首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leukocyte exposure to hemodynamic shear forces is critical for physiological functions including initial adhesion to the endothelium, the formation of pseudopods, and migration into tissues. G-protein coupled receptors on neutrophils, which bind to chemoattractants and play a role in neutrophil chemotaxis, have been implicated as fluid shear stress sensors that control neutrophil activation. Recently, exposure to physiological fluid shear stresses observed in the microvasculature was shown to reduce neutrophil activation in the presence of the chemoattractant formyl-methionyl-leucyl-phenylalanine. Here, however, human neutrophil preexposure to uniform shear stress (0.1–2.75 dyn/cm2) in a cone-and-plate viscometer for 1–120 min was shown to increase, rather than decrease, neutrophil activation in the presence of platelet activating factor (PAF). Fluid shear stress exposure increased PAF-induced neutrophil activation in terms of L-selectin shedding, αMβ2 integrin activation, and morphological changes. Neutrophil activation via PAF was found to correlate with fluid shear stress exposure, as neutrophil activation increased in a shear stress magnitude- and time-dependent manner. These results indicate that fluid shear stress exposure increases neutrophil activation by PAF, and, taken together with previous observations, differentially controls how neutrophils respond to chemoattractants.  相似文献   

2.
Leukocyte exposure to hemodynamic shear forces is critical for physiological functions including initial adhesion to the endothelium, the formation of pseudopods, and migration into tissues. G-protein coupled receptors on neutrophils, which bind to chemoattractants and play a role in neutrophil chemotaxis, have been implicated as fluid shear stress sensors that control neutrophil activation. Recently, exposure to physiological fluid shear stresses observed in the microvasculature was shown to reduce neutrophil activation in the presence of the chemoattractant formyl-methionyl-leucyl-phenylalanine. Here, however, human neutrophil preexposure to uniform shear stress (0.1–2.75 dyn/cm2) in a cone-and-plate viscometer for 1–120 min was shown to increase, rather than decrease, neutrophil activation in the presence of platelet activating factor (PAF). Fluid shear stress exposure increased PAF-induced neutrophil activation in terms of L-selectin shedding, αMβ2 integrin activation, and morphological changes. Neutrophil activation via PAF was found to correlate with fluid shear stress exposure, as neutrophil activation increased in a shear stress magnitude- and time-dependent manner. These results indicate that fluid shear stress exposure increases neutrophil activation by PAF, and, taken together with previous observations, differentially controls how neutrophils respond to chemoattractants.  相似文献   

3.
Glucocorticoids can dampen inflammatory responses by inhibiting neutrophil recruitment to tissue sites. The detailed mechanism by which glucocorticoids exert this affect on neutrophils is unknown. L-selectin is a leukocyte cell surface receptor that is implicated in several steps of neutrophil recruitment. Recently, several studies have shown that systemic treatment of animals and humans with glucocorticoids induces decreased L-selectin expression on neutrophils, suggesting one mechanism by which inflammation may be negatively regulated. However, when neutrophils are treated in vitro with glucocorticoids, no effect on L-selectin expression is observed. Thus, the existence of an additional mediator is plausible. In this study, we investigate whether annexin 1 (ANX1), a recognized second messenger of glucocorticoids, could be such a mediator. We show that ANX1 induces a dose- and time-dependent decrease in L-selectin expression on both peripheral blood neutrophils and monocytes but has no effect on lymphocytes. The loss of L-selectin from neutrophils is due to shedding that is mediated by a cell surface metalloprotease ("sheddase"). Using cell shape and a beta(2) integrin activation epitope, we show that the ANX1-induced shedding of L-selectin appears to occur without overt cell activation. These data may provide the basis for further understanding of mechanisms involved in the down-regulation of inflammatory responses.  相似文献   

4.
The L-selectin adhesion molecule mediates leukocyte recruitment to inflammatory sites and lymphocyte trafficking through the peripheral lymph nodes. In response to leukocyte activation, L-selectin is proteolytically released from the cell surface, disabling leukocytes from the subsequent L-selectin-dependent interactions. We have found that L-selectin shedding is sensitive to sulfhydryl chemistry; it is promoted by thiol-oxidizing or -blocking reagents and inhibited by reducing reagents. Phenylarsine oxide (PAO), a trivalent arsenical that interacts with vicinal dithiols, is most potent in inducing rapid shedding of L-selectin from isolated neutrophils, eosinophils, and lymphocytes as well as from neutrophils in whole blood. PAO does not cause cell activation, nor does it interfere with integrin function or alter the expression of several other cell surface molecules at the low concentrations that induce L-selectin shedding. PAO is not required to enter the cell to induce L-selectin shedding. TAPI-2 ((N-(D,L-[2-(hydroxyaminocarbonyl)-methyl]-4-methylpentanoyl)-L-3-(tert-butyl)-alanyl-l -alanine, 2-aminoethyl amide), which has previously been shown to inhibit the activation-dependent L-selectin shedding, is also capable of inhibiting PAO-induced L-selectin shedding. We hypothesize that PAO-induced L-selectin shedding involves a regulatory molecule, such as protein disulfide isomerase (PDI), an enzyme that plays a role in the formation and rearrangement of disulfide bonds, contains PAO-binding, vicinal dithiol-active sites, and is expressed on the neutrophil surface. Cell surface expression of PDI, L-selectin shedding induced by PDI-blocking Abs and by bacitracin, a known inhibitor of PDI activity, and direct binding of PDI to PAO, provide supporting evidence for this hypothesis.  相似文献   

5.
Here we accurately recreate the mechanical shedding of L-selectin and its effect on the rolling behavior of neutrophils in vitro using the adhesive dynamics simulation by incorporating the shear-dependent shedding of L-selectin. We have previously shown that constitutively expressed L-selectin is cleaved from the neutrophil surface during rolling on a sialyl Lewis x-coated planar surface at physiological shear rates without the addition of exogenous stimuli. Utilizing a Bell-like model to describe a shedding rate which presumably increases exponentially with force, we were able to reconstruct the characteristics of L-selectin-mediated neutrophil rolling observed in the experiments. First, the rolling velocity was found to increase during rolling due to the mechanical shedding of L-selectin. When most of the L-selectin concentrated on the tips of deformable microvilli was cleaved by force exerted on the L-selectin bonds, the cell detached from the reactive plane to join the free stream as observed in the experiments. In summary, we show through detailed computational modeling that the force-dependent shedding of L-selectin can explain the rolling behavior of neutrophils mediated by L-selectin in vitro.  相似文献   

6.
The interaction of L-selectin expressed on leukocytes with endothelial cells leads to capture and rolling and is critical for the recruitment of leukocytes into sites of inflammation. It is known that leukocyte activation by chemoattractants, the change of osmotic pressure in cell media, or cross-linking of L-selectin all result in rapid shedding of L-selectin. Here we present a novel mechanism for surface cleavage of L-selectin on neutrophils during rolling on a sialyl Lewis x-coated surface that involves mechanical force. Flow cytometry and rolling of neutrophils labeled with Qdot(R)-L-selectin antibodies in an in vitro flow chamber showed that the mechanical shedding of L-selectin occurs during rolling and depends on the amount of shear applied. In addition, the mechanical L-selectin shedding causes an increase in cell rolling velocity with rolling duration, suggesting a gradual loss of L-selectin and is mediated by p38 mitogen-activated protein kinase activation. Thus, these data show that mechanical force induces the cleavage of L-selectin from the neutrophil surface during rolling and therefore decreases the adhesion of cells to a ligand-presenting surface in flow.  相似文献   

7.
The deformations of neutrophils as they pass through the pulmonary microcirculation affect their transit time, their tendency to contact and interact with the endothelial surface, and potentially their degree of activation. Here we model the cell as a viscoelastic Maxwell material bounded by constant surface tension and simulate indentation experiments to quantify the effects of (N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP)-stimulation on its mechanical properties (elastic shear modulus and viscosity). We then simulate neutrophil transit through individual pulmonary capillary segments to determine the relative effects of capillary geometry and fMLP-stimulation on transit time. Indentation results indicate that neutrophil viscosity and shear modulus increase by factors of 3.4, for 10(-9) M fMLP, and 7.3, for 10(-6) M fMLP, over nonstimulated cell values, determined to be 30.8 Pa.s and 185 Pa, respectively. Capillary flow results indicate that capillary entrance radius of curvature has a significant effect on cell transit time, in addition to minimum capillary radius and neutrophil stimulation level. The relative effects of capillary geometry and fMLP on neutrophil transit time are presented as a simple dimensionless expression and their physiological significance is discussed.  相似文献   

8.
Although the inflammatory response is essential for protecting tissues from injury and infection, unrestrained inflammation can cause chronic inflammatory diseases such as arthritis, colitis and asthma. Physiological mechanisms that downregulate inflammation are poorly understood. Potent control might be achieved by regulating early stages in the inflammatory response, such as accumulation of neutrophils at the site of injury, where these cells release chemical mediators that promote inflammatory processes including plasma extravasation, bacteriocide and proteolysis. To access an inflammatory site, neutrophils must first adhere to the vascular endothelium in a process mediated in part by the leukocyte adhesion molecule L-selectin. This adhesion is prevented when L-selectin is shed from the neutrophil membrane. Although shedding of L-selectin is recognized as a potentially important mechanism for regulating neutrophils, its physiological function has not been demonstrated. Shedding of L-selectin may mediate endogenous downregulation of inflammation by limiting neutrophil accumulation at inflammatory sites. Here we show that activation of nociceptive neurons induces shedding of L-selectin from circulating neutrophils in vivo and that this shedding suppresses an ongoing inflammatory response by inhibiting neutrophil accumulation. These findings indicate a previously unknown mechanism for endogenous feedback control of inflammation. Failure of this mechanism could contribute to the etiology of chronic inflammatory disease.  相似文献   

9.
Lymphocyte transendothelial migration (TEM) is promoted by fluid shear signals and apical endothelial chemokines. Studying the role of these signals in neutrophil migration across differently activated HUVEC in a flow chamber apparatus, we gained new insights into how neutrophils integrate multiple endothelial signals to promote TEM. Neutrophils crossed highly activated HUVEC in a beta(2) integrin-dependent manner but independently of shear. In contrast, neutrophil migration across resting or moderately activated endothelium with low-level beta(2) integrin ligand activity was dramatically augmented by endothelial-presented chemoattractants, conditional to application of physiological shear stresses and intact beta(2) integrins. Shear stress signals were found to stimulate extensive neutrophil invaginations into the apical endothelial interface both before and during TEM. A subset of invaginating neutrophils completed transcellular diapedesis through individual endothelial cells within <1 min. Our results suggest that low-level occupancy of beta(2) integrins by adherent neutrophils can mediate TEM only if properly coupled to stimulatory shear stress and chemoattractant signals transduced at the apical neutrophil-endothelial interface.  相似文献   

10.
Ligation and clustering of L-selectin by Ab ("cross-linking") or physiologic ligands results in activation of diverse responses that favor enhanced microvascular sequestration and emigration of neutrophils. The earliest responses include a rise in intracellular calcium, enhanced tyrosine phosphorylation, and activation of extracellular signal-regulated kinases. Additionally, cross-linking of L-selectin induces sustained shape change and activation of beta2 integrins, leading to neutrophil arrest under conditions of shear flow. In this report, we examined several possible mechanisms whereby transmembrane signals from L-selectin might contribute to an increase in the microvascular retention of neutrophils and enhanced efficiency of emigration. In human peripheral blood neutrophils, cross-linking of L-selectin induced alterations in cellular biophysical properties, including a decrease in cell deformability associated with F-actin assembly and redistribution, as well as enhanced adhesion of microspheres bound to beta2 integrins. L-selectin and the beta2 integrin became spatially colocalized as determined by confocal immunofluorescence microscopy and fluorescence resonance energy transfer. We conclude that intracellular signals from L-selectin may enhance the microvascular sequestration of neutrophils at sites of inflammation through a combination of cytoskeletal alterations leading to cell stiffening and an increase in adhesiveness mediated through alterations in beta2 integrins.  相似文献   

11.
During αMβ2-mediated phagocytosis, the small GTPase Rap1 activates the β2 integrin by binding to a region between residues 732 and 761. Using COS-7 cells transfected with αMβ2, we show that αMβ2 activation by the phorbol ester PMA involves Ser(756) of β2. This residue is critical for the local positioning of talin and biochemically interacts with Rap1. Using the CaM (calmodulin) antagonist W7, we found Rap1 recruitment and the inside-out activation of αMβ2 to be affected. We also report a role for CaMKII (calcium/CaM-dependent kinase II) in the activation of Rap1 during integrin activation. These results demonstrate a distinct physiological role for Ser(756) of β2 integrin, in conjunction with the actions of talin and Rap1, during αMβ2 activation in macrophages.  相似文献   

12.
Cryptococcal capsular Ags induce the production of proinflammatory cytokines in patients with cryptococcal meningitis. Despite this, their cerebrospinal fluid typically contains few neutrophils. Capsular glucuronoxylomannan is generally considered to mediate the inhibition of neutrophil extravasation. In the current study, culture supernatant harvested from the nonglucuronoxylomannan-producing strain CAP67 was found to be as potent as supernatant from wild-type strains in preventing migration. We identified capsular mannoprotein (MP)-4 as the causative agent. Purified MP-4 inhibited migration of neutrophils toward platelet-activating factor, IL-8, and fMLP, probably via a mechanism involving chemoattractant receptor cross-desensitization, as suggested by its direct chemotactic activity. Supporting this hypothesis, MP-4 elicited Ca(2+) transients that were inhibited by preincubation with either fMLP, IL-8, or C5a, but not platelet-activating factor, and vice versa. Moreover, MP-4 strongly decreased the neutrophil surface expression of L-selectin and induced shedding of TNF receptors p55/p75, whereas CD11b/18 increased. Finally, MP-4 was clearly detectable in both serum and cerebrospinal fluid of patients suffering from cryptococcal meningitis. These findings identify MP-4 as a novel capsular Ag prematurely activating neutrophils and desensitizing them toward a chemoattractant challenge.  相似文献   

13.
Many cells respond to fluid shear stress but in a cell type-specific fashion. Fluid shear stress applied to leukocytes serves to control pseudopod formation, migration, and other functions. Specifically, fresh neutrophils or neutrophilic leukocytes derived from differentiated HL60 cells respond to fluid shear stress by cytoplasmic pseudopod retraction. The membrane elements that sense fluid shear and induce such a specific response are still unknown, however. We hypothesized that membrane receptors may serve as fluid shear sensors. We found that fluid shear decreased the constitutive activity of G protein-coupled receptors (GPCRs). Inhibition of GPCR constitutive activity by inverse agonists abolished fluid shear stress-induced cell area reduction. Among the GPCRs in neutrophils, the formyl peptide receptor (FPR) exhibits relatively high constitutive activity. Undifferentiated HL60 cells that lacked FPR formed few pseudopods and showed no detectable response to fluid shear stress, whereas expression of FPR in undifferentiated HL60 cells caused pseudopod projection and robust pseudopod retraction during fluid shear. FPR small interfering RNA-transfected differentiated HL60 cells exhibited no response to fluid shear stress. These results suggest that GPCRs serve as mechanosensors for fluid shear stress in neutrophils by decreasing its constitutive activity and reducing pseudopod projection. leukocyte; constitutive activity; mechanotransduction; formyl peptide receptor  相似文献   

14.
Homotypic adhesion o2 neutrophils stimulated with chemoattractant is analogous to capture on vascular endothelium in that both processes depend on L-selectin and beta 2-integrin adhesion receptors. Under hydrodynamic shear, cell adhesion requires that receptors bind sufficient ligand over the duration of intercellular contact to withstand hydrodynamic stresses. Using cone-plate viscometry to apply a uniform linear shear field to suspensions of neutrophils, we conducted a detailed examination of the effect of shear rate and shear stress on the kinetics of cell aggregation. A collisional analysis based on Smoluchowski's flocculation theory was employed to fit the kinetics of aggregation with an adhesion efficiency. Adhesion efficiency increased with shear rate from approximately 20% at 100 s-1 to approximately 80% at 400 s-1. The increase in adhesion efficiency. Adhesion efficiency increased with shear rate from approximately 20% at 100 s-1 to approximately 80% at 400 s-1. The increase in adhesion efficiency with shear was dependent on L-selectin, and peak efficiency was maintained over a relatively narrow range of shear rates (400-800 s-1) and shear stresses (4-7 dyn/cm2). When L-selectin was blocked with antibody, beta 2-integrin (CD11a, b) supported adhesion at low shear rates (< 400 s-1). The binding kinetics of selectin and integrin appear to be optimized to function within discrete ranges of shear rate and stress, providing an intrinsic mechanism for the transition from neutrophil tethering to stable adhesion.  相似文献   

15.
The inhibition of physiological activation pathways of the platelet adhesion receptor integrin αIIbβ3 may fail to prevent fatal thrombosis, suggesting that the receptor is at risk of activation by yet an unidentified pathway. Here, we report the discovery and characterization of a structural motif that safeguards the receptor by selectively destabilizing its inactive state. At the extracellular membrane border, an overpacked αIIb(W968)-β3(I693) contact prevents αIIb(Gly972) from optimally assembling the αIIbβ3 transmembrane complex, which maintains the inactive state. This destabilization of approximately 1.0 kcal/mol could be mitigated by hydrodynamic forces but not physiological agonists, thereby identifying hydrodynamic forces as pathological activation stimulus. As reproductive life spans are not generally limited by cardiovascular disease, it appears that the evolution of the safeguard was driven by fatal, hydrodynamic force-mediated integrin αIIbβ3 activation in the healthy cardiovascular system. The triggering of the safeguard solely by pathological stimuli achieves an effective increase of the free energy barrier between inactive and active receptor states without incurring an increased risk of bleeding. Thus, integrin αIIbβ3 has evolved an effective way to protect receptor functional states that indicates the availability of a mechanical activation pathway when hydrodynamic forces exceed physiological margins.  相似文献   

16.
We have previously reported that a physiological range of shear stress induces neutrophil homotypic aggregation mediated by lymphocyte function-associated antigen-1 (LFA-1) and intercellular adhesion molecule-3 (ICAM-3) interactions. To further characterize the homotypic aggregation, actin polymerization was investigated in neutrophils stimulated by shear stress in comparison with formyl-methionyl-leucyl-phenylalanine (fMLP). In fMLP-stimulated neutrophils, actin polymerization was localized in the pseudopods, and this reaction was not mediated by a cytosolic level of Ca2+. In contrast to fMLP stimulation, the actin polymerization induced by shear stress in a cone-plate viscometer was localized in cell-cell contact regions, and this polymerization required the increase of intracellular Ca2+. This shear stress-induced actin polymerization was not observed when neutrophils were pretreated with anti-LFA-1 or anti-ICAM-3 antibody. In conclusion, LFA-1 and ICAM-3 interaction mediated by the increase of [Ca2+]i generated the intercellular signal in order to accumulate F-actin in the cell-cell contact regions. © 1996 Wiley-Liss, Inc.  相似文献   

17.
The level of expression of neutrophil adhesion molecules may be a useful marker for neutrophil activation in clinical studies. We therefore determined neutrophil integrin expression under various experimental conditions using a Fluorescence Activated Cell Sorter (FACS) after the cells had been labelled with fluorescent conjugated antibodies to the integrin subunits CD11a, CD11b and CD18. Levels of labelled CD11b and CD18 increased after activation with the chemotactic peptide formyl-methionyl-leucyl phenylalanine (fMLP) in a dose- and time-dependent manner, but CD11a did not, indicating that CD11a would not be a useful marker of neutrophil activation. The baseline expression of CD11b and CD18 on unstimulated neutrophils was similar in heparin and EDTA anti-coagulated blood but the response to activation with fMLP was significantly less for the EDTA anti-coagulated samples (p < 0·01 in paired t-test). The labelling of integrins was significantly higher in unfixed whole blood samples compared to samples fixed with 1 per cent paraformaldehyde. However, the increase in labelling induced by fMLP was similar whether or not the samples were fixed after activation. Labelling of CD11b and CD18 was greater for preparations of isolated neutrophils than for neutrophils in whole blood, and the response to fMLP stimulation tended to be lower for the isolated cells. Our results indicate that heparin should be used as anti-coagulant in clinical studies utilizing whole blood if subsequent activation of neutrophils is planned (e.g. to detect in vivo priming), although EDTA may be used if baseline expression alone is to be measured. Fixation of blood samples should not affect the ability to detect neutrophil activation.  相似文献   

18.
Endothelial and platelet P-selectin (CD62P) and leukocyte integrin αMβ2 (CD11bCD18, Mac-1) are cell adhesion molecules essential for host defense and innate immunity. Upon inflammatory challenges, P-selectin binds to PSGL-1 (P-selectin glycoprotein ligand-1, CD162) to mediate neutrophil rolling, during which integrins become activated by extracellular stimuli for their firm adhesion in a G-protein coupled receptor (GPCR)-dependent mechanism. Here we show that cross-linking of PSGL-1 by dimeric or multimeric forms of platelet P-selectin, P-selectin receptor-globulin, anti-PSGL-1 mAb and its F(ab’)2 induced adhesion of human neutrophils to fibrinogen (Fg) and intercellular cell adhesion molecule-1 (ICAM-1, CD54) and triggered a moderate clustering of αMβ2, but monomeric forms of soluble P-selectin and anti-PSGL-1 Fab did not. Interestingly, P-selectin did not induce a detectable interleukine-8 (IL-8) secretion (&lt;0.1 ng/ml) in 30 minutes, whereas a high concentration of IL-8 (>50 ng/ml) was required to increase neutrophil adhesion to Fg. P-selectin-induced neutrophil adhesion was significantly inhibited by PP2 (a Src kinase inhibitor), but not by Pertussis toxin (PTX; a GPCR inhibitor). Activated platelets also increased neutrophil binding to fibrinogen and triggered tyrosine phosphorylation of cellular proteins. Our results indicate that P-selectin-induced integrin activation (Src kinase-dependent) is distinct from that elicited by cytokines, chemokines, chemoattractants (GPCR-dependent), suggesting that these two signal transduction pathways may cooperate for maximal activation of leukocyte integrins.  相似文献   

19.
Two adhesive events critical to efficient recruitment of neutrophils at vascular sites of inflammation are up-regulation of endothelial selectins that bind sialyl Lewis(x) ligands and activation of beta(2)-integrins that support neutrophil arrest by binding ICAM-1. We have previously reported that neutrophils rolling on E-selectin are sufficient for signaling cell arrest through beta(2)-integrin binding of ICAM-1 in a process dependent upon ligation of L-selectin and P-selectin glycoprotein ligand 1 (PSGL-1). Unresolved are the spatial and temporal events that occur as E-selectin binds to human neutrophils and dynamically signals the transition from neutrophil rolling to arrest. Here we show that binding of E-selectin to sialyl Lewis(x) on L-selectin and PSGL-1 drives their colocalization into membrane caps at the trailing edge of neutrophils rolling on HUVECs and on an L-cell monolayer coexpressing E-selectin and ICAM-1. Likewise, binding of recombinant E-selectin to PMNs in suspension also elicited coclustering of L-selectin and PSGL-1 that was signaled via mitogen-activated protein kinase. Binding of recombinant E-selectin signaled activation of beta(2)-integrin to high-avidity clusters and elicited efficient neutrophil capture of beta(2)-integrin ligands in shear flow. Inhibition of p38 and p42/44 mitogen-activated protein kinase blocked the cocapping of L-selectin and PSGL-1 and the subsequent clustering of high-affinity beta(2)-integrin. Taken together, the data suggest that E-selectin is unique among selectins in its capacity for clustering sialylated ligands and transducing signals leading to neutrophil arrest in shear flow.  相似文献   

20.
The initiating step of neutrophil-induced cytotoxicity in the liver is the recruitment of these phagocytes into sinusoids. The aim of our study was to compare the efficacy of systemic exposure with individual inflammatory mediators on neutrophil activation and sequestration in the hepatic vasculature of C3Heb/FeJ mice as assessed by flow cytometry and histochemistry, respectively. The CXC chemokine macrophage inflammatory protein-2 (MIP-2; 20 microg/kg) induced a time-dependent upregulation of Mac-1 (318% at 4 h) and shedding of L-selectin (41% at 4 h). MIP-2 treatment caused a temporary increase of sinusoidal neutrophil accumulation at 0.5 h [97 +/- 6 polymorphonuclear leukocytes (PMN)/50 high-power fields (HPF)], which declined to baseline (8 +/- 2) at 4 h. The CXC chemokine KC was largely ineffective in activating neutrophils or recruiting them into the liver. Cytokines (tumor necrosis factor-alpha and interleukin-1alpha) and cobra venom factor substantially increased Mac-1 expression and L-selectin shedding on neutrophils and caused stable sinusoidal neutrophil accumulation (170-220 PMN/50 HPF). Only cytokines induced venular neutrophil margination. Thus CXC chemokines in circulation are less effective than cytokines or complement in activation of neutrophils and their recruitment into the hepatic vasculature in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号