首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Staphylococcus aureus alpha-toxin is a hydrophilic polypeptide of 293 amino acids that produces heptameric transmembrane pores. During assembly, the formation of a pre-pore precedes membrane permeabilization; the latter is linked to a conformational change in the oligomer. Here, 41 single-cysteine replacement toxin mutants were thiol-specifically labelled with the polarity-sensitive fluorescent probe acrylodan. After oligomerization on membranes, only the mutants with acrylodan attached to residues in the sequence 118-140 exhibited a marked blue shift in the fluorescence emission maximum, indicative of movement of the fluorophore to a hydrophobic environment. Within this region, two functionally distinct parts could be identified. For mutants at positions 126-140, the shifts were partially reversed after membrane solubilization by detergents, indicating a direct interaction of the label with the membrane lipids. Membrane insertion of this sequence occurred together with the final pre-pore to pore transition of the heptamer. Thus residues 126-140 constitute a transmembrane sequence in the pore. With labelled residues 118-124, pre-pore assembly was the critical event to induce the spectral shifts, which persisted after the removal of membrane lipids and hence probably reflects protomer-protomer contacts within the heptamer. Finally, a derivative of the mutant N121C yielded occluded pores which could be opened by reductive reversal of the modification. Therefore this residue probably lines the lumen of the pore.  相似文献   

2.
Vibrio cholerae cytolysin (VCC), a β-barrel pore-forming toxin (β-PFT), induces killing of the target eukaryotic cells by forming heptameric transmembrane β-barrel pores. Consistent with the β-PFT mode of action, binding of the VCC toxin monomers with the target cell membrane triggers formation of pre-pore oligomeric intermediates, followed by membrane insertion of the β-strands contributed by the pre-stem motif within the central cytolysin domain of each protomer. It has been shown previously that blocking of membrane insertion of the VCC pre-stem motif arrests conversion of the pre-pore state to the functional transmembrane pore. Consistent with the generalized β-PFT mechanism, it therefore appears that the VCC pre-stem motif plays a critical role toward forming the structural scaffold of the transmembrane β-barrel pore. It is, however, still not known whether the pre-stem motif plays any role in the membrane interaction process, and subsequent pre-pore structure formation by VCC. In this direction, we have constructed a recombinant variant of VCC deleting the pre-stem region, and have characterized the effect(s) of physical absence of the pre-stem motif on the distinct steps of the membrane pore-formation process. Our results show that the deletion of the pre-stem segment does not affect membrane binding and pre-pore oligomer formation by the toxin, but it critically abrogates the functional pore-forming activity of VCC. Present study extends our insights regarding the structure–function mechanism associated with the membrane pore formation by VCC, in the context of the β-PFT mode of action.  相似文献   

3.
4.
Crystallographic studies of the anthrax lethal toxin   总被引:1,自引:0,他引:1  
Anthrax lethal toxin comprises two proteins: protective antigen (PA; MW 83 kDa) and lethal factor (LF; MW 87 kDa). We have recently determined the crystal structure of the 735-residue PA in its monomeric and heptameric forms ( Petosa et al . 1997 ). It bears no resemblance to other bacterial toxins of known three-dimensional structure, and defines a new structural class which includes homologous toxins from other Gram-positive bacteria. We have proposed a model of membrane insertion in which the water-soluble heptamer undergoes a substantial pH-induced conformational change involving the creation of a 14-stranded β-barrel. Recent work by Collier's group ( Benson et al . 1998 ) lends strong support to our model of membrane insertion. 'Lethal factor' is the catalytic component of anthrax lethal toxin. It binds to the surface of the cell-bound PA heptamer and, following endocytosis and acidification of the endosome, translocates to the cytosol. We have made substantial progress towards an atomic resolution crystal structure of LF. Progress towards a structure of the 7:7 translocation complex between the PA heptamer and LF will also be discussed.  相似文献   

5.
The primary action of Cry toxins produced by Bacillus thuringiensis is to lyse midgut epithelial cells in their target insect by forming lytic pores. The toxin-receptor interaction is a complex process, involving multiple interactions with different receptor and carbohydrate molecules. It has been proposed that Cry1A toxins sequentially interact with a cadherin receptor, leading to the formation of a pre-pore oligomer structure, and that the oligomeric structure binds to glycosylphosphatidyl-inositol-anchored aminopeptidase-N (APN) receptor. The Cry1Ac toxin specifically recognizes the N-acetylgalactosamine (GalNAc) carbohydrate present in the APN receptor from Manduca sexta larvae. In this work, we show that the Cry1Ac pre-pore oligomer has a higher binding affinity with APN than the monomeric toxin. The effects of GalNAc binding on the toxin structure were studied in the monomeric Cry1Ac, in the soluble pre-pore oligomeric structure, and in its membrane inserted state by recording the fluorescence status of the tryptophan (W) residues. Our results indicate that the W residues of Cry1Ac have a different exposure to the solvent when compared with that of the closely related Cry1Ab toxin. GalNAc binding specifically affects the exposure of W545 in the pre-pore oligomer in contrast to the monomer where GalNAc binding did not affect the fluorescence of the toxin. These results indicate a subtle conformational change in the GalNAc binding pocket in the pre-pore oligomer that could explain the increased binding affinity of the Cry1Ac pre-pore to APN. Although our analysis did not reveal major structural changes in the pore-forming domain I upon GalNAc binding, it showed that sugar interaction enhanced membrane insertion of soluble pre-pore oligomeric structure. Therefore, the data presented here permits to propose a model in which the interaction of Cry1Ac pre-pore oligomer with APN receptor facilitates membrane insertion and pore formation.  相似文献   

6.
C J Miller  J L Elliott  R J Collier 《Biochemistry》1999,38(32):10432-10441
PA(63), the active 63 kDa form of anthrax protective antigen, forms a heptameric ring-shaped oligomer that is believed to represent a precursor of the membrane pore formed by this protein. When maintained at pH >/=8.0, this "prepore" dissociated to monomeric subunits upon treatment with SDS at room temperature, but treatment at pH 相似文献   

7.
The bacterial toxin aerolysin kills cells by forming heptameric channels, of unknown structure, in the plasma membrane. Using disulfide trapping and cysteine scanning mutagenesis coupled to thiol-specific labeling on lipid bilayers, we identify a loop that lines the channel. This loop has an alternating pattern of charged and uncharged residues, suggesting that the transmembrane region has a beta-barrel configuration, as observed for Staphylococcal alpha-toxin. Surprisingly, we found that the turn of the beta-hairpin is composed of a stretch of five hydrophobic residues. We show that this hydrophobic turn drives membrane insertion of the developing channel and propose that, once the lipid bilayer has been crossed, it folds back parallel to the plane of the membrane in a rivet-like fashion. This rivet-like conformation was modeled and sequence alignments suggest that such channel riveting may operate for many other pore-forming toxins.  相似文献   

8.
The alpha-toxin from Staphylococcus aureus undergoes several conformational changes from the time it is released from the bacterium to the moment it forms a channel in the plasma membrane of its target cell. It is initially a soluble monomer, which undergoes membrane binding and oligomerization into a heptameric ring and finally inserts into the lipid bilayer to form a pore. Here we have analyzed the stability of different forms of the alpha-toxin (monomer as well as heptamers in solution, bound to the membrane and membrane-inserted) by differential scanning calorimetry and limited proteolysis. Data presented here show that, in contrast to both the membrane-bound prepore complex and the monomer in solution, the membrane-inserted alpha-toxin channel does not undergo cooperative unfolding and is highly susceptible to proteases. These observations suggest that the channel has a looser conformation. Interestingly, resistance to proteases could be recovered upon solubilization of the channel, indicating that the loss of rigid tertiary packing only occurred upon membrane insertion. Far-UV CD data, however, suggest that the transmembrane beta-barrel must be stably folded and that therefore only the Cap and Rim domains of the channel are loosely packed. All together, our data show that the alpha-toxin channel is not a rigid complex within the membrane but adopts a rather flexible conformation.  相似文献   

9.
Clostridium perfringens epsilon-toxin, which is responsible for enterotoxaemia in ungulates, forms a heptamer in rat synaptosomal and Madin-Darby canine kidney (MDCK) cell membranes, leading to membrane permealization. Thus, the toxin may target the detergent-resistant membrane domains (DRMs) of these membranes, in analogy to aerolysin, a heptameric pore-forming toxin that associates with DRMs. To test this idea, we examined the distribution of radiolabeled epsilon-toxin in DRM and detergent-soluble membrane fractions of MDCK cells and rat synaptosomal membranes. When MDCK cells and synaptosomal membranes were incubated with the toxin and then fractionated by cold Triton X-100 extraction and flotation on sucrose gradients, the heptameric toxin was detected almost exclusively in DRMs. The results of a toxin overlay assay revealed that the toxin preferentially bound to and heptamerized in the isolated DRMs. Furthermore, cholesterol depletion by methyl-beta-cyclodextrin abrogated their association and lowered the cytotoxicity of the toxin toward MDCK cells. When epsilon-protoxin, an inactive precursor able to bind to but unable to heptamerize in the membrane, was incubated with MDCK cell membranes, it was detected mainly in their DRMs. These results suggest that the toxin is concentrated and induced to heptamerize on binding to a putative receptor located preferentially in DRMs, with all steps from initial binding through pore formation completed within the same DRMs.  相似文献   

10.
Aerolysin is a bacterial pore-forming toxin that is secreted as an inactive precursor, which is then processed at its COOH terminus and finally forms a circular heptameric ring which inserts into membranes to form a pore. We have analyzed the stability of the precursor proaerolysin and the heptameric complex. Equilibrium unfolding induced by urea and guanidinium hydrochloride was monitored by measuring the intrinsic tryptophan fluorescence of the protein. Proaerolysin was found to unfold in two steps corresponding to the unfolding of the large COOH-terminal lobe followed by the unfolding of the small NH(2)-terminal domain. We show that proaerolysin contains two disulfide bridges which strongly contribute to the stability of the toxin and protect it from proteolytic attack. The stability of aerolysin was greatly enhanced by polymerization into a heptamer. Two regions of the protein, corresponding to amino acids 180-307 and 401-427, were identified, by limited proteolysis, NH(2)-terminal sequencing and matrix-assisted laser desorption ionization-time of flight, as being responsible for stability and maintenance of the heptamer. These regions are presumably involved in monomer/monomer interactions in the heptameric protein and are exclusively composed of beta structure. The stability of the aerolysin heptamer is reminiscent of that of pathogenic, fimbrial protein aggregates found in a variety of neurodegenerative diseases.  相似文献   

11.

Background

Anthrax toxin is comprised of protective antigen (PA), lethal factor (LF), and edema factor (EF). These proteins are individually nontoxic; however, when PA assembles with LF and EF, it produces lethal toxin and edema toxin, respectively. Assembly occurs either on cell surfaces or in plasma. In each milieu, PA assembles into a mixture of heptameric and octameric complexes that bind LF and EF. While octameric PA is the predominant form identified in plasma under physiological conditions (pH 7.4, 37°C), heptameric PA is more prevalent on cell surfaces. The difference between these two environments is that the anthrax toxin receptor (ANTXR) binds to PA on cell surfaces. It is known that the extracellular ANTXR domain serves to stabilize toxin complexes containing the PA heptamer by preventing premature PA channel formation—a process that inactivates the toxin. The role of ANTXR in PA oligomerization and in the stabilization of toxin complexes containing octameric PA are not understood.

Methodology

Using a fluorescence assembly assay, we show that the extracellular ANTXR domain drives PA oligomerization. Moreover, a dimeric ANTXR construct increases the extent of and accelerates the rate of PA assembly relative to a monomeric ANTXR construct. Mass spectrometry analysis shows that heptameric and octameric PA oligomers bind a full stoichiometric complement of ANTXR domains. Electron microscopy and circular dichroism studies reveal that the two different PA oligomers are equally stabilized by ANTXR interactions.

Conclusions

We propose that PA oligomerization is driven by dimeric ANTXR complexes on cell surfaces. Through their interaction with the ANTXR, toxin complexes containing heptameric and octameric PA oligomers are similarly stabilized. Considering both the relative instability of the PA heptamer and extracellular assembly pathway identified in plasma, we propose a means to regulate the development of toxin gradients around sites of infection during anthrax pathogenesis.  相似文献   

12.
The enzymatic moieties of anthrax toxin enter the cytosol of mammalian cells via a pore in the endosomal membrane formed by the protective antigen (PA) moiety. Pore formation involves an acidic pH-induced conformational rearrangement of a heptameric precursor (the prepore), in which the seven 2beta2-2beta3 loops interact to generate a 14-strand transmembrane beta-barrel. To investigate this model in vivo, we labeled PA with the fluorophore 7-nitrobenz-2-oxa-1,3-diazole (NBD) at cysteine residues introduced into the 2beta2-2beta3 loop. Each labeled PA was bound to CHO cells, and NBD fluorescence was monitored over time in stirred cell suspensions or by confocal microscopy. A strong increase was observed with NBD at positions 305, 307, 309, and 311, sites where side chains are predicted to face the bilayer, and little change was seen at residues 304, 306, 308, 310, and 312, sites where side chains are predicted to face the pore lumen. The increase at position 305 was inhibited by membrane-restricted quenchers, low temperature, or various reagents known to affect toxin action. Of the 24 NBD attachment sites examined, all but three gave results qualitatively consistent with the beta-barrel model. Besides supporting the beta-barrel model of membrane insertion, our results describe the time course of insertion and identify PA residues where NBD gives a strong signal upon membrane insertion in vivo.  相似文献   

13.
The insecticidal crystal (Cry) proteins produced by Bacillus thuringiensis undergo several conformational changes from crystal inclusion protoxins to membrane-inserted channels in the midgut epithelial cells of the target insect. Here we analyzed the stability of the different forms of Cry1Ab toxin, monomeric toxin, pre-pore complex, and membrane-inserted channel, after urea and thermal denaturation by monitoring intrinsic tryptophan fluorescence of the protein and 1-anilinonaphthalene-8-sulfonic acid binding to partially unfolded proteins. Our results showed that flexibility of the monomeric toxin was dramatically enhanced upon oligomerization and was even further increased by insertion of the pre-pore into the membrane as shown by the lower concentration of chaotropic agents needed to achieve unfolding of the oligomeric species. The flexibility of the toxin structures is further increased by alkaline pH. We found that the monomer-monomer interaction in the pre-pore is highly stable because urea promotes oligomer denaturation without disassembly. Partial unfolding and limited proteolysis studies demonstrated that domains II and III were less stable and unfold first, followed by unfolding of the most stable domain I, and also that domain I is involved in monomer-monomer interaction. The thermal-induced unfolding and analysis of energy transfer from Trp residues to bound 1-anilinonaphthalene-8-sulfonic acid dye showed that in the membrane-inserted pore domains II and III are particularly sensitive to heat denaturation, in contrast to domain I, suggesting that only domain I may be inserted into the membrane. Finally, the insertion into the membrane of the oligomeric pre-pore structure was not affected by pH. However, a looser conformation of the membrane-inserted domain I induced by neutral or alkaline pH correlates with active channel formation. Our studies suggest for the first time that a more flexible conformation of Cry toxin could be necessary for membrane insertion, and this flexible structure is induced by toxin oligomerization. Finally the alkaline pH found in the midgut lumen of lepidopteran insects could increase the flexibility of membrane-inserted domain I necessary for pore formation.  相似文献   

14.
The beta-barrel is a transmembrane structural motif commonly encountered in bacterial outer membrane proteins and pore-forming toxins (PFTs). Alpha-hemolysin (alphaHL) is a cytotoxin secreted by Staphylococcus aureus that assembles from a water-soluble monomer to form a membrane-bound heptameric beta-barrel on the surface of susceptible cells, perforating the cell membranes, leading to cell death and lysis. The mechanism of heptamer assembly, which has been studied extensively, occurs in a stepwise manner, and the structures of the initial, monomeric form and final, membrane-embedded pore are known. The toxin's ability to assemble from an aqueous, hydrophilic species to a membrane-inserted oligomer is of interest in understanding the assembly of PFTs in particular and the folding and structure of beta-barrel membrane proteins in general. Here we review the structures of the monomeric and heptamer states of LukF and alphaHL, respectively, the mechanism of toxin assembly, and the relationships between alphaHL and nontoxin beta-barrel membrane proteins.  相似文献   

15.
Vibrio cholerae hemolysin (HlyA) is a 65?kDa pore-forming toxin which causes lysis of target eukaryotic cells by forming heptameric channels in the plasma membrane. Deletion of the 15?kDa C-terminus β-prism carbohydrate-binding domain generates a 50?kDa truncated variant (HlyA50) with 1000-fold-reduced pore-forming activity. Previously, we showed by cryo-electron microscopy that the two toxin oligomers have central channels, but the 65?kDa toxin oligomer is a seven-fold symmetric structure with bowl-, ring-, and arm-like domains, whereas the 50?kDa oligomer is an asymmetric jar-like heptamer. In the present study, we determined three-dimensional(3D) structures of HlyA and HlyA50 in presence of erythrocyte stroma and observed that interaction of the 65?kDa toxin with the stroma induced a significant decrease in the height of the β-barrel oligomer with a change in conformation of the ring- and arm-like domains of HlyA. These features were absent in interaction of HlyA50 with stroma. We propose that this conformational transition is critical for membrane-insertion of the toxin.  相似文献   

16.
Anthrax lethal toxin assembles at the surface of mammalian cells when the lethal factor (LF) binds via its amino-terminal domain, LF(N), to oligomeric forms of activated protective antigen (PA). LF x PA complexes are then trafficked to acidified endosomes, where PA forms heptameric pores in the bounding membrane and LF translocates through these pores to the cytosol. We used enhanced peptide amide hydrogen/deuterium exchange mass spectrometry and directed mutagenesis to define the surface on LF(N) that interacts with PA. A continuous surface encompassing one face of LF(N) became protected from deuterium exchange when LF(N) was bound to a PA dimer. Directed mutational analysis demonstrated that residues within this surface on LF(N) interact with Lys-197 on two PA subunits simultaneously, thereby showing that LF(N) spans the PA subunit:subunit interface and explaining why heptameric PA binds a maximum of three LF(N) molecules. Our results elucidate the structural basis for anthrax lethal toxin assembly and may be useful in developing drugs to block toxin action.  相似文献   

17.
PA63, a proteolytically activated 63-kDa form of anthrax protective antigen (PA), forms heptameric oligomers and has the ability to bind and translocate the catalytic moieties, lethal factor (LF), and edema factor (EF) into the cytosol of mammalian cells. Acidic pH triggers oligomerization and membrane insertion by PA63. A disordered amphipathic loop in domain II of PA (2beta2-2beta3 loop) is involved in membrane insertion by PA63. Because conditions required for membrane insertion coincide with those for oligomerization of PA63 in mammalian cells, residues constituting the 2beta2-2beta3 loop were replaced with the residues of the amphipathic membrane-inserting loop of its homologue iota-b toxin secreted by Clostridium perfringens. It was hypothesized that such a molecule might assemble into hetero-heptameric structures with wild-type PA ultimately leading to the inhibition of cellular intoxication. The mutation blocked the ability of PA to mediate membrane insertion and translocation of LF into the cytosol but had no effect on proteolytic activation, oligomerization, or binding LF. Moreover, an equimolar mixture of purified mutant PA (PA-I) and wild-type PA showed complete inhibition of toxin activity both in vitro on J774A.1 cells and in vivo in Fischer 344 rats thereby exhibiting a dominant negative effect. In addition, PA-I inhibited the channel-forming ability of wild-type PA on the plasma membrane of CHO-K1 cells thereby indicating protein-protein interactions between the two proteins resulting in the formation of mixed oligomers with defective functional activity. Our findings provide a basis for understanding the mechanism of translocation and exploring the possibility of the use of this PA molecule as a therapeutic agent against anthrax toxin action in vivo.  相似文献   

18.
Jung Y  Cheley S  Braha O  Bayley H 《Biochemistry》2005,44(25):8919-8929
The cavity within the cap domain of the transmembrane staphylococcal alpha-hemolysin (alphaHL) pore is roughly a sphere of diameter approximately 45 A (molecular surface volume approximately 39,500 A(3)). We tested the ability of the cavity to accommodate exogenous polypeptide chains. Concatemerized Gly/Ser-containing sequences ("loops", L; number of repeats = n; number of residues = 10n + 5, n = 0-21) were inserted at a position located within the cavity of the fully assembled heptameric alphaHL pore. Homomeric pores containing 25 or less residues in each loop (n or= 7, only one L subunit was incorporated. As the inserted loop was lengthened, transient closures were observed in planar bilayer experiments with single pores. However, L(1)W(6) pores with very long loops (n = 14 and 21) had unitary conductance values close to those of W(7), suggesting that the loop is extruded through the opening in the cap of the pore into the external medium. Further analysis of bilayer recordings and electrophoretic migration patterns indicates that the upper capacity of the cavity is approximately 175 amino acids. The findings suggest that small functional peptides or proteins might be assembled within the alphaHL pore.  相似文献   

19.
Staphylococcal alpha-toxin forms heptameric pores that render membranes permeable for monovalent cations. The pore is formed by an amphipathic beta-barrel encompassing amino acid residues 118-140 of each subunit of the oligomer. Human fibroblasts are susceptible to alpha-toxin but are able to repair the membrane lesions. Thereby, toxin oligomers remain embedded in the plasma membrane and exposed to the extracellular medium. In this study, we sought to detect structural changes occurring in the pore-forming sequence during lesion repair. Single cysteine substitution mutants were labelled with the environmentally sensitive fluorochrome acrylodan and, after mixing with wild-type toxin, incorporated into hybrid heptamers on fibroblast membranes. Formation of the lipid-inserted beta-barrel was accompanied by characteristic fluorescence emission shifts. After lesion repair, the environment of the residues at the outer surface of the beta-barrel remained unchanged, indicating continued contact with lipids. However, the labelled residues oriented towards the channel lumen underwent a green to blue shift in fluorescence, indicating reduced exposure to water. Pore closure proceeded in the presence of calmodulin inhibitors and of microtubule disruptors; however, it was prevented by cytochalasin D and by inhibitors of lipid metabolism. Our findings reveal the existence of a novel mechanism of membrane repair that may consist in constriction of the inserted proteinaceous pore within the lipid bilayer.  相似文献   

20.
We have determined a 2.1 A crystal structure for human mitochondrial ClpP (hClpP), the proteolytic component of the ATP-dependent ClpXP protease. HClpP has a structure similar to that of the bacterial enzyme, with the proteolytic active sites sequestered within an aqueous chamber formed by face-to-face assembly of the two heptameric rings. The hydrophobic N-terminal peptides of the subunits are bound within the narrow (12 A) axial channel, positioned to interact with unfolded substrates translocated there by the associated ClpX chaperone. Mutation or deletion of these residues causes a drastic decrease in ClpX-mediated protein and peptide degradation. Residues 8-16 form a mobile loop that extends above the ring surface and is also required for activity. The 28 amino acid C-terminal domain, a unique feature of mammalian ClpP proteins, lies on the periphery of the ring, with its proximal portion forming a loop that extends out from the ring surface. Residues at the start of the C-terminal domain impinge on subunit interfaces within the ring and affect heptamer assembly and stability. We propose that the N-terminal peptide of ClpP is a structural component of the substrate translocation channel and may play an important functional role as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号