首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
These studies provide evidence for the ability of a commercially available, defined, hyaluronan-gelatin hydrogel, HyStem-C?, to maintain both mouse embryonic stem cells (mESCs) and human induced pluripotent stem cells (hiPSCs) in culture while retaining their growth and pluripotent characteristics. Growth curve and doubling time analysis show that mESCs and hiPSCs grow at similar rates on HyStem-C? hydrogels and mouse embryonic fibroblasts and Matrigel?, respectively. Immunocytochemistry, flow cytometry, gene expression and karyotyping reveal that both human and murine pluripotent cells retain a high level of pluripotency on the hydrogels after multiple passages. The addition of fibronectin to HyStem-C? enabled the attachment of hiPSCs in a xeno-free, fully defined medium.  相似文献   

2.
Cellular homeostasis is assumed to be regulated by the coordination of dynamic behaviors. Lack of efficient methods for synchronizing large quantities of cells makes studying cell culture strategies for bioprocess development challenging. Here, we demonstrate a novel application of botulinum hemagglutinin (HA), an E-cadherin function-blocking agent, to synchronize behavior-driven mechanical memory in human induced pluripotent stem cell (hiPSC) cultures. Application of HA to hiPSCs resulted in a decrease in actin bundling and disruption of colony formation in a concentration-and time-dependent manner. Interestingly, cytoskeleton rearrangement in cells with prolonged exposure to HA resulted in mechanical memory synchronization with Yes-associated protein, which increased pluripotent cell homogeneity. Synchronized hiPSCs have higher capability to differentiate into functional hepatocytes than unsynchronized hiPSCs, resulting in improved efficiency and robustness of hepatocyte differentiation. Thus, our strategy for cell behavior synchronization before differentiation induction provides an approach against the instability of differentiation of pluripotent cells.  相似文献   

3.
Human induced pluripotent stem cells (hiPSCs) are a type of pluripotent stem cells artificially derived from an adult somatic cell (typically human fibroblast) by forced expression of specific genes. In recent years, different feeders like inactivated mouse embryonic fibroblasts (MEFs), human dermal fibroblasts (HDFs), and feeder free system have commonly been used for supporting the culture of stem cells in undifferentiated state. In the present work, the culture of hiPSCs and their characterizations on BD Matrigel (feeder-and serum-free system), MEF and HDF feeders using cell culture methods and molecular techniques were evaluated and compared. The isolated HDFs from foreskin samples were reprogrammed to hiPSCs using gene delivery system. Then, the pluripotency ability of hiPSCs cultured on each layer was determined by teratoma formation and immunohistochemical staining. After EBs generation the expression level of three germ layers genes were evaluated by Q-real-time PCR. Also, the cytogenetic stability of hiPSCs cultured on each condition was analyzed by karyotyping and comet assay. Then, the presence of pluripotency antigens were confirmed by Immunocytochemistry (ICC) test and alkaline phosphatase staining. This study were showed culturing of hiPSCs on BD Matrigel, MEF and HDF feeders had normal morphology and could maintain in undifferentiated state for prolonged expansion. The hiPSCs cultured in each system had normal karyotype without any chromosomal abnormalities and the DNA lesions were not observed by comet assay. Moreover, up-regulation in three germ layers genes in cultured hiPSCs on each layer (same to ESCs) compare to normal HDFs were observed (p < 0.05). The findings of the present work were showed in stem cells culturing especially hiPSCs both MEF and HDF feeders as well as feeder free system like Matrigel are proper despite benefits and disadvantages. Although, MEFs is suitable for supporting of stem cell culturing but it can animal pathogens transferring and inducing immune response. Furthermore, HDFs have homologous source with hiPSCs and can be used as feeder instead of MEF but in therapeutic approaches the cells contamination is a problem. So, this study were suggested feeder free culturing of hiPSCs on Matrigel in supplemented media (without using MEF conditioned medium) resolves these problems and could prepare easy applications of hiPSCs in therapeutic approaches of regenerative medicine such as stem-cell therapy and somatic cell nuclear in further researches.  相似文献   

4.
Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), collectively termed human pluripotent stem cells (hPSCs), are typically derived and maintained in adherent and semi-defined culture conditions. Recently a number of groups, including Chen et al., 2012, have demonstrated that hESCs can now be expanded efficiently and maintain pluripotency over long-term passaging as aggregates in a serum-free defined suspension culture system, permitting the preparation of scalable cGMP derived hPSC cultures for cell banking, high throughput research programs and clinical applications. In this short commentary we describe the utility and potential future uses of suspension culture systems for hPSCs.  相似文献   

5.
Genomic stability is critical for the clinical use of human embryonic and induced pluripotent stem cells. We performed high-resolution SNP (single-nucleotide polymorphism) analysis on 186 pluripotent and 119 nonpluripotent samples. We report a higher frequency of subchromosomal copy number variations in pluripotent samples compared to nonpluripotent samples, with variations enriched in specific genomic regions. The distribution of these variations differed between hESCs and hiPSCs, characterized by large numbers of duplications found in a few hESC samples and moderate numbers of deletions distributed across many hiPSC samples. For hiPSCs, the reprogramming process was associated with deletions of tumor-suppressor genes, whereas time in culture was associated with duplications of oncogenic genes. We also observed duplications that arose during a differentiation protocol. Our results illustrate the dynamic nature of genomic abnormalities in pluripotent stem cells and the need for frequent genomic monitoring to assure phenotypic stability and clinical safety.  相似文献   

6.
Various feeder layers have been extensively applied to support the prolonged growth of human pluripotent stem cells (hPSCs) for in vitro cultures. Among them, mouse embryonic fibroblast (MEF) and mouse fibroblast cell line (SNL) are most commonly used feeder cells for hPSCs culture. However, these feeder layers from animal usually cause immunogenic contaminations, which compromises the potential of hPSCs in clinical applications. In the present study, we tested human umbilical cord mesenchymal stem cells (hUC-MSCs) as a potent xeno-free feeder system for maintaining human induced pluripotent stem cells (hiPSCs). The hUC-MSCs showed characteristics of MSCs in xeno-free culture condition. On the mitomycin-treated hUC-MSCs feeder, hiPSCs maintained the features of undifferentiated human embryonic stem cells (hESCs), such as low efficiency of spontaneous differentiation, stable expression of stemness markers, maintenance of normal karyotypes, in vitro pluripotency and in vivo ability to form teratomas, even after a prolonged culture of more than 30 passages. Our study indicates that the xeno-free culture system may be a good candidate for growth and expansion of hiPSCs as the stepping stone for stem cell research to further develop better and safer stem cells.  相似文献   

7.
8.
Son MY  Kim HJ  Kim MJ  Cho YS 《PloS one》2011,6(5):e19134
Spherical three-dimensional cell aggregates called embryoid bodies (EBs), have been widely used in in vitro differentiation protocols for human pluripotent stem cells including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Recent studies highlight the new devices and techniques for hEB formation and expansion, but are not involved in the passaging or subculture process. Here, we provide evidence that a simple periodic passaging markedly improved hEB culture condition and thus allowed the size-controlled, mass production of human embryoid bodies (hEBs) derived from both hESCs and hiPSCs. hEBs maintained in prolonged suspension culture without passaging (>2 weeks) showed a progressive decrease in the cell growth and proliferation and increase in the apoptosis compared to 7-day-old hEBs. However, when serially passaged in suspension, hEB cell populations were significantly increased in number while maintaining the normal rates of cell proliferation and apoptosis and the differentiation potential. Uniform-sized hEBs produced by manual passaging using a 1∶4 split ratio have been successfully maintained for over 20 continuous passages. The passaging culture method of hEBs, which is simple, readily expandable, and reproducible, could be a powerful tool for improving a robust and scalable in vitro differentiation system of human pluripotent stem cells.  相似文献   

9.
The generation of human induced pluripotent stem cells (hiPSCs) from an individual patient provides a unique tool for disease modeling, drug discovery, and cell replacement therapies. Patient-specific pluripotent stem cells can be expanded in vitro and are thus suitable for genetic manipulations. To date, several genetic liver disorders have been modeled using patient-specific hiPSCs. Here, we present the generation of corrected hepatocyte-like cells (HLCs) from hiPSCs of a familial hypercholesterolemia (FH) patient with a homozygous mutation in the low-density lipoprotein receptor (LDLR) gene. We generated hiPSCs from a patient with FH with the mutated gene encoding a truncated non-functional receptor. In order to deliver normal LDLR to the defective cells, we used a plasmid vector carrying the normal receptor ORF to genetically transform the hiPSCs. The transformed cells were expanded and directed toward HLCs. Undifferentiated defective hiPSCs and HLCs differentiated from the defective hiPSCs did not have the ability to uptake labeled low-density lipoprotein (LDL) particles. The differentiated transformed hiPSCs showed LDL-uptake ability and the correction of disease phenotype as well as expressions of hepatocyte-specific markers. The functionality of differentiated cells was also confirmed by indo-cyanine green (ICG) uptake assay, PAS staining, inducible cyp450 activity, and oil red staining. These data suggest that hiPSC technology can be used for generation of disease-corrected, patient-specific HLCs with potential value for disease modeling and drug discovery as well as cell therapy applications in future.  相似文献   

10.

Background

The successful establishment of human induced pluripotent stem cells (hiPSCs) has increased the possible applications of stem cell research in biology and medicine. In particular, hiPSCs are a promising source of cells for regenerative medicine and pharmacology. However, one of the major obstacles to such uses for hiPSCs is the risk of contamination from undefined pathogens in conventional culture conditions that use serum replacement and mouse embryonic fibroblasts as feeder cells.

Methodology/Principal Findings

Here we report a simple method for generating or culturing hiPSCs under feeder- and serum-free defined culture conditions that we developed previously for human embryonic stem cells. The defined culture condition comprises a basal medium with a minimal number of defined components including five highly purified proteins and fibronectin as a substrate. First, hiPSCs, which were generated using Yamanaka''s four factors and conventional undefined culture conditions, adapted to the defined culture conditions. These adapted cells retained the property of self renewal as evaluated morphologically, the expression of self-renewal marker proteins, standard growth rates, and pluripotency as evaluated by differentiation into derivatives of all three primary germ layers in vitro and in vivo (teratoma formation in immunodeficient mice). Moreover, levels of nonhuman N-glycolylneuraminic acid (Neu5Gc), which is a xenoantigenic indicator of pathogen contamination in human iPS cell cultures, were markedly decreased in hiPSCs cultured under the defined conditions. Second, we successfully generated hiPSCs using adult dermal fibroblast under the defined culture conditions from the reprogramming step. For a long therm culture, the generated cells also had the property of self renewal and pluripotency, they carried a normal karyotype, and they were Neu5Gc negative.

Conclusion/Significance

This study suggested that generation or adaption culturing under defined culture conditions can eliminate the risk posed by undefined pathogens. This success in generating hiPSCs using adult fibroblast would be beneficial for clinical application.  相似文献   

11.

Background aims

Human induced pluripotent stem cells (hiPSCs) are becoming increasingly popular in research endeavors due to their potential for clinical application; however, such application is challenging due to limitations such as inferior function and low induction efficiency. In this study, we aimed to establish a three-dimensional (3D) culture condition to mimic the environment in which hepatogenesis occurs in vivo to enhance the differentiation of hiPSCs for large-scale culture and high throughput BAL application.

Methods

We used hydrogel to create hepatocyte-like cell (HLC) spheroids in a 3D culture condition and analyzed the cell-behavior and differentiation properties of hiPSCs in a synthetic nanofiber scaffold.

Results

We found that treating cells with Y-27632 promoted the formation of spheroids, and the cells aggregated more rapidly in a 3D culture condition. The ALB secretion, urea production and glycogen synthesis by HLCs in 3D were significantly higher than those grown in a 2-dimensional culture condition. In addition, the metabolic activities of the CYP450 enzymes were also higher in cells differentiated in the 3D culture condition.

Conclusions

3D hydrogel culture condition can promote differentiation of hiPSCs into hepatocytes. The 3D culture approach could be applied to the differentiation of hiPSCs into hepatocytes for bioartificial liver.  相似文献   

12.
Innovative applications of cell therapy products (CTPs) derived from human pluripotent stem cells (hPSCs) in regenerative medicine are currently being developed. The presence of residual undifferentiated hPSCs in CTPs is a quality concern associated with tumorigencity. However, no simple in vitro method for direct detection of undifferentiated hPSCs that contaminate CTPs has been developed. Here, we show a novel approach for direct and sensitive detection of a trace amount of undifferentiated human induced pluripotent stem cells (hiPSCs) using a highly efficient amplification method in combination with laminin-521 and Essential 8 medium. Essential 8 medium better facilitated the growth of hiPSCs dissociated into single cells on laminin-521 than in mTeSR1 medium. hiPSCs cultured on laminin-521 in Essential 8 medium were maintained in an undifferentiated state and they maintained the ability to differentiate into various cell types. Essential 8 medium allowed robust hiPSC proliferation plated on laminin-521 at low cell density, whereas mTeSR1 did not enhance the cell growth. The highly efficient culture system using laminin-521 and Essential 8 medium detected hiPSCs spiked into primary human mesenchymal stem cells (hMSCs) or human neurons at the ratio of 0.001%–0.01% as formed colonies. Moreover, this assay method was demonstrated to detect residual undifferentiated hiPSCs in cell preparations during the process of hMSC differentiation from hiPSCs. These results indicate that our highly efficient amplification system using a combination of laminin-521 and Essential 8 medium is able to detect a trace amount of undifferentiated hPSCs contained as impurities in CTPs and would contribute to quality assessment of hPSC-derived CTPs during the manufacturing process.  相似文献   

13.
Routine commercial and clinical applications of human pluripotent stem cells (hPSCs) and their progenies will require increasing cell quantities that cannot be provided by conventional adherent culture technologies. Here we describe a straightforward culture protocol for the expansion of undifferentiated human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) in suspension culture. This culture technique was successfully tested on two hiPSC clones, three hESC lines and on a nonhuman primate ESC line. It is based on a defined medium and single-cell inoculation, but it does not require culture preadaptation, use of microcarriers or any other matrices. Over a time course of 4-7 d, hPSCs can be expanded up to sixfold. Preparation of a high-density culture and its subsequent translation to scalable stirred suspension in Erlenmeyer flasks and stirred spinner flasks are also feasible. Importantly, hPSCs maintain pluripotency and karyotype stability for more than ten passages.  相似文献   

14.
Cellular dynamics leading to the formation of the trophectoderm in humans remain poorly understood owing to limited accessibility to human embryos for research into early human embryogenesis. Compared to animal models, organoids formed by self‐organization of stem cells in vitro may provide better insights into differentiation and complex morphogenetic processes occurring during early human embryogenesis. Here we demonstrate that modulating the cell culture microenvironment alone can trigger self‐organization of human induced pluripotent stem cells (hiPSCs) to yield trophectoderm‐mimicking cysts without chemical induction. To modulate the adhesion microenvironment, we used the mesh culture technique recently developed by our group, which involves culturing hiPSCs on suspended micro‐structured meshes with limited surface area for cell adhesion. We show that this adhesion‐restriction strategy can trigger a two‐stage self‐organization of hiPSCs; first into stem cell sheets, which express pluripotency signatures until around day 8–10, then into spherical cysts following differentiation and self‐organization of the sheet‐forming cells. Detailed morphological analysis using immunofluorescence microscopy with both confocal and two‐photon microscopes revealed the anatomy of the cysts as consisting of a squamous epithelial wall richly expressing E‐cadherin and CDX2. We also confirmed that the cysts exhibit a polarized morphology with basal protrusions, which show migratory behavior when anchored. Together, our results point to the formation of cysts which morphologically resemble the trophectoderm at the late‐stage blastocyst. Thus, the mesh culture microenvironment can initiate self‐organization of hiPSCs into trophectoderm‐mimicking cysts as organoids with potential application in the study of early embryogenesis and also in drug development.  相似文献   

15.
Human induced pluripotent stem cells (hiPSCs) can differentiate into notochordal cell (NC)-like cells when cultured in the presence of natural porcine nucleus pulposus (NP) tissue matrix. The method promises massive production of high-quality, functional cells to treat degenerative intervertebral discs (IVDs). Based on our previous work, we further examined the effect of cell-NP matrix contact and culture medium on the differentiation, and further assessed the functional differentiation ability of the generated NC-like. The study showed that direct contact between hiPSCs and NP matrix can promote the differentiation yield, whilst both the contact and non-contact cultures can generate functional NC-like cells. The generated NC-like cells are highly homogenous regarding the expression of notochordal marker genes. A culture medium containing a cocktail of growth factors (FGF, EGF, VEGF and IGF-1) also supported the notochordal differentiation in the presence of NP matrix. The NC-like cells showed excellent functional differentiation ability to generate NP-like tissue which was rich in aggrecan and collagen type II; and particularly, the proteoglycan to collagen content ratio was as high as 12.5–17.5 which represents a phenotype close to NP rather than hyaline cartilage. Collectively, the present study confirmed the effectiveness and flexibility of using natural NP tissue matrix to direct notochordal differentiation of hiPSCs, and the potential of using the generated NC-like cells for treating IVD degeneration.  相似文献   

16.
Mesenchymal stem cells(MSCs) derived from human induced pluripotent stem cells(hiPSCs) provide a novel source for generating adipocytes, thus opening new avenues for fundamental research and clinical medicine. We present the adipogenic potential of hiPSCs and the various methods to derive hiPSC-MSCs. We discuss the main characteristic of hiPSC-MSCs, which is their low adipogenic capacity as compared to adult-MSCs. Finally, we propose several hypotheses to explanation this feature, underlying a potential critical role of the micro-environment. We favour the hypothesis that the range of factors or culture conditions required to induce adipocyte differentiation of MSCs derived from adult tissues and from embryonic-like cells could differ.  相似文献   

17.
18.
Podocalyxin (PC) was first identified as a heavily sialylated transmembrane protein of glomerular podocytes. Recent studies suggest that PC is a remarkable glycoconjugate that acts as a universal glyco-carrier. The glycoforms of PC are responsible for multiple functions in normal tissue, human cancer cells, human embryonic stem cells (hESCs), and human induced pluripotent stem cells (hiPSCs). PC is employed as a major pluripotent marker of hESCs and hiPSCs. Among the general antibodies for human PC, TRA-1-60 and TRA-1-81 recognize the keratan sulfate (KS)-related structures. Therefore, It is worthwhile to summarize the outstanding chemical characteristic of PC, including the KS-related structures. Here, we review the glycoforms of PC and discuss the potential of PC as a novel KS proteoglycan in undifferentiated hESCs and hiPSCs.  相似文献   

19.
Human Embryonic Stem cells (hESCs) and human induced Pluripotent Stem cells (hiPSCs) are commonly maintained on inactivated mouse embryonic fibroblast as feeder cells in medium supplemented with FBS or proprietary replacements. Use of culture medium containing undefined or unknown components has limited the development of applications for pluripotent cells because of the relative lack of knowledge regarding cell responses to differentiating growth factors. In addition, there is no consensus as to the optimal formulation, or the nature of the cytokine requirements of the cells to promote their self-renewal and inhibit their differentiation. In this study, we successfully generated hiPSCs from human dental pulp cells (DPCs) using Yamanaka''s factors (Oct3/4, Sox2, Klf4, and c-Myc) with retroviral vectors in serum- and feeder-free defined culture conditions. These hiPSCs retained the property of self-renewal as evaluated by the expression of self-renewal marker genes and proteins, morphology, cell growth rates, and pluripotency evaluated by differentiation into derivatives of all three primary germ layers in vitro and in vivo. In this study, we found that TGF-β1 increased the expression levels of pluripotency markers in a dose-dependent manner. However, increasing doses of TGF-β1 suppressed the growth rate of hiPSCs cultured under the defined conditions. Furthermore, over short time periods the hiPSCs cultured in hESF9 or hESF9T exhibited similar morphology, but hiPSCs maintained in hESF9 could not survive beyond 30 passages. This result clearly confirmed that hiPSCs cultured in hESF9 medium absolutely required TGF-β1 to maintain pluripotency. This simple serum-free adherent monoculture system will allow us to elucidate the cell responses to growth factors under defined conditions and can eliminate the risk might be brought by undefined pathogens.  相似文献   

20.
Human induced pluripotent stem cells have the potential to become an unlimited cell source for cell replacement therapy. The realization of this potential, however, depends on the availability of culture methods that are robust, scalable, and use chemically defined materials. Despite significant advances in hiPSC technologies, the expansion of hiPSCs relies upon the use of animal-derived extracellular matrix extracts, such as Matrigel, which raises safety concerns over the use of these products. In this work, we investigated the feasibility of expanding and differentiating hiPSCs on a chemically defined, xeno-free synthetic peptide substrate, i.e. Corning Synthemax® Surface. We demonstrated that the Synthemax Surface supports the attachment, spreading, and proliferation of hiPSCs, as well as hiPSCs’ lineage-specific differentiation. hiPSCs colonies grown on Synthemax Surfaces exhibit less spread and more compact morphology compared to cells grown on Matrigel™. The cytoskeleton characterization of hiPSCs grown on the Synthemax Surface revealed formation of denser actin filaments in the cell-cell interface. The down-regulation of vinculin and up-regulation of zyxin expression were also observed in hiPSCs grown on the Synthemax Surface. Further examination of cell-ECM interaction revealed that hiPSCs grown on the Synthemax Surface primarily utilize αvβ5 integrins to mediate attachment to the substrate, whereas multiple integrins are involved in cell attachment to Matrigel. Finally, hiPSCs can be maintained undifferentiated on the Synthemax Surface for more than ten passages. These studies provide a novel approach for expansion of hiPSCs using synthetic peptide engineered surface as a substrate to avoid a potential risk of contamination and lot-to-lot variability with animal derived materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号