively, had average diameters of <150 nm and were very stable in phosphate-buffered saline (PBS) for 1 month. The critical self-quenching concentration (CQC) of Ac-CS/Ce6 decreased as the conjugated-amount of Ce6 increased. All samples displayed autophotoquenching properties in aqueous solution, whereas their fluorescence intensity strongly correlated with the amount of Ce6 in the organic solvent dimethyl sulfoxide (DMSO). Compared with free Ce6, Ac-CS/Ce6 nanodrug photoactivity was maintained in terms of fluorescence properties and singlet oxygen ((1)O(2)) generation. In a HeLa cell culture system, we observed rapid cellular uptake of the Ac-CS/Ce6 nanodrug without any other ligands using confocal imaging and fluorescence-activated cell sorting (FACS) analysis. Upon light irradiation following cellular uptake, phototoxicity was detected via 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The self-quenching effect and fluorescence recovery of Ac-CS/Ce6 were also determined both in vitro and in vivo. Taken together, our results indicate that Ac-CS/Ce6 has potential as an effective photodynamic therapy (PDT) prodrug for clinical application.  相似文献   

14.
Photodynamic therapy (PDT) is a clinically approved procedure for targeting tumor cells. Though several different photosensitizers have been developed, there is still much demand for novel photosensitizers with improved properties. In this study we aim to characterize the accumulation, localization and dark cytotoxicity of the novel photosensitizers developed in‐house derivatives of porphyrazines ( pz I‐IV) in primary murine neuronal cells, as well as to identify the concentrations at which pz still effectively induces death in glioma cells yet is nontoxic to nontransformed cells. The study shows that incubation of primary neuronal and glioma cells with pz I‐IV leads to their accumulation in both types of cells, but their rates of internalization, subcellular localization and dark toxicity differ significantly. Pz II was the most promising photosensitizer. It efficiently killed glioma cells while remaining nontoxic to primary neuronal cells. This opens up the possibility of evaluating pz II for experimental PDT for glioma.   相似文献   

15.
The transferrin receptor of human skin fibroblasts was studied as an in vitro model target antigen receptor for interaction with protein-polymer conjugates having potential for targeted drug delivery. Pinocytic uptake of 125I-labelled N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer conjugated to monoclonal antibody B3/25 (specific for the transferrin receptor) or transferrin was up to 9-fold greater than uptake of the parent HPMA copolymer. The ability of these conjugates to bind specifically was confirmed by Scatchard analysis. Pinocytic internalisation was dependent on the molecular mass of the conjugate. Intracellular routing following internalisation was evaluated using density-gradient centrifugation. Unmodified HPMA copolymer was transferred via the endosomal compartment into secondary lysosomes, where, being resistant to degradation, it accumulated. Although the majority of endocytosed transferrin is recycled via the endosome, it was shown that any transferrin reaching the lysosomes was rapidly degraded and low-molecular-weight degradation products were released. Monoclonal antibody B3/25 showed a subcellular distribution consistent with prolongation on the cell surface, followed by internalisation and subcellular trafficking, via endosomes, into the lysosomal compartment, with subsequent degradation. Conjugation of protein to HPMA copolymer increased lysosomal accumulation of polymer up to 9-fold, with no detectable degradation of conjugate. The data presented here have implications regarding clinical potential of protein-HPMA copolymer conjugates designed for lysosomotropic drug delivery.  相似文献   

16.
The design and synthesis of the lipophilic (9) and fluorescent (10) conjugates of a structural analogue of distamycin and their in vitro cellular localization studies are reported. Confocal laser scanning microscopy (CLSM) indicates that 10 rapidly enters human ovarian adenocarcinoma (SKOV-3) cells with principal uptake in mitochondria and uniform cytoplasmic distribution.  相似文献   

17.
Gold nanoparticles modified with nuclear localization peptides were synthesized and evaluated for their subcellular distribution in HeLa human cervical epithelium cells, 3T3/NIH murine fibroblastoma cells, and HepG2 human hepatocarcinoma cells. Video-enhanced color differential interference contrast microscopy and transmission electron microscopy indicated that transport of nanoparticles into the cytoplasm and nucleus depends on peptide sequence and cell line. Recently, the ability of certain peptides, called protein transduction domains (PTDs), to transclocate cell and nuclear membranes in a receptor- and temperature-independent manner has been questioned (see for example, Lundberg, M.; Wikstrom, S.; Johansson, M. (2003) Mol. Ther. 8, 143-150). We have evaluated the cellular trajectory of gold nanoparticles carrying the PTD from HIV Tat protein. Our observations were that (1) the conjugates did not enter the nucleus of 3T3/NIH or HepG2 cells, and (2) cellular uptake of Tat PTD peptide-gold nanoparticle conjugates was temperature dependent, suggesting an endosomal pathway of uptake. Gold nanoparticles modified with the adenovirus nuclear localization signal and the integrin binding domain also entered cells via an energy-dependent mechanism, but in contrast to the Tat PTD, these signals triggered nuclear uptake of nanoparticles in HeLa and HepG2 cell lines.  相似文献   

18.
Chen X  Hui L  Foster DA  Drain CM 《Biochemistry》2004,43(34):10918-10929
Since the role of saccharides in cell recognition, metabolism, and cell labeling is well-established, the conjugation of saccharides to drugs is an active area of research. Thus, one goal in the use of saccharide-drug conjugates is to impart a greater specificity toward a given cell type or other targets. Although widely used to treat some cancers and age related macular degeneration, the drugs used in photodynamic therapy (PDT) display poor chemical selectivity toward the intended targets, and uptake by cells most likely arises from passive, diffusional processes. Instead, the specific irradiation of the target tissues, and the formation of the toxic species in situ, are the primary factors that modulate the selectivity in the present mode of PDT. We report herein a two-step method to make nonhydrolyzable saccharide-porphyrin conjugates in high yields using a tetra(pentafluorophenyl)porphyrin and the thio derivative of the sugar. As a demonstration of their properties, the selective uptake (and/or binding) of these compounds to several cancer cell types was examined, followed by an investigation of their photodynamic properties. As expected, different malignant cell types take up one type of saccharide-porphyrin conjugate preferentially over others; for example, human breast cancer cells (MDA-MB-231) absorb a tetraglucose-porphyrin conjugate over the corresponding galactose derivative. Doseametric studies reveal that these saccharide-porphyrin conjugates exhibit varying PDT responses depending on drug concentration and irradiation energy. (1) Using 20 microM conjugate and greater irradiation energy induces cell death by necrosis. (2) When 10-20 microM conjugate and less irradiation energy are used, both necrosis and apoptosis are observed. (3) Using 10 microM and the least irradiation energy, a significant reduction in cell migration is observed, which indicates a reduction in aggressiveness of the cancer cells.  相似文献   

19.
p-Isothiocyanatophenyl derivatives of Pt(II)- and Pd(II)-coproporphyrin I are described as stable monofunctional reagents which enable simple covalent labeling of proteins and other biomolecules under mild conditions in aqueous solutions. Labeling procedure was optimized for antibodies, avidin, and neutravidin. Photophysical properties of resulting conjugates important for their use in binding assays based on time-resolved phosphorescence detection were studied. The functional activity and long-term storage stability of antibody conjugates were assessed in comparison with unmodified proteins. The new labels and their conjugates were evaluated in the solid-phase immunoassays using commercial time-resolved phosphorescence readers Victor(2) and Arcus-1230 (Wallac). Potential applications of these reagents in in vitro diagnostics are discussed.  相似文献   

20.
Peptides targeting the human neonatal Fc receptor (FcRn) were conjugated to poly(ethylene glycol) (PEG) polymers to study their effect on inhibition of the IgG:FcRn protein-protein interaction both in vitro and in mice. Both linear (5-40kDa) and branched (20, 40kDa) PEG aldehydes were conjugated to an amine-containing linker of a homodimeric anti-FcRn peptide using reductive alkylation chemistry. It was found that conjugation of PEG to the peptide compromised the in vitro activity, with larger and branched PEGs causing the most dramatic losses in activity. The conjugates were evaluated in transgenic mice for their ability to accelerate the catabolism of human IgG. Optimal pharmacodynamic properties were observed with PEG-peptide conjugates that contained 20-40kDa linear PEGs and a 20kDa branched PEG. The optimal PEG-peptide conjugates were more effective in vivo than the unconjugated peptide control on a mole:mole and mg/kg basis, and represent potential new longer-acting peptide therapeutics for the treatment of humorally-mediated autoimmune disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号