首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on resource sharing and partitioning generally consider species that occur in the same habitat. However, subsidies between linked habitats, such as streams and riparian zones, create potential for competition between populations which never directly interact. Evidence suggests that the abundance of riparian consumers declines after fish invasion and a subsequent increase in resource sharing of emerging insects. However, diet overlap has not been investigated. Here, we examine the trophic niche of native fish, invasive fish, and native spiders in South Africa using stable isotope analysis. We compared spider abundance and diet at upstream fishless and downstream fish sites and quantified niche overlap with invasive and native fish. Spider abundance was consistently higher at upstream fishless sites compared with paired downstream fish sites, suggesting that the fish reduced aquatic resource availability to riparian consumers. Spiders incorporated more aquatic than terrestrial insects in their diet, with aquatic insects accounting for 45–90% of spider mass. In three of four invaded trout rivers, we found that the average proportion of aquatic resources in web‐building spider diet was higher at fishless sites compared to fish sites. The probability of web‐building and ground spiders overlapping into the trophic niche of invasive brown and rainbow trout was as high as 26 and 51%, respectively. In contrast, the probability of spiders overlapping into the trophic niche of native fish was always less than 5%. Our results suggest that spiders share resources with invasive fish. In contrast, spiders had a low probability of trophic overlap with native fish indicating that the traits of invaders may be important in determining their influence on ecosystem subsidies. We have added to the growing body of evidence that invaders can have cross‐ecosystem impacts and demonstrated that this can be due to niche overlap.  相似文献   

2.
Production of bay anchovy Anchoa mitchilli is highest in the larval and juvenile stages. The interplay between vital rates, stage durations, prey resources, and anchovy abundance ultimately determines the relative magnitude of recruitment (which in the model varies by about three-fold) and of stage-specific production. Changes in adult seasonal spawning patterns that increase the number of larval survivors result in only a slight increase in overall production due to density-dependent decreases in growth rates of later life stages. Bay anchovy in the mid-Chesapeake Bay may reach a compensatory threshold during late summer-autumn as fish growth is affected by competition for food resources. Density dependence in the population is evident in the relationships between spawner-recruit, size-recruit, and production of larval or juvenile to young-of-the-year life stages. Density-dependent growth acts differentially upon the early life stage that exceeds the compensatory threshold in any given year, due either to environmental variability or population size, or both. This could explain partially the relatively low recruitment variability observed for this anchovy.  相似文献   

3.
Animals facing seasonal food shortage and habitat degradation may adjust their foraging behaviour to reduce intraspecific competition. In the harsh environment of the world's southernmost forests in the Magellanic sub‐Antarctic ecoregion in Chile, we studied intersexual foraging differences in the largest South American woodpecker species, the Magellanic Woodpecker (Campephilus magellanicus). We assessed whether niche overlap between males and females decrease when food resources are less abundant or accessible, that is, during winter and in secondary forests, compared to summer and in old‐growth forests, respectively. We analysed 421 foraging microhabitat observations from six males and six females during 2011 and 2012. As predicted, the amount of niche overlap between males and females decreased during winter, when provisioning is more difficult. During winter, males and females (i) used trees with different diameter at breast height (DBH); (ii) fed in trunk sections with different diameters; and (iii) fed at different heights on tree trunks or branches. Vertical niche partitioning between sexes was found in both old‐growth and secondary forests. Such a niche partitioning during winter may be a seasonal strategy to avoid competition between sexes when prey resources are less abundant or accessible. Our results suggest that the conservation of this forest specialist, dimorphic and charismatic woodpecker species requires considering differences in habitat use between males and females.  相似文献   

4.
Individual foraging specialisation has important ecological implications, but its causes in group‐living species are unclear. One of the major consequences of group living is increased intragroup competition for resources. Foraging theory predicts that with increased competition, individuals should add new prey items to their diet, widening their foraging niche (‘optimal foraging hypothesis’). However, classic competition theory suggests the opposite: that increased competition leads to niche partitioning and greater individual foraging specialisation (‘niche partitioning hypothesis’). We tested these opposing predictions in wild, group‐living banded mongooses (Mungos mungo), using stable isotope analysis of banded mongoose whiskers to quantify individual and group foraging niche. Individual foraging niche size declined with increasing group size, despite all groups having a similar overall niche size. Our findings support the prediction that competition promotes niche partitioning within social groups and suggest that individual foraging specialisation may play an important role in the formation of stable social groupings.  相似文献   

5.
Fishes exhibit a remarkable diversity of body shape as adults; however, it is unknown whether this diversity is reflected in larval stage morphology. Here we investigate the relationship between larval and adult body shape as expressed by body elongation. We surveyed a broad range of ray-finned fish species and compared body shape at larval and adult stages. Analysis shows that the vast majority of fish are more elongate at the larval stage than at the adult stage, and that adults display greater interspecies variation than larvae. We found that the superorder Elompomorpha is unique because many species within the group do not follow the observed elongation trends. These results indicate that much of the diversity observed in adults is achieved in post-larval stages. We suggest that larval morphology is subject to common constraints across the phylogeny.  相似文献   

6.
1. The niche variation hypothesis predicts that among‐individual variation in niche use will increase in the presence of intraspecific competition and decrease in the presence of interspecific competition. We sought to determine whether the local isotopic niche breadth of fish inhabiting a wetland was best explained by competition for resources and the niche variation hypothesis, by dispersal of individuals from locations with different prey resources or by a combination of the two. We analysed stable isotopes of carbon and nitrogen as indices of feeding niche and compared metrics of within‐site spread to characterise site‐level isotopic niche breadth. We then evaluated the explanatory power of competing models of the direct and indirect effects of several environmental variables spanning gradients of disturbance, competition strength and food availability on among‐individual variation of the eastern mosquitofish (Gambusia holbrooki). 2. The Dispersal model posits that only the direct effect of disturbance (i.e. changes in water level known to induce fish movement) influences among‐individual variation in isotopic niche. The Partitioning model allows for only direct effects of local food availability on among‐individual variation. The Combined model allows for both hypotheses by including the direct effects of disturbance and food availability. 3. A linear regression of the Combined model described more variance than models limited to the variables of either the Dispersal or Partitioning models. Of the independent variables considered, the food availability variable (per cent edible periphyton) explained the most variation in isotopic niche breadth, followed closely by the disturbance variable (days since last drying event). 4. Structural equation modelling provided further evidence that the Combined model was best supported by the data, with the Partitioning and the Dispersal models only modestly less informative. Again, the per cent edible periphyton was the variable with the largest direct effect on niche variability, with other food availability variables and the disturbance variable only slightly less important. Indirect effects of heterospecific and conspecific competitor densities were also important, through their effects on prey density. 5. Our results support the Combined hypotheses, although partitioning mechanisms appear to explain the most diet variation among individuals in the eastern mosquitofish. The results also support some predictions of the niche variation hypothesis, although both conspecific and interspecific competition appeared to increase isotopic niche breadth in contrast to predictions that interspecific competition would decrease it. We think this resulted from high diet overlap of co‐occurring species, most of which consume similar macroinvertebrates.  相似文献   

7.
The diel and seasonal activity of epigeal predators associated with pre-imaginal Diabrotica virgifera was described. Due to its duration, the egg stage was exposed to more predators than the larval stage. Most predators were easily categorized into day- and night-active guilds. Seasonal and diel niche partitioning may contribute to the maintenance of this diverse and abundant predator community.  相似文献   

8.
It has been hypothesized that inter-specific competition will reduce species niche utilization and drive morphological evolution in character displacement. In the absence of a competitor, intra-specific competition may favor an expansion of the species niche and drive morphological evolution in character release. Despite of this theoretical framework, we sometimes find potential competitor species using the same niche range without any partitioning in niche. We used a database on test fishing in Sweden to evaluate the factors (inter- and intraspecific competition, predation, and abiotic factors) that could influence habitat choice of two competitor species. The pattern from the database shows that the occurrence of perch and roach occupying both littoral and pelagic habitats of lakes in Sweden is a general phenomenon. Furthermore, the results from the database suggest that this pattern is due to intra-specific competition rather than inter-specific competition or predation. In a field study, we estimated the morphological variation in perch and roach and found that, individuals of both species caught in the littoral zone were more deeper bodied compared to individuals caught in the pelagic zone. Pelagic perch fed more on zooplankton compared to littoral perch, independent of size, whereas the littoral perch had more macroinvertebrates and fish in their diet. Pelagic roach fed more on zooplankton compared to littoral roach, whereas littoral individuals fed more on plant material. Furthermore, we sampled littoral and pelagic fish from another lake to evaluate the generality of our first results and found the same habitat associated morphology in both perch and roach. The results show a consistent multi-species morphological separation in the littoral and pelagic habitats. This study suggests that intra-specific competition is possibly more important than inter-specific competition for the morphological pattern in the perch-roach system.  相似文献   

9.
It is often hypothesized that two species competing for the same resource cannot stably coexist unless they partition their resources in space and time. More recently stable isotope analyses have complemented traditional, observation‐based niche research by conceptualizing many of the characteristics of communities, for example, trophic niche width and the partitioning of resources. Here we quantify resource partitioning of sympatric small mammal species in an African ecosystem by analysing stable isotope ratios of hair collected from a South African forest‐grassland vegetation mosaic, and combine this with known spatial and temporal behavioural data to interpret community competition and resource partitioning. We observe niche separation to different degrees across the entire community, with different species displaying either unique isotopic dietary preferences, or partitioning resources in space and/or time. δ13C values were more enriched in species that inhabited afromontane grassland compared with those that inhabited afromontane forest, a reflection of the dominant vegetation in each habitat. Contrary to expectations, arboreal rodents occupied higher trophic positions than terrestrial rodents and approaching δ15N values similar to insectivorous shrews, suggesting that arboreal rodents feed on items such as arthropods enriched in 15N. While grassland species display phenotypic plasticity in terms of dietary preferences, small mammals that occurred in forests display narrow niche preferences, suggesting these species may be particularly sensitive to habitat modifications. Our results illustrate that the use of stable isotopes can be used in conjunction with spatial and temporal behavioural knowledge to elucidate resource partitioning in small African mammal communities.  相似文献   

10.
陈铭  黄林娟  黄贵  刘昕宇  薛跃规 《生态学报》2023,43(7):2831-2844
研究不同发育时期天坑草本植物的多样性,能更好的理解草本层对天坑环境变化的响应机制。以广西大石围天坑群中不同发育时期天坑(初期、中期和后期)为研究对象,采用空间代替时间的方法,分析不同发育时期天坑草本植物多样性和生态位变化规律。结果表明:(1)广西大石围天坑群调查样地共记录到草本植物34科71属98种,以鳞毛蕨科、荨麻科、凤尾蕨科、菊科和禾本科为主。(2)后期天坑草本植物的Pielou′s指数和Shannon-Wiener指数均显著高于初期天坑(P<0.05),表明随着天坑发育到后期,草本层物种数逐渐增多,物种分布更为均匀。(3)随着天坑的发育,草本层喜阴植物重要值下降,喜阳、半阴植物重要值上升,喜阳植物逐渐取代喜阴植物在群落中占据优势地位,草本层将经历喜阴植物—喜阴、半阴植物—喜阳植物的三个生态型转变过程。(4)各发育时期优势草本生态位相似性比例和生态位重叠平均值均<0.5,表明天坑不同发育时期对草本植物的生态位影响较小,各时期草本层总体呈现生态分化明显、种间竞争较弱的特点。(5)各发育时期优势草本生态位重叠值大、相对高度差小的种对数中,不同生态习性的种对数占比不同,中期天...  相似文献   

11.
Adaptation to a previously unoccupied niche within a single population is one of the most contentious topics in evolutionary biology as it assumes the simultaneous evolution of ecologically selected and preference traits. Here, we demonstrate behavioral adaptation to contrasting hydrological regimes in a sympatric mosaic of Pogonus chalceus beetle populations, and argue that this adaptation may result in nonrandom gene flow. When exposed to experimental inundations, individuals from tidal marshes, which are naturally subjected to frequent but short floods, showed a higher propensity to remain submerged compared to individuals from seasonal marshes that are inundated for several months. This adaptive behavior is expected to decrease the probability that individuals will settle in the alternative habitat, resulting in spatial sorting and reproductive isolation of both ecotypes. Additionally, we show that this difference in behavior is induced by the environmental conditions experienced by the beetles during their nondispersive larval stages. Hence, accidental or forced ovipositioning in the alternative habitat may induce both an increased performance and preference to the natal habitat type. Such plastic traits could play an important role in the most incipient stages of divergence with gene flow.  相似文献   

12.
Milan Vogrin 《Biologia》2006,61(5):579-584
Population and ecological parameters such as numbers of larvae, microhabitat use, niche breadth and niche overlap of three species of syntopic larval newts (Alpine newt Triturus alpestris, Italian crested newt T. carnifex, and common newt T. vulgaris) were studied for two years in a small pond at 1160 m a.s.l. in NE Slovenia. Differences in microhabitat partitioning among larval newts were small. The largest niche breadth was estimated for larval T. alpestris, and the narrowest estimate was for larval T. carnifex in both years. Ecological differences seem to be very small and quite variable among sites and years. It appears that the developmental stage and size of newt larvae are more important in explaining resource partitioning than the characteristics of each species. Because of the absence of potential invertebrate predators and adult newts in the second half of the breeding season, the injuries could only be caused by intra-and interspecific predation attempts.  相似文献   

13.
Fin and humpback whales are large consumers that are often sympatric, effectively sharing or partitioning their use of habitat and prey resources. Stable carbon and nitrogen isotopes in the skin of fin and humpback whales from two regions in the western Gulf of Alaska, Kodiak, and Shumagin Islands, were analyzed to test the hypothesis that these sympatric baleen whales exhibit trophic niche partitioning within these regions. Standard ellipse areas, estimated using Bayesian inference, suggested that niche partitioning between species is occurring in the Kodiak region but not in the Shumagin Islands. Isotopic mixing models based on stable isotopes from whales and local prey samples, were used to estimate possible diet solutions for whales in the Kodiak region. Comparison of isotopic niches and diet models support niche partitioning, with fin whales foraging primarily on zooplankton and humpback whales foraging on zooplankton and small forage fish. The results of this study show that niche partitioning between sympatric species can vary by region and may be the result of prey availability, prey preferences, or both.  相似文献   

14.
  1. Ecological opportunity (i.e. the diversity of available resources) has a pivotal role in shaping niche variation and trophic specialisation of animals. However, ecological opportunity can be described with regard to both diversity and abundance of resources. The degree to which these two components contribute to niche variation remains unexplored.
  2. To address this, we used an extensive dataset on fish diet and benthic invertebrate diversity and density from 73 sampling events in three Norwegian rivers in order to explore realised trophic niches and the response of dietary niche variation along gradients of resource diversity (potential trophic niches), resource density (as a proxy of resource abundance) and fish density (as a proxy of inter‐ and intra‐specific competition) in a freshwater top predator (the brown trout, Salmo trutta L.).
  3. Linear models indicated that individual and population niche variation increased with increasing ecological opportunity in terms of prey diversity. However, no simple cause‐and‐effect associations between niche indices and prey abundance were found. Our multiple regression analyses indicated that the abundance of certain resources (e.g. Chironomidae) can interact with prey diversity to determine individual and population realised trophic niches. Niche variation (within‐individual component and inter‐individual diet variation) decreased with increasing inter‐ and intra‐specific competition.
  4. This study extends prevailing trophic ecology theory by identifying diversity, rather than density, of available prey resources as a primary driver of niche variation in fish of temperate riverine systems with no extensive resource limitation. The study also shows that ecological opportunity may mask the direction of the effect (compression or expansion) of competition on niche variation when food resources are diverse.
  5. Our study provides novel empirical insight to the driving forces behind niche variation and reveals that diversity, rather than density, of available prey resources may be a primary driver of niche variation in freshwater fish. Our study supports the view that a broader potential trophic niche promotes broader realised trophic niche variation by individuals, which leads to individual niche diversification by opening access to alternatives resources, resulting in a concomitant rise in the realised trophic niche width of the population.
  相似文献   

15.
Many fish species are zooplanktivorous at the onset of exogenous feeding, but distinct shifts in their foraging biology may occur with development. This study investigated the food and feeding relationships of the larvae and 0+ year juveniles of 13 fish species in 'main river', 'marina' and 'pond' macrohabitats in the lower River Trent, England. Young larvae had narrow diet spectra, with feeding diversity and the importance of species-specific traits increasing with development. Two main ontogenetic shifts in diet were differentiated, corresponding with the transition from finfold to finformed larvae, and from the larval to the juvenile period. Dietary overlap was generally greatest among ecologically similar species, with competition and resource partitioning most likely where prey availability was lowest. The greater availability of zooplankton in connected waterbodies compared with main river channels provides suitable prey for a wide range of fish species, and may enhance recruitment success.  相似文献   

16.
The ecological role of parasites in the early life-history stages of coral reef fish is far from clear. Parasitism in larval, recently settled and juvenile stages of a coral reef fish damselfish (Pomacentridae) was therefore investigated by quantifying the ontogenetic change in parasite load and comparing the growth rates of parasitized juvenile fish to those of unparasitized ones. Parasite prevalence in two lunar pulses of Pomacentrus moluccensis was 4 and 0% for larval stage fish, 34 and 56% for recently settled fish and 42 and 49% for juveniles. A significant increase in parasite prevalence with age group was found; the most marked increase occurred immediately after larval fish had settled. Standard length did not model prevalence well; as length is a proxy for age, this indicates that the higher prevalence in recently settled and juvenile fish compared with larvae was not a simple result of parasites accumulating with age. In one of three cohorts, there was some evidence that parasitism affected the growth rate of juveniles, as measured by otolith width. The study suggests that settling on the reef exposes young fish to potentially harmful parasites. This supports the idea that the pelagic phase may have the effect of reducing the exposure of young fish to the debilitating effects of parasites.  相似文献   

17.
Kin selection theory states that when resources are limited and all else is equal, individuals will direct competition away from kin. However, when competition between relatives is completely local, as is the case in granivorous insects whose larval stages spend their lives within a single seed, this can reduce or even negate the kin-selected benefits. Instead, an increase in competition may have the same detrimental effects on individuals that forage with kin as those that forage with non-kin. In a factorial experiment we assessed the effects of relatedness and competition over food on the survival and on fitness-related traits of the bruchid beetle Callosobruchus maculatus. Relatedness of competitors did not affect the survival of larvae. Larval survival substantially decreased with increasing larval density, and we found evidence that beetles maturing at a larger size were more adversely affected by competition, resulting in lower survival rates. Furthermore, females showed a reduction in their growth rate with increasing larval density, emerging smaller after the same development time. Males increased their growth rate, emerging earlier but at a similar size when food was more limited. Our results add to the growing number of studies that fail to show a relationship between relatedness and a reduction in competition between relatives in closed systems, and emphasize the importance of the scale at which competition between relatives occurs.  相似文献   

18.
Nonsessile animals could partition the use of resources in different axes, reducing the effects of competition and allowing coexistence. Here, we investigated the spatial and trophic niche dimensions in four lizard assemblages in the Neotropical semiarid Caatinga to investigate the determinants of resource use and the extent to which lizards partition their niches. We sampled each lizard assemblage once, for 10 days, in the dry season of 2017 and 2018. In two lizard assemblages, we detected nonrandom niche overlap patterns that were higher or lower than expected by chance. The high niche overlap patterns suggest that either there is intense current competition for available microhabitats or an abundance of microhabitats. The lower niche overlap may be influenced by the presence of species adapted to sandy habitats (psammophilous), suggesting that spatial partitioning detected has historical basis, which is supported by the pPCA results and by the lack of patterns in the realized niche distribution of species across niche space. We detected trophic niche partitioning in three lizard assemblages. In one assemblage, we discovered random spatial and trophic niche overlap patterns, revealing that competition is not a determining factor in the structure of that assemblage. In fact, phylogenetic effects were predominantly the main determinants of resource use in the four studied lizard assemblages. Arid and semiarid habitats cover about one third of land surface of the world. Comparisons between our findings and those from other regions of the world may aid identify general trends in the lizard ecology of dry environments.  相似文献   

19.
Interspecific competition between individuals of different species can result in reductions in their fecundity, growth or survival, reflecting differential exploitation of resources that become intensified due to spatial co-occurrence, ecological similarity and increased population densities. As two species cannot occupy the same niche, coexistence is only possible if the available resources are used in non-overlapping manners such as niche partitioning or the use of refuges. Among agricultural insect pests, such as fruit flies of the family Tephritidae, competitive interactions can result in competitive displacement, host changes, or the expansion or restriction of the numbers of hosts utilized that can have negative consequences for human agricultural activities. We evaluated the competitive interactions between two fruit fly species of the genus Anastrepha, Anastrepha obliqua (Macquart, 1835) and Anastrepha fraterculus (Wiedmann, 1830), on their respective preferred hosts (mangoes and guava). Experiments of larval competition and competition for ovipositioning sites by adult females were performed to compare the parameters of larval development time, numbers of pupae and emerged adults and numbers of ovipositions in the presence or absence of interspecific competition. We observed that the interactions between those species were asymmetrical and hierarchical, and our results suggest a competitive displacement of A. fraterculus by A. obliqua when those two species are present on the same fruit, whether mangoes or guavas.  相似文献   

20.
Acknowledgments     
In this study we investigated the temporal variability of N-source utilization of pioneer plant species in different early successional stages of dry acidic grasslands. Current theory states that plant species occupy distinct ecological niches and that there are species-specific, temporal N-uptake patterns. We hypothesized that small-scale dynamics in the natural habitat may affect niche differentiation among plant species. We investigated N-uptake patterns of two co-occurring plant species from different functional groups (Corynephorus canescens, Rumex acetosella) under natural conditions using 15N-labeled nitrate and ammonium in three different early successional stages during early and late summer. We found (1) marked seasonal dynamics with respect to N-uptake and N-source partitioning, and (2) different uptake rates across successional stages but a similar N-form utilization of both species. Nitrate was the main N-source in the early and later successional stages, but a shift towards enhanced ammonium uptake occurred at the cryptogam stage in June. Both species increased N-uptake in the later successional stage in June, which was associated with increasing plant biomass in C. canescens, whereas R. acetosella showed no significant differences in plant biomass and root/shoot-ratio between successional stages. Ammonium uptake decreased in both species across all stages with increasing drought. Nevertheless, the peak time of N-uptake differed between the successional stages: in the early successional site, with the lowest soil N, plants were able to extend N-uptake into the drier season when uptake rates in the other successional stages had already declined markedly. Hence, we found a pronounced adjustment in the realized niches of co-occurring plant species with respect to N-uptake. Our results indicate that ecological niches can be highly dynamic and that niche sharing between plant species may occur instead of niche partitioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号