首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the developing embryonic mouse hindbrain, we have shown that previously widespread synchronized spontaneous activity at E11.5 retracts to the initiating zone of the rostral hindbrain by E13.5, and ceases completely by E14.5. We now confirm that at E11.5 and E13.5, the primary driver of spontaneous activity is serotonergic input, while other transmitters (GABA, glutamate, NE, and ATP) have only modulatory roles. Using immunocytochemistry, we also show that at E13.5, 5-HT-positive neurons in the midline extend over a larger rostro-caudal distance than at E11.5, and that in the presumptive initiating zone, cell bodies occupy a band that extends 200 microm laterally on each side of the midline, with extensive axonal processes. The 5-HT2A receptor retains expression in lateral tissue over this developmental time. We find that in addition to being sensitive to 5-HT receptor antagonists, spontaneous activity is also abolished by blockers of gap junctions, and is increased in frequency and lateral spread by application of ammonium, presumably via increased intracellular pH augmenting gap junction conductance. Thus, 5-HT neurons of the midline remain the primary drivers of spontaneous activity at several stages of development in the hindbrain, relying in part on gap junctional communication during initiation of activity.  相似文献   

2.
Spontaneous activity regulates many aspects of central nervous system development. We demonstrate that in the embryonic chick hindbrain, spontaneous activity is expressed between embryonic days (E) 6–9. Over this period the frequency of activity decreases significantly, although the events maintain a consistent rhythm on the timescale of minutes. At E6, the activity is pharmacologically dependent on serotonin, nACh, GABAA, and glycine input, but not on muscarinic, glutamatergic, or GABAB receptor activation. It also depends on gap junctions, t‐type calcium channels and TTX‐sensitive ion channels. In intact spinal cord‐hindbrain preparations, E6 spontaneous events originate in the spinal cord and propagate into lateral hindbrain tissue; midline activity follows the appearance of lateral activity. However, the spinal cord is not required for hindbrain activity. There are two invariant points of origin of activity along the midline, both within the caudal group of serotonin‐expressing cell bodies; one point is caudal to the nV exit point while the other is caudal to the nVII exit point. Additional caudal midline points of origin are seen in a minority of cases. Using immunohistochemistry, we show robust differentiation of the serotonergic raphe near the midline at E6, and extensive fiber tracts expressing GAD65/67 and the nAChR in lateral areas; this suggests that the medial activity is dependent on serotonergic neuron activation, while lateral activity requires other transmitters. Although there are differences between species, this activity is highly conserved between mouse and chick, suggesting that developmental event(s) within the hindbrain are dependent on expression of this spontaneous activity. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

3.
The lack of the Hes1 gene leads to the failure of cranial neurulation due to the premature onset of neural differentiation. Hes1 homozygous null mutant mice displayed a neural tube closure defect, and exencephaly was induced at the mid/hindbrain boundary. In the mutant mesencephalon, the roof plate was not formed and therefore the ventricular zone showing cell proliferation was displaced to the brain surface. Furthermore, the telencephalon and ventral diencephalon were defective. Despite the severe defects of neurogenesis in null mutants, the mesencephalic dopaminergic (mesDA) neurons were specified at the midline of the ventral mesencephalon in close proximity to two important signal centers — floor plate and mid/hindbrain boundary (i.e., the isthmic organizer). Using mesDA neuronal markers, tyrosine hydroxylase (TH) and Pitx3, the development of mesDA neurons was studied in Hes1 null mice and compared with that in the wild type. At early stages, between embryonic day (E) 11.5 and E12.5, mesDA neurons were more numerous in null mutants than in the wild type. From E13.5 onward, however, the cell number and fiber density of mesDA neurons were decreased in the mutants. Their distribution pattern was also different from that of the wild type. In particular, mesDA neurons grew dorsally and invaded the rostral hindbrain. 5-HT neurons were also ectopically located in the mutant midbrain. Thus, the loss of Hes1 resulted in disturbances in the inductive and repulsive activities of the isthmic organizer. It is proposed that Hes1 plays a role in regulating the location and density of mesDA neurons.  相似文献   

4.
Central nervous system (CNS) development depends upon spontaneous activity (SA) to establish networks. We have discovered that the mouse midbrain has SA expressed most robustly at embryonic day (E) 12.5. SA propagation in the midbrain originates in midline serotonergic cell bodies contained within the adjacent hindbrain and then passes through the isthmus along ventral midline serotonergic axons. Once within the midbrain, the wave bifurcates laterally along the isthmic border and then propagates rostrally. Along this trajectory, it is carried by a combination of GABAergic and cholinergic neurons. Removing the hindbrain eliminates SA in the midbrain. Thus, SA in the embryonic midbrain arises from a single identified pacemaker in a separate brain structure, which drives SA waves across both regions of the developing CNS. The midbrain can self‐initiate activity upon removal of the hindbrain, but only with pharmacological manipulations that increase excitability. Under these conditions, new initiation foci within the midbrain become active. Anatomical analysis of the development of the serotonergic axons that carry SA from the hindbrain to the midbrain indicates that their increasing elongation during development may control the onset of SA in the midbrain. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

5.
During development, the vertebrate hindbrain is subdivided along its anteroposterior axis into a series of segmental bulges called rhombomeres. These segments in turn generate a repeated pattern of rhombomere-specific neurons, including reticular and branchiomotor neurons. In amphioxus (Cephalochordata), the sister group of the vertebrates, a bona fide segmented hindbrain is lacking, although the embryonic brain vesicle shows molecular anteroposterior regionalization. Therefore, evaluation of the segmental patterning of the central nervous system of agnathan embryos is relevant to our understanding of the origin of the developmental plan of the vertebrate hindbrain. To investigate the neuronal organization of the hindbrain of the Japanese lamprey, Lethenteron japonicum, we retrogradely labeled the reticulospinal and branchial motoneurons. By combining this analysis with a study of the expression patterns of genes identifying specific rhombomeric territories such as LjKrox20, LjPax6, LjEphC and LjHox3, we found that the reticular neurons in the lamprey hindbrain, including isthmic, bulbar and Mauthner cells, develop in conserved rhombomere-specific positions, similar to those in the zebrafish. By contrast, lamprey trigeminal and facial motor nuclei are not in register with rhombomere boundaries, unlike those of gnathostomes. The trigeminal-facial boundary corresponds to the rostral border of LjHox3 expression in the middle of rhombomere 4. Exogenous application of retinoic acid (RA) induced a rostral shift of both the LjHox3 expression domain and branchiomotor nuclei with no obvious repatterning of rhombomeric segmentation and reticular neurons. Therefore, whereas subtype variations of motoneuron identity along the anteroposterior axis may rely on Hox-dependent positional values, as in gnathostomes, such variations in the lamprey are not constrained by hindbrain segmentation. We hypothesize that the registering of hindbrain segmentation and neuronal patterning may have been acquired through successive and independent stepwise patterning changes during evolution.  相似文献   

6.
Little is known about the role of the hindbrain during development of spinal network activity. We set out to identify the activity patterns of reticulospinal (RS) neurons of the hindbrain in fictively swimming (paralyzed) zebrafish larvae. Simultaneous recordings of RS neurons and spinal motoneurons revealed that these were coactive during spontaneous fictive swim episodes. We characterized four types of RS activity patterns during fictive swimming: (i) a spontaneous pattern of discharges resembling evoked high-frequency spiking during startle responses to touch stimuli, (ii) a rhythmic pattern of excitatory postsynaptic potentials (EPSPs) whose frequency was similar to the motoneuron EPSP frequency during swim episodes, (iii) an arrhythmic pattern consisting of tonic firing throughout swim episodes, and (iv) RS cell activity uncorrelated with motoneuron activity. Despite lesions to the rostral spinal cord that prevented ascending spinal axons from entering the hindbrain (normally starting at approximately 20 h), RS neurons continued to display the aforementioned activity patterns at day 3. However, removal of the caudal portion of the hindbrain prior to the descent of RS axons left the spinal cord network unable to generate the rhythmic oscillations normally elicited by application of N-methyl-d-aspartate (NMDA), but in approximately 40% of cases chronic incubation in NMDA maintained rhythmic activity. We conclude that there is an autonomous embryonic hindbrain network that is necessary for proper development of the spinal central pattern generator, and that the hindbrain network can partially develop independently of ascending input.  相似文献   

7.
8.
Motor neurons are segmentally organised in the developing chick hindbrain, with groups of neurons occupying pairs of hindbrain segments or rhombomeres. The branchiomotor nucleus of the trigeminal nerve occupies rhombomeres 2 and 3 (r2 and r3), that of the facial nerve r4 and r5, and that of the glossopharyngeal nerve r6 and r7. Branchiomotor neuron cell bodies lie within the basal plate, forming columns on either side of the ventral midline floor plate. Axons originating in rhombomeres 2, 4 and 6 grow laterally (dorsally) towards the exit points located in the alar plates of these rhombomeres, while axons originating in odd-numbered rhombomeres 3 and 5 grow laterally and then rostrally, crossing a rhombomere boundary to reach their exit point. Examination of the trajectories of motor axons in odd-numbered segments at late stages of development (19-25) showed stereotyped pathways, in which axons grew laterally before making a sharp turn rostrally. During the initial phase of outgrowth (stage 14-15), however, axons had meandering courses and did not grow in a directed fashion towards their exit point. When r3 or r5 was transplanted with reversed rostrocaudal polarity prior to motor axon outgrowth, the majority of axons grew to their appropriate, rostral exit point, despite the inverted neuroepithelial polarity. In r3 reversals, however, there was a considerable increase in the normally small number of axons that grew out via the caudal, r4 exit point. These findings are discussed with relevance to the factors involved in motor neuron specification and axon outgrowth in the developing hindbrain.  相似文献   

9.
Evidence for a cell-specific action of Reelin in the spinal cord   总被引:1,自引:0,他引:1  
Reelin, the extracellular matrix protein missing in reeler mice, plays an important role in neuronal migration in the central nervous system. We examined the migratory pathways of phenotypically identified spinal cord neurons to determine whether their positions were altered in reeler mutants. Interneurons and projection neurons containing choline acetyltransferase and/or NADPH diaphorase were studied in E12.5-E17.5 reeler and wild-type embryos, and their final locations were assessed postnatally. While three groups of dorsal horn interneurons migrated and differentiated normally in reeler mice, the migrations of both sympathetic (SPNs) and parasympathetic preganglionic neurons (PPNs) were aberrant in the mutants. Initially reeler and wild-type SPNs were detected laterally near somatic motor neurons, but by E13.5, many reeler SPNs had mismigrated medially. Postnatally, 79% of wild-type SPNs were found laterally, whereas in reeler, 92% of these neurons were positioned medially. At E13.5, both reeler and wild-type PPNs were found laterally, but by E14.5, reeler PPNs were scattered across the intermediate spinal cord while wild-type neurons correctly maintained their lateral location. By postnatal day 16, 97% of PPNs were positioned laterally in wild-type mice; in contrast, only 62% of PPNs were found laterally in mutant mice. In E12.5-E14.5 wild-type mice, Reelin-secreting cells were localized along the dorsal and medial borders of both groups of preganglionic neurons, but did not form a solid barrier. In contrast, Dab1, the intracellular adaptor protein thought to function in Reelin signaling, was expressed in cells having positions consistent with their identification as SPNs and PPNs. In combination, these findings suggest that, in the absence of Reelin, both groups of autonomic motor neurons migrate medially past their normal locations, while somatic motor neurons and cholinergic interneurons in thoracic and sacral segments are positioned normally. These results suggest that Reelin acts in a cell-specific manner on the migration of cholinergic spinal cord neurons.  相似文献   

10.
Most post-crossing commissural axons turn into longitudinal paths to make synaptic connections with their targets. Mechanisms that control their rostrocaudal turning polarity are still poorly understood. We used the hindbrain as a model system to investigate the rostral turning of a laterally located commissural tract, identified as the caudal group of contralateral cerebellar-projecting second-order vestibular neurons (cC-VC). We found that the caudal hindbrain possessed a graded non-permissive/repulsive activity for growing cC-VC axons. This non-permissiveness/repulsion was in part mediated by glycosyl-phosphatidylinositol (GPI)-anchored ephrin A. We further demonstrated that ephrin A2 was distributed in a caudal-high/rostral-low gradient in the caudolateral hindbrain and cC-VC axons expressed EphA receptors. Finally, perturbing ephrin A/EphA signalling both in vitro and in vivo led to rostrocaudal pathfinding errors of post-crossing cC-VC axons. These results suggest that ephrin A/EphA interactions play a key role in regulating the polarity of post-crossing cC-VC axons as they turn into the longitudinal axis.  相似文献   

11.
Midkine and pleiotrophin comprise a family of heparin-binding growth factors, and are expressed in overlapping tissues during the mid- to late-gestation periods of mouse development. Their distinct expression during early mouse development, as revealed by in situ hybridization, was reported. Midkine was expressed in the embryonic ectoderm from as early as embryonic day (E5.5). In the neural tube midkine was expressed specifically in the neuroepithelium, that is, in the whole area of the neural tube at E9.5, and in the ventricular zone from E10.5-13.5. At E15.5, when the neuroepithelium disappeared, midkine concomitantly became undetectable. In contrast, pleiotrophin expression started exclusively in the neural plate at E8.5, and in the lateral plate of the neural tube at E9.5. It then became restricted to a dorsal ventricular zone from E11.5-13.5, and finally to the central gray neurons at E15.5. Moreover, pleiotrophin was expressed in the ventral horns. Among placental tissues, midkine was detected in the chorion, the fetal component of the placenta, whereas pleiotrophin was found in the decidua basalis, the maternal component of the placenta. The distinct expression of midkine and pleiotrophin suggests their differential role in early development.  相似文献   

12.
Neurons destined to form several precerebellar nuclei are generated in the dorsal neuroepithelium (rhombic lip) of caudal hindbrain. They form two ventrally directed migratory streams, which behave differently. While neurons in the superficial migration migrate in a subpial position and cross the midline to settle into the contralateral hindbrain, neurons in the olivary migration travel deeper in the parenchyma and stop ipsilaterally against the floor plate. In the present study, we compared the behavior of the two neuronal populations in an organotypic culture system that preserves several aspects of their in vivo environment. Both migrations occurred in mouse hindbrain explants dissected at E11.5 even when the floor plate was ablated at the onset of the culture period, indicating that they could rely on dorsoventral cues already distributed in the neural tube. Nevertheless, the local constraints necessary for the superficial migration were more specific than for the olivary migration. Distinct chemoattractive and chemorespulsive signal were found to operate on the migrations. The floor plate exhibited a strong chemoattractive influence on both migrations, which deviated from their normal path in the direction of ectopic floor plate fragments. It was also found to produce a short-range stop signal and to induce inferior olive aggregation. The ventral neural tube was also found to inhibit or slow down the migration of olivary neurons. Interestingly, while ectopic sources of netrin were found to influence both migrations, this effect was locally modulated and affected differentially the successive phases of migration. Consistent with this observation, while neurons in the superficial migration expressed the Dcc-netrin receptor, the migrating olivary neurons did not express Dcc before they reached the midline. Our observations provide a clearer picture of the hierarchy of environmental cues that influence the morphogenesis of these precerebellar nuclei.  相似文献   

13.
The most ventral structure of the developing neural tube, the floor plate (FP), differs in neurogenic capacity along the neuraxis. The FP is largely non-neurogenic at the hindbrain and spinal cord levels, but generates large numbers of dopamine (mDA) neurons at the midbrain levels. Wnt1, and other Wnts are expressed in the ventral midbrain, and Wnt/beta catenin signaling can at least in part account for the difference in neurogenic capacity of the FP between midbrain and hindbrain levels. To further develop the hypothesis that canonical Wnt signaling promotes mDA specification and FP neurogenesis, we have generated a model wherein beta-catenin is conditionally stabilized throughout the FP. Here, we unambiguously show by fate mapping FP cells in this mutant, that the hindbrain and spinal cord FP are rendered highly neurogenic, producing large numbers of neurons. We reveal that a neurogenic hindbrain FP results in the altered settling pattern of neighboring precerebellar neuronal clusters. Moreover, in this mutant, mDA progenitor markers are induced throughout the rostrocaudal axis of the hindbrain FP, although TH+ mDA neurons are produced only in the rostral aspect of rhombomere (r)1. This is, at least in part, due to depressed Lmx1b levels by Wnt/beta catenin signaling; indeed, when Lmx1b levels are restored in this mutant, mDA are observed not only in rostral r1, but also at more caudal axial levels in the hindbrain, but not in the spinal cord. Taken together, these data elucidate both patterning and neurogenic functions of Wnt/beta catenin signaling in the FP, and thereby add to our understanding of the molecular logic of mDA specification and neurogenesis.  相似文献   

14.
15.
We describe the regulatory interactions that cause anterior extension of the mouse 5' Hoxb expression domains from spinal cord levels to their definitive boundaries in the posterior hindbrain between embryonic day E10 and E11.5. This anterior expansion is retinoid dependent since it does not occur in mouse embryos deficient for the retinoic acid-synthesizing enzyme retinaldehyde dehydrogenase 2. A retinoic acid response element (RARE) was identified downstream of Hoxb5 and shown to be essential for expression of Hoxb5 and Hoxb8 reporter transgenes in the anterior neural tube. The spatio-temporal activity of this element overlaps with rostral extension of the expression domain of endogenous Hoxb5, Hoxb6 and Hoxb8 into the posterior hindbrain. The RARE and surrounding sequences are found at homologous positions in the human, mouse and zebrafish genome, which supports an evolutionarily conserved regulatory function.  相似文献   

16.
Animals lacking neurotrophin-3 (NT-3) are born with deficits in almost all sensory ganglia. Among these, the trigeminal ganglion is missing 70% of the normal number of neurons, a deficit which develops during the major period of neurogenesis between embryonic stages (E) 10.5 and E13.5. In order to identify the mechanisms for this deficit, we used antisera specific for TrkA, TrkB, and TrkC to characterize and compare the expression patterns of each Trk receptor in trigeminal ganglia of wild type and NT-3 mutants between E10.5 and E15.5. Strikingly, TrkA, TrkB, and TrkC proteins appear to be exclusively associated with neurons, not precursors. While some neurons show limited co-expression of Trk receptors at E11.5, by E13. 5 each neuron expresses only one Trk receptor. Neuronal birth dating and cell counts show that in wild-type animals all TrkB- and TrkC-expressing neurons are generated before E11.5, while the majority of TrkA-expressing neurons are generated between E11.5 and E13.5. In mice lacking NT-3, the initial formation of the ganglion, as assessed at E10.5, is similar to that in wild-type animals. At E11.5, however, the number of TrkC-expressing neurons is dramatically reduced and the number of TrkC-immunopositive apoptotic profiles is markedly elevated. By E13.5, TrkC-expressing neurons are virtually eliminated. At E11.5, compared to wild type, the number of TrkB-expressing neurons is also reduced and the number of TrkB immunoreactive apoptotic profiles is increased. TrkA neurons are also reduced in the NT-3 mutants, but the major deficit develops between E12.5 and E13.5 when elevated numbers of TrkA-immunoreactive apoptotic profiles are detected. Normal numbers of TrkA- and TrkB-expressing neurons are seen in a TrkC-deficient mutant. Therefore, our data provide evidence that NT-3 supports the survival of TrkA-, TrkB- and TrkC-expressing neurons in the trigeminal ganglion by activating directly each of these receptors in vivo.  相似文献   

17.
Retinoic acid (RA), an active metabolite of vitamin A, is a crucial signaling molecule involved in tissue morphogenesis during embryonic development. RA distribution and concentration is precisely regulated during embryogenesis by balanced complementary activities of RA synthesizing (RALDH) and metabolizing (CYP26) enzymes. Here, we describe the identification of a novel murine p450 cytochrome belonging to the CYP26 family, mCYP26C1. Sequence alignment show that mCYP26C1 is more closely related to mCYP26B1 than mCYP26A1. At early developmental stages (E8.0-E8.5), mCyp26C1 is expressed in prospective rhombomeres 2 and 4, in the first branchial arch and along the lateral surface mesenchyme adjacent to the rostral hindbrain. At E9.5, mCyp26C1 expression persists in rhombomere 2 and in the maxillary and mandibular components of the first branchial arch, and is strongly induced in the lateral cervical mesenchyme. By mid-gestation, mCyp26C1 is weakly expressed in the cervical mesenchyme and in the maxillary component of the first branchial arch. At E11.5, mCyp26C1 can only be seen in a narrow band in the lateral cervical mesenchyme. During late gestation, mCyp26C1 exhibits region-specific expression in the inner ear epithelium and a persistent expression in the inner dental epithelium of the developing teeth. This pattern of expression suggests that mCYP26C1 may play an important role in protecting the hindbrain, first branchial arch, otocyst and tooth buds against RA exposure during embryonic development.  相似文献   

18.
The integration of multisensory information takes place in the optic tectum where visual and auditory/mechanosensory inputs converge and regulate motor outputs. The circuits that integrate multisensory information are poorly understood. In an effort to identify the basic components of a multisensory integrative circuit, we determined the projections of the mechanosensory input from the periphery to the optic tectum and compared their distribution to the retinotectal inputs in Xenopus laevis tadpoles using dye‐labeling methods. The peripheral ganglia of the lateral line system project to the ipsilateral hindbrain and the axons representing mechanosensory inputs along the anterior/posterior body axis are mapped along the ventrodorsal axis in the axon tract in the dorsal column of the hindbrain. Hindbrain neurons project axons to the contralateral optic tectum. The neurons from anterior and posterior hindbrain regions project axons to the dorsal and ventral tectum, respectively. While the retinotectal axons project to a superficial lamina in the tectal neuropil, the hindbrain axons project to a deep neuropil layer. Calcium imaging showed that multimodal inputs converge on tectal neurons. The layer‐specific projections of the hindbrain and retinal axons suggest a functional segregation of sensory inputs to proximal and distal tectal cell dendrites, respectively. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

19.
In a screen for mouse mutations with dominant behavioral anomalies, we identified Wheels, a mutation associated with circling and hyperactivity in heterozygotes and embryonic lethality in homozygotes. Mutant Wheels embryos die at E10.5-E11.5 and exhibit a host of morphological anomalies which include growth retardation and anomalies in vascular and hindbrain development. The latter includes perturbation of rhombomeric boundaries as detected by Krox20 and Hoxb1. PECAM-1 staining of embryos revealed normal formation of the primary vascular plexus. However, subsequent stages of branching and remodeling do not proceed normally in the yolk sac and in the embryo proper. To obtain insights into the circling behavior, we examined development of the inner ear by paint-filling of membranous labyrinths of Whl/+ embryos. This analysis revealed smaller posterior and lateral semicircular canal primordia and a delay in the canal fusion process at E12.5. By E13.5, the lateral canal was truncated and the posterior canal was small or absent altogether. Marker analysis revealed an early molecular phenotype in heterozygous embryos characterized by perturbed expression of Bmp4 and Msx1 in prospective lateral and posterior cristae at E11.5. We have constructed a genetic and radiation hybrid map of the centromeric portion of mouse Chromosome 4 across the Wheels region and refined the position of the Wheels locus to the approximately 1.1-cM region between D4Mit104 and D4Mit181. We have placed the locus encoding Epha7, in the Wheels candidate region; however, further analysis showed no mutations in the Epha7-coding region and no detectable changes in mRNA expression pattern. In summary, our findings indicate that Wheels, a gene which is essential for the survival of the embryo, may link diverse processes involved in vascular, hindbrain, and inner ear development.  相似文献   

20.
We have investigated the mechanisms involved in generating hindbrain motoneurone subtypes, focusing on somatic motoneurones, which are confined to the caudal hindbrain within rhombomeres 5-8. Following heterotopic transplantation of rhombomeres along the rostrocaudal axis at various developmental stages, we have found that the capacity of rhombomeres to generate somatic motoneurones is labile at the neural plate stage but becomes fixed just after neural tube closure, at stage 10-11. Grafting of somites or retinoic acid-loaded beads beneath the rostral hindbrain induced the formation of somatic motoneurones in rhombomere 4 only, and Hox genes normally expressed more caudally (Hoxa3, Hoxd4) were induced in this region. Targeted overexpression of Hoxa3 in the rostral hindbrain led to the generation of ectopic somatic motoneurones in ventral rhombomeres 1-4, and was accompanied by the repression of the dorsoventral patterning gene Irx3. Taken together, these observations suggest that the somites, retinoic acid and Hox genes play a role in patterning somatic motoneurones in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号