首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The serine/threonine kinase HIPK2 phosphorylates the p53 protein at Ser 46, thus promoting p53-dependent gene expression and subsequent apoptosis. Here, we show that DNA damaging chemotherapeutic drugs cause degradation of endogenous HIPK2 dependent on the presence of a functional p53 protein. Early induced p53 allows caspase-mediated cleavage of HIPK2 following aspartic acids 916 and 977. The resulting C-terminally truncated HIPK2 forms show an enhanced induction of the p53 response and cell death, thus allowing the rapid amplification of the p53-dependent apoptotic program during the initiation phase of apoptosis by a regulatory feed-forward loop. The active HIPK2 fragments are further degraded during the execution and termination phase of apoptosis, thus ensuring the occurrence of HIPK2 signaling only during the early phases of apoptosis induction.  相似文献   

2.
3.
4.
Non-receptor tyrosine kinase Src is a master regulator of cell proliferation. Hyperactive Src is a potent oncogene and a driver of cellular transformation and carcinogenesis. Homeodomain-interacting protein kinase 2 (HIPK2) is a tumor suppressor mediating growth suppression and apoptosis upon genotoxic stress through phosphorylation of p53 at Ser46. Here we show that Src phosphorylates HIPK2 and changes its subcellular localization. Using mass spectrometry we identified 9 Src-mediated Tyr-phosphorylation sites within HIPK2, 5 of them positioned in the kinase domain. By means of a phosphorylation-specific antibody we confirm that Src mediates phosphorylation of HIPK2 at Tyr354. We demonstrate that ectopic expression of Src increases the half-life of HIPK2 by interfering with Siah-1-mediated HIPK2 degradation. Moreover, we find that hyperactive Src binds HIPK2 and redistributes HIPK2 from the cell nucleus to the cytoplasm, where both kinases partially colocalize. Accordingly, we find that hyperactive Src decreases chemotherapeutic drug-induced p53 Ser46 phosphorylation and apoptosis activation. Together, our results suggest that Src kinase suppresses the apoptotic p53 pathway by phosphorylating HIPK2 and relocalizing the kinase to the cytoplasm.  相似文献   

5.
6.
7.
8.
Rui Y  Xu Z  Lin S  Li Q  Rui H  Luo W  Zhou HM  Cheung PY  Wu Z  Ye Z  Li P  Han J  Lin SC 《The EMBO journal》2004,23(23):4583-4594
  相似文献   

9.
10.
Ultraviolet irradiation (UV) is the major risk factor for the development of skin cancer. Moreover, increasing evidence suggests cutaneotropic human papillomaviruses (HPV) from the beta genus to play a causal role as a co-factor in the development of cutaneous squamous cell carcinoma. Homeodomain-interacting protein kinase 2 (HIPK2) operates as a potential suppressor in skin tumorigenesis and is stabilized by UV-damage. HIPK2 is an important regulator of apoptosis, which forms a complex with the tumor suppressor p53, mediating p53 phosphorylation at Ser 46 and thus promoting pro-apoptotic gene expression. In our study, we demonstrate that cutaneous HPV23 E6 protein directly targets HIPK2 function. Accordingly, HPV23 E6 interacts with HIPK2 both in vitro and in vivo. Furthermore, upon massive UVB-damage HPV23 E6 co-localizes with endogenous HIPK2 at nuclear bodies. Functionally, we demonstrate that HPV23 E6 inhibits HIPK2-mediated p53 Ser 46 phosphorylation through enforcing dissociation of the HIPK2/p53 complex. In addition, HPV23 E6 co-accumulates with endogenous HIPK2 upon UV damage suggesting a mechanism by which HPV23 E6 keeps HIPK2 in check after UV damage. Thus, cutaneous HPV23 E6 prevents HIPK2-mediated p53 Ser 46 phosphorylation, which may favour survival of UV-damaged keratinocytes and skin carcinogenesis by apoptosis evasion.  相似文献   

11.
12.
13.
14.
Human MCF-7 breast cancer cells are relatively resistant to conventional chemotherapy due to the lack of caspase-3 activity. We reported recently that roscovitine (ROSC), a potent cyclin-dependent kinase 2 inhibitor, arrests human MCF-7 breast cancer cells in the G(2) phase of the cell cycle and concomitantly induces apoptosis. Exposure of MCF-7 cells to ROSC also strongly activates the wt p53 tumor suppressor protein in a time- and dose-dependent manner. The p53 level increased despite upregulation of Hdm-2 protein and was attributable to the site-specific phosphorylation at Ser-46. The p53 protein phosphorylated at serine 46 causes the up-regulation of the p53AIP1 protein, a component of mitochondria. In the present study we identified the pathway mediating ROSC-induced p53 activation. Exposure of MCF-7 cells to ROSC activated homeodomain-intereacting protein kinase-2 (HIPK2). The overexpression of wild-type but not kinase inactive HIPK2 increased the basal and ROSC-induced level of p53 phosphorylation at Ser-46 and strongly enhanced the rate of apoptosis in cells exposed to ROSC. We show that HIPK2 is activated by ROSC and mediates ROSC-induced P-Ser-46-p53, thereby stabilizing wt p53 and increasing the efficacy of drug-induced apoptosis in MCF-7 cells. These results identify HIPK2 as a component of the ROSC-induced signaling pathway leading to the stabilization and activation of wt p53 protein.  相似文献   

15.
Upon treatment with some DNA damaging agents, human H1299 tumor-derived cells expressing inducible versions of wild-type or mutant p53 with inactive transactivation domain I (p53Q22/S23) undergo apoptosis. In cells expressing either version of p53, caspase 2 activation is required for release of cytochrome c and cell death. Furthermore, silencing of PIDD (a factor previously shown to be required for caspase 2 activation) by siRNA suppresses apoptosis by both wild-type p53 and p53Q22/S23. Despite the finding that caspase 2 is essential for DNA damage-facilitated, p53-mediated apoptosis, induction of wild-type p53 (with or without DNA damage) resulted in a reduction of caspase 2 mRNA and protein levels. In this study we sought to provide a mechanism for the negative regulation of caspase 2 by p53 as well as provide insight as to why p53 may repress a key mediator of p53-dependent apoptosis. Mechanistically, we show that DNA binding and/or transactivation domains of p53 are crucial for mediating transrepression. Further, expression of p21 (in p53-null cells inducibly expressing p21) is sufficient to mediate repression of caspase 2. Deletion of p21 or E2F-1 not only abrogated repression of caspase 2, but also stimulated the expression of caspase 2 above basal levels, implicating the requirement for an intact p21/Rb/E2F pathway in the down-regulation of caspase 2. As this p53/p21-dependent repression of caspase 2 can occur in the absence of DNA damage, caspase 2 repression does not simply seem to be a consequence of the apoptotic process. Down-regulation of caspase 2 levels by p53 may help to determine cell fate by preventing cell death when unnecessary.  相似文献   

16.
PUMA, a novel proapoptotic gene, is induced by p53.   总被引:27,自引:0,他引:27  
  相似文献   

17.
18.
ZBP-89-induced apoptosis is p53-independent and requires JNK   总被引:1,自引:0,他引:1  
ZBP-89 induces apoptosis in human gastrointestinal cancer cells through a p53-independent mechanism. To understand the apoptotic pathway regulated by ZBP-89, we identified downstream signal transduction targets. Ectopic expression of ZBP-89 induced apoptosis through the mitochondrial pathway and was accompanied by activation of all three MAP kinase subfamilies: JNK1/2, ERK1/2 and p38 MAP kinase. ZBP-89-induced apoptosis was markedly enhanced by ERK inhibition with U0126. In contrast, inhibiting JNK with a JNK1-specific peptide inhibitor or dominant-negative JNK2 expression abrogated ZBP-89-mediated apoptosis. The p38 inhibitor SB202190 had no effect on ZBP-89-induced cell death. Protein dephosphorylation assays revealed that ZBP-89 activates JNK via repression of JNK dephosphorylation. Oligonucleotide microarray analyses revealed that ectopic expression of ZBP-89 downregulated expression of the dual-specificity phosphatase MKP6. Overexpression of MKP6 blocked ZBP-89-induced JNK phosphorylation and PARP cleavage. In addition, ectopic expression of ZBP-89 repressed Bcl-xL and Mcl-1 expression, but had no effect on Bcl-2. Silencing ZBP-89 with small interfering RNA enhanced both Bcl-xL and Mcl-1 expression. Taken together, ZBP-89-mediated apoptosis occurs via a p53-independent mechanism that requires JNK activation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号