首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the expression and distribution of the regeneration-responsive molecule, 2NI-36, the loss of which is responsible for initiation of dedifferentiation of dorsal marginal iris pigmented epithelial cells to regenerate a lens. In the process of the normal development of the newt, the expression of 2NI-36 could not be detected in embryos at the early developmental stages, i.e., cleavages, gastrulation and neurulation, nor through later developmental stages to tail-bud, even though organogenesis was occurring. 2NI-36 was not detectable in any tissues until embryos reached developmental stage 40 (before hatching). In hatched larvae around developmental stage 46, strong expression of 2NI-36 was observed in several tissues including the vascular endothelium, the pigmented epithelium and the inner layer of skin epidermis. Moreover, 2NI-36 was present on the cell surface of these tissue cells. In conclusion, when the embryos hatch out to become swimming larvae that can feed by themselves, 2NI-36 begins to be expressed in some kinds of differentiated tissues. These results suggest that the function of 2NI-36 might be related to the completion of morphogenesis in development and also to the stabilization of the differentiated state of newly formed tissue cells.  相似文献   

2.
Based on studies of wolffian lens regeneration in the newt, in which the lens can be regenerated from the iris pigmented epithelium, we have shown by cell culture studies that the capacity of lens transdifferentiation is not limited to the newt cells, but widely conserved in pigmented epithelial cells (PECs) of chick and quail embryos and even of human fetuses. Recently, we have established a unique in vitro model system of chick embryonic PECs. In this culture system we are able to control each step of transdifferentiation from PECs into lens cells by regulating culture conditions and to produce a homogeneous cell population with potential for synchronous differentiation into either lens or pigment cell phenotype. These multipotent (at least bipotent) cells showed cellular characteristics resembling neoplastic cells in many ways. They did not express both lens and pigment cell specific genes analyzed so far, except δ-crystallin gene, which is expressed in developing lens of chick embryos. It has been proved by application of cell culture procedures of the system that PECs dissociated from fully-grown human eyes readily transdifferentiated into lens phenotypes in the manner observed in chick embryo PECs. In addition, we could predict that molecules detected in either cell surface or intercellular space stabilized the differentiated state of PECs in the newt and that the loss of these molecules might be one of the key steps of lens regeneration from the iris epithelium.  相似文献   

3.
We have previously shown that lens regeneration from the pigmented epithelium of the dorsal iris in the adult newt eye proceeds in two steps after lens removal or intraocular FGF2 injection. The FGF2-dependent proliferation of iris pigmented epithelium and activation of early lens genes that occur over the entire circumference of the iris comprise the first step, while subsequent dorsally confined lens development marks the second step. Here, we investigated the expression of Wnt and Wnt receptor Frizzled genes in lens-regenerating iris tissues. Wnt2b and Frizzled4 were activated only in the dorsal half of the iris in synchrony with the occurrence of the second step, whereas Wnt5a and Frizzled2 were activated in both halves throughout the period of the first and second steps. Cultured explants of the iris-derived pigmented epithelium in the presence of FGF2 underwent dorsal-specific lens development fully recapitulating the in vivo lens regeneration process. Under these conditions, Wnt inhibitors Dkk1, which specifically inhibits the canonical signal pathway, and/or sFRP1 repressed the lens development, while exogenous Wnt3a, which generally activates the canonical pathway like Wnt2b, stimulated lens development from the dorsal iris epithelium and even caused lens development from the ventral iris epithelium, albeit at a reduced rate. Wnt5a did not elicit lens development from the ventral epithelium. These observations indicate that dorsal-specific activation of Wnt2b determines the dorsally limited development of lens from the iris pigmented epithelium.  相似文献   

4.
When a lens is removed from the newt eye, a new lens is regenerated from the pigmented epithelial cells of the dorsal iris, whereas the ventral iris never shows such an ability. It is important to clarify the nature of signaling molecules which act directly on the iris cells to accomplish lens regeneration from the iris and also to gain insight into the mechanism of dorso-ventral difference of the regeneration potential. To examine the effects of exogenous factors, we established an in vitro culture of reaggregates made from dissociated pigmented epithelial cells of dorsal or ventral halves of newt iris. Foci of depigmented cells appeared within the cell reaggregates, regardless of their origins, when the cell reaggregates were cultured with FGF2 or FGF4. In contrast, only the depigmented cells in the dorsal iris cell reaggregates underwent extensive proliferation and developed a lens with the synthesis of lens-specific crystallins, recapitulating the normal lens regeneration. On the other hand, neither FGF8, FGF10, EGF, VEGF, nor IGF promoted lens development from iris cell reaggregates. Consistent with the FGF-specific action, FGFR-specific inhibitor SU5402 suppressed the lens development from the cultured cell reaggregates. These results demonstrated that FGF2 or FGF4 is essential for the in vitro lens regeneration from the pigmented cells of the dorsal iris. In addition, these findings indicated that unequal competence in the dorsal and ventral iris to FGF2/4 contributes to the difference in lens forming ability between them.  相似文献   

5.
Following local injury or tissue removal, regeneration in urodele amphibians appears to be dependent on cell cycle reentry and dedifferentiation of postmitotic, terminally differentiated cells in the remaining tissues. Regeneration of the lens of the eye occurs by the dedifferentiation of pigmented epithelial cells (PEC) of the iris and their subsequent transdifferentiation into lens cells. A key question is how cell cycle reentry is regulated. Here we demonstrate that thrombin activates S-phase reentry of newt PEC in vitro. Based on these findings, and on previous experiments showing that newt skeletal myotubes reenter the cell cycle following thrombin stimulation, we suggest that thrombin is a critical signal for initiation of vertebrate regeneration.  相似文献   

6.
Upon lentectomy of adult newt eyes, the dorsal iris epithelium produces a cell population that develops into a new lens. The tissue transformation can be completed not only in the isolated lentectomized eye cultured as a whole, but also in the isolated newt normal dorsal iris combined with the retina of frog larvae in vitro. In this study, 93% of such cultures produced lens tissue made up of newt cells. Well-differentiated lens fibre cells were formed which showed positive immunofluorescence for gamma crystallins. When the isolated dorsal iris epithelium was cultured under the same conditions, well-differentiated lens tissue was again formed in 95% of the cases, suggesting that iris epithelial cells and not iris stromal cells are responsible for lens formation. In contrast, the combination of newt ventral iris with frog retina did not produce any newt lens tissue. No lens tissue was produced when the dorsal iris was cultured with newt spleen or lung, although a considerable number of iris epithelial cells became depigmented. Isolated normal dorsal iris or normal dorsal iris epithelium cultured alone infrequently produced a population of depigmented cells but failed to form lens tissue. On the basis of the present and earlier data, it is concluded that in Wolffian lens regeneration in situ , interaction of the iris epithelial cells with the retina plays a decisive role. However, it is suggested that the iris epithelial cells may have an inherent tendency towards lens formation, and that the factor(s) from the retina facilitates the realization of this tendency, rather than instructing the cells to produce lens. The reported experiments provide the first direct evidence for the existence of cellular metaplasia by demonstrating transformation of fully differentiated iris epithelial cells into lens cells.  相似文献   

7.
A novel role of the hedgehog pathway in lens regeneration   总被引:4,自引:0,他引:4  
Lens regeneration in the adult newt is a classic example of replacing a lost organ by the process of transdifferentiation. After lens removal, the pigmented epithelial cells of the dorsal iris proliferate and dedifferentiate to form a lens vesicle, which subsequently differentiates to form a new lens. In searching for factors that control this remarkable process, we investigated the expression and role of hedgehog pathway members. These molecules are known to affect retina and pigment epithelium morphogenesis and have been recently shown to be involved in repair processes. Here we show that Shh, Ihh, ptc-1, and ptc-2 are expressed during lens regeneration. The expression of Shh and Ihh is quite unique since these genes have never been detected in lens. Interestingly, both Shh and Ihh are only expressed in the regenerating and developing lens, but not in the intact lens. Interfering with the hedgehog pathway results in considerable inhibition of the process of lens regeneration, including decreased cell proliferation as well as interference with lens fiber differentiation in the regenerating lens vesicle. Down-regulation of ptc-1 was also observed when inhibiting the pathway. These results provide the first evidence of a novel role for the hedgehog pathway in specific regulation of the regenerating lens.  相似文献   

8.
Removal of the pituitary 3 days before lentectomy retards Wolffian lens regeneration in the adult newt, Notophthalmus viridescens, by two stages over a 21-day period. Hypophysectomy 5 or 10 days after lentectomy does not alter the progress of regeneration during the subsequent 10-day period. Hypophysectomy 3 days before lentectomy also significantly decreases the incorporation of [3H]thymidine by iris epithelial nuclei 5 days after lentectomy but has no statistically significant effect on the incorporation 7 days after lentectomy.Pituitary tissue from newts or frogs enhances the regenerative activity of newt iris epithelial cells in vitro and in many cases promotes lens fiber formation. To a lesser extent, other tissues, such as nerve ganglion, also enhance the production of lens fiber cells from iris epithelium in vitro, whereas muscle tissue does not; and under certain conditions iris epithelial cells were found to depigment and redifferentiate into lens cells in the absence of other tissues in vitro.  相似文献   

9.
The process of lens regeneration in newts involves the dedifferentiation of pigmented iris epithelial cells and their subsequent conversion into lens fibers. In vivo this cell-type conversion is restricted to the dorsal region of the iris. We have examined the patterns of hyaluronate accumulation and endogenous hyaluronidase activity in the newt iris during the course of lens regeneration in vivo. Accumulation of newly synthesized hyaluronate was estimated from the uptake of [3H]glucosamine into cetylpyridinium chloride-precipitable material that was sensitive to Streptomyces hyaluronidase. Endogenous hyaluronidase activity was determined from the quantity of reducing N-acetylhexosamine released upon incubation of iris tissue extract with exogenous hyaluronate substrate. We found that incorporation of label into hyaluronate was consistently higher in the regeneration-activated irises of lentectomized eyes than in control irises from sham-operated eyes. Hyaluronate labeling was higher in the dorsal (lens-forming) region of the iris than in ventral (non-lens-forming) iris tissue during the regeneration process. Label accumulation into hyaluronate was maximum between 10 and 15 days after lentectomy, the period of most pronounced dedifferentiation in the dorsal iris epithelium. Both normal and regenerating irises demonstrated a high level of endogenous hyaluronidase activity with a pH optimum of 3.5-4.0. Hyaluronidase activity was 1.7 to 2 times higher in dorsal iris tissue than in ventral irises both prior to lentectomy and throughout the regeneration process. We suggest that enhanced hyaluronate accumulation may facilitate the dedifferentiation of iris epithelial cells in the dorsal iris and prevent precocious withdrawal from the cell cycle. The high level of hyaluronidase activity in the dorsal iris may promote the turnover and remodeling of extracellular matrix components required for cell-type conversion.  相似文献   

10.
In Wolffian lens regeneration, lentectomized newt eye can produce a new lens from the dorsal marginal iris, but the ventral iris has never shown such capabilities. To investigate the difference of lens regenerating potency between dorsal and ventral iris epithelium at the cellular level, a transplantation system using cell reaggregates was developed. Two methods were devised for preparing the reaggregates from pigmented iris epithelial cells. One was rotating cells in an agar-coated multiplate on a gyratory shaker and the other was incubating cells in a microcentrifuge tube after slight centrifugation. Reaggregates made of dorsal iris cells that had been completely dissociated into single cells were phenotypically transformed into a lens when placed in the pupillary region of the lentectomized host eye. None of the ventral reaggregates produced a lens. Even dorsal reaggregates could not transdifferentiate into lens when they were placed away from the pupil. The produced lenses from the reaggregates were morphologically and immunohistochemically identified. To obtain evidence whether produced lenses really originated from singly dissociated cells, we labeled dissociated cells with a fluorescent dye (PKH26) before reaggregate formation and then traced it in the produced lens.  相似文献   

11.
Although it is generally assumed that the lens regenerated in the newt eye after complete lentectomy is formed by cells derived from the dorsal iris epithelium, experimental evidence so far obtained for this transformation does not rule out participation of cells from the dorsal iris stroma. When the normal dorsal iris epithelium of adult Notophthalmus (Triturus) viridescens was isolated and cultured in the presence of frog retinal complex, newt lens tissue was produced in 88% of cultures. These lens tissues were positive for immunofluorescence for lens-fiber-specific gamma crystallins as well as for total lens protein. On the basis of a study of stromal cells contaminating the samples of dorsal iris epithelium and a test for the lens-forming capacity in vitro of the dorsal iris stroma in the presence of frog retinal complex, it is concluded that lens formation observed in the above experiment is not dependent on the contaminating stromal cells. This implies that, in Wolffian lens regeneration, fully differentiated adult cells completely withdrawn from the cell cycle are transformed into another cell type. An additional culture experiment demonstrated that lens-forming capacity is not restricted to the dorsal half of the iris epithelium, but extends into its ventral half.  相似文献   

12.
Total regeneration of experimentally excised lens from the dorsal part of the iris-pigmented epithelium of newts has been a key model of tissue regeneration via cells originating from a foreign tissue. Due to the strict spatial restriction of the lens origin in the newt iris, it has often been assumed that only the dorsal iris cells are endowed with an intrinsic potential to give rise to lens tissues. However, our reinvestigation of the process revealed completely different mechanisms underlying lens regeneration and its spatial restriction, comprising the following two steps: (i) Fibroblast growth factor (FGF) 2-dependent proliferation of iris-pigmented epithelium and activation of early lens genes ( Pax6, Sox2, MafB ) over the entire circumference of the iris; and (ii) dorsal iris-restricted activation of the canonical Wnt signals (involving Wnt2b and Frizzeld4) that leads to localized expression of late lens genes ( Prox1, Sox1, β-crystallin ). Injection of FGF2 into normal eyes specifically elicited the second lens development from the dorsal iris, and the administration of recombinant Wnt3a to the cultured iris-pigmented epithelium caused even ventral iris-derived lens development. Thus, it is concluded that the regulation of FGF2 and Wnt signals is a determinative of the iris-derived lens regeneration in the newt eye.  相似文献   

13.
In newt lens regeneration, the dorsal iris has lens forming ability and the ventral iris has no such capability, whereas there is no difference in the morphological criteria. To investigate the real aspects of this characteristic lens regeneration in the newt at the cellular level, a useful model system was constructed by transplanting the dorsal and ventral reaggregate derived from singly dissociated pigmented epithelial cells of the iris into the blastema of the forelimb in the newt. The lens was formed from the dorsal reaggregate with high efficiency, but not from the ventral one. No lens formation was observed in the implantation of the reaggregate into the tissue of the intact limbs. In detailed examination of the process of lens formation from the reaggregate, it was shown that tubular formation was the first step in the rearrangement of cells within the reaggregate. This was followed by depigmentation, vesicle formation with active cell growth, and the final step was lens fiber formation by transdifferentiation of epithelial cells composing the lens vesicle. The process was almost the same as in situ lens regeneration except the reconstitution of the two-layered epithelial structure was embodied as flattened tubular formation in the first step. The present study made it possible for the first time to examine lens forming ability in the reaggregate mixed with dorsal and ventral cells, because the formation of a reaggregate was started from singly dissociated cells of the dorsal and ventral cells of the iris. Mixed reaggregate experiments indicated that the existence of the dorsal cells in a cluster within the reaggregate is important in lens formation, and ventral cells showed an inhibitory effect on the formation. The present study demonstrated that the limb system thus constructed was effective for the analysis of lens formation at the cellular level and made it possible to examine the role of dorsal and ventral cells in lens regeneration.  相似文献   

14.
Lens regeneration in adult salamanders occurs at the pupillary margin of the mid-dorsal iris where pigmented epithelial cells (PEC) re-enter the cell cycle and transdifferentiate into lens. It is not understood how the injury caused by removal of the lens (lentectomy) in one location is linked to initiating the response in a different spatial location (dorsal iris) and to this particular sector. We propose that the blood provides a link between the localised coagulation and signal transduction pathways that lead to regeneration. A transmembrane protein (tissue factor) is expressed in a striking patch-like domain in the dorsal iris of the newt that localises coagulation specifically to this location, but is not expressed in the axolotl, a related species that does not show thrombin activation after lentectomy and cannot regenerate its lens. Our hypothesis is that tissue factor expression localises the initiation of regeneration through the activation of thrombin and the recruitment of blood cells, leading to local growth factor release. This is the first example of gene expression in a patch of cells that prefigures the location of a regenerative response, and links the immune system with the initiation of a regenerative program.  相似文献   

15.
To try to understand the mechanism of the dedifferentiation process which occurs during metaplastic transformation of iris epithelial cells into lens cells in newt lens regeneration, the activity of N -acetylglucosaminidase in iris and iris epithelium was studied as a function of time after lentectomy. The activity was found to increase during the dedifferentiation phase of the iris epithelium. The dorsal iris, where definite dedifferentiation occurs side by side with incomplete dedifferentiation, shows significantly greater enhancement of the activity than the ventral iris, where only incomplete dedifferentiation takes place. When the cells complete dedifferentiation and engage in redifferentiation into lens cells, the level of activity drops, approaching that of the normal lens. Evidence is also presented for release of the enzyme into the ocular fluid during dedifferentiation. The possibility that the enzyme is involved in surface alterations of iris epithelial ceils engaged in dedifferentiation is discussed.  相似文献   

16.
The analysis of newt lens regeneration has been an important subject in developmental biology. Recently, it has been reported that the genes involved in the normal eye development are also expressed in the regenerative process of lens regeneration in the adult newt. However, functional analysis of these genes has not been possible, because there is no system to introduce genes efficiently into the cells involved in the regeneration. In the present study, lipofection was used as the method for gene transfer in cultured pigmented iris cells that can transdifferentiate into lens cells in newt lens regeneration. Positive expression of a reporter gene was obtained in more than 70% of cells. In addition, the aggregate derived from gene-transfected cells maintained its expression at a high level for a long time within the host tissue. To verify the effectiveness of this model system with a reporter gene in lens regeneration, Pax6, which is suggested to be involved in normal eye development and lens regeneration, was transfected. Ectopic expression of lens-specific crystallins was obtained in cells that show no such activity in normal lens regeneration. These results made it possible for the first time to analyze the molecular mechanism of lens regeneration in the adult newt.  相似文献   

17.
Macrophage activity in Wolffian lens regeneration   总被引:3,自引:0,他引:3  
The cell type mainly involved in the phagocytic uptake of melanosomes from iris epithelial cells during Wolffian lens regeneration in the adult newt is identified on the basis of electron and light microscopic evidence as a macrophage of monocytic origin. Appearance of macrophages in iris and ciliary epithelia following lentectomy is a part of leucocytic infiltration of the area, in which granulocytes, mast cells, and other cell types also participate. The general pattern of leucocytic infiltration was studied as a function of time after lentectomy. Infiltration of the iris epithelium by macrophages is reduced when most of the melanosomes have been removed from the cytoplasm of the epithelial cells and finally ceases when depigmentation has been completed. The possibility that an immune mechanism mediated by macrophages is involved in dedifferentiation of iris epithelial cells is discussed.  相似文献   

18.
Lens regeneration from non-lens ocular tissues has been well documented in amphibians, from the dorsal iris in the newt and from the outer cornea in Xenopus. To understand the early molecular events which govern lens regeneration, we examined the expression of two early marker genes of normal lens development, Pax-6 and Prox 1. In both Cynops (newt) iris and Xenopus cornea, Pax-6 is expressed soon after lentectomy in a region broader than that giving rise to the regenerating lens, indicative of an important role for Pax-6 in determination of the regeneration potential. Then Prox 1 expression begins within the Pax-6-expressing tissue, and these Prox 1-expressing cells give rise to the regenerating lens. This sequence of events also takes place in the lens placode of the embryo, indicating that the presence of the same genetic program operates in both embryonic lens development and lens regeneration, at least partly. In the Cynops iris, Pax-6 expression occurs initially in the entire marginal region of the iris after lentectomy but then becomes restricted to the dorsal region. Further studies are expected to elucidate the mechanism of this long-standing problem of the dorsal-restriction of lens regeneration from the newt iris.  相似文献   

19.
Through studies to clarify the cellular origin of lens regeneration in the newt, the pigmented epithelial cells of the iris and the retina of many vertebrate species have been shown to possess a dormant potency to transdifferentiate into the lens. The method ofin-vitroculture of pigmented epithelial cells has been optimized to enable detailed studies of the transdifferentiation process by molecular techniques. Growth factors and extracellular matrix components are found to be important in the control of the transdifferentiation process. New systems forin-vitroculture are introduced, while prospects for renewedin-vivostudies using newts are given.  相似文献   

20.
A critical role for thrombin in vertebrate lens regeneration   总被引:5,自引:0,他引:5  
Lens regeneration in urodele amphibians such as the newt proceeds from the dorsal margin of the iris where pigment epithelial cells (PEC) re-enter the cell cycle and transdifferentiate into lens. A general problem in regeneration research is to understand how the events of tissue injury or removal are coupled to the activation of plasticity in residual differentiated cells or stem cells. Thrombin, a pivotal regulator of the injury response, has been implicated as a regulator of cell cycle re-entry in newt myotubes, and also in newt iris PEC. After removal of the lens, thrombin was activated on the dorsal margin for 5-7 days. Inactivation of thrombin by either of two different inhibitors essentially blocked S-phase re-entry by PEC at this location. The axolotl, a related species which can regenerate its limb but not its lens, can activate thrombin after amputation but not after lens removal. These data support the hypothesis that thrombin is a critical signal linking injury to regeneration, and offer a new perspective on the evolutionary and phylogenetic questions about regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号