首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We describe the identification and detailed expression pattern of a second Drosophila Sox gene, SoxNeuro (SoxN), highly related to mammalian group B Sox1, 2, 3 genes. SoxN is expressed in a highly dynamic pattern during embyogenesis, being associated with the development of the central nervous system (CNS), from the early steps onwards. We present strong evidence that the early SoxN neuroectoderm expression is controlled by the zygotic dorso-ventral patterning genes (dpp, sog, brk, twi).  相似文献   

3.
4.
Neurogenesis in the adult central nervous system   总被引:8,自引:0,他引:8  
Contrary to the long-held dogma, neurogenesis occurs throughout adulthood, and neural stem cells reside in the adult central nervous system (CNS) in mammals. The developmental process of the brain may thus never end, and the brain may be amenable to repair. Neurogenesis is modulated in a wide variety of physiological and pathological conditions, and is involved in processes such as learning and memory and depression. However, the relative contribution of newly generated neuronal cells to these processes, as well as to CNS plasticity, remains to be determined. Thus, not only neurogenesis contributes to reshaping the adult brain, it will ultimately lead us to redefine our knowledge and understanding of the nervous system.  相似文献   

5.
We have cloned and sequenced a full-length cDNA for the HMG box-containing, SRY-related gene Sox6 from mouse. The deduced protein sequence of Sox6 has considerable homology with that of the previously determined Sox5 sequence. It seems likely that these genes have diverged more recently than other members of the SOX gene family, although the two genes map to different chromosomes in the mouse. In common with Sox5, Sox6 is highly expressed in the adult mouse testis and the HMG domains of both proteins bind to the sequence 5'-AACAAT-3'. This suggests that the two genes may have overlapping functions in the regulation of gene expression during spermatogenesis in the adult mouse. However, Sox6 may have an additional role in the mouse embryo, where it is specifically expressed in the developing nervous system.  相似文献   

6.
Cells in the neurectoderm of Drosophila face a choice between neural and epidermal fates. On the notum of the adult fly, neural cells differentiate sensory bristles in a precise pattern. Evidence has accumulated that the bristle pattern arises from the spatial distribution of small groups of cells, proneural clusters, from each of which a single bristle will result. One class of genes, which includes the genes of the achaete-scute complex, is responsible for the correct positioning of the proneural clusters. The cells of a proneural cluster constitute an equivalence group, each of them having the potential to become a neural cell. Only one cell, however, will adopt the primary, dominant, neural fate. This cell is selected by means of cellular interactions between the members of the group, since if the dominant cell is removed, one of the remaining, epidermal, cells will switch fates and become neural. The dominant cell therefore prevents the other cells of the group from becoming neural by a phenomenon known as lateral inhibiton. They, then, adopt the secondary, epidermal, fate. A second class of genes, including the gene shaggy and the neurogenic genes mediate this process. There is some evidence that a proneural cluster is composed of a small number of cells, suggesting a contact-based mechanism of communication. The molecular nature of the protein products of the neurogenic genes is consistent with this idea.  相似文献   

7.
8.
This essay provides a brief overview of neuronal plasticity in adult invertebrate nervous systems. Our discussion focuses on the factors which influence sprouting by adult neurons, i.e., (1) the nature of the neuron itself, (2) axon integrity, (3) the presence of targets, (4) diffusible factors, and (5) ageing. Evidence that the neurites of some adult neurons exhibit a dynamic equilibrium of expansion and retraction is presented, a topic which prompted us to speculate on the significance of such plasticity in altered behavioral states. We conclude with some suggestions as to specific questions that need to be addressed by future studies in this challenging area.  相似文献   

9.
Neuronal localization was investigated of glycogen phosphorylase (GP) in ganglia of the peripheral nervous system of the rat. Immunofluorescence and immunoenzymatic procedures were applied with a monoclonal anti-bovine brain GP antibody on paraformaldehyde-fixed, paraffin-embedded tissues. Immunoreactivity was only present in the somatic neurons of the mesencephalic trigeminal nucleus in the brain stem and in dorsal root ganglia (DRG), but not in the autonomic neurons of the superior cervical ganglia or in the sensory nuclei of the spinal cord. GP immunoreactivity was present as early as day 1 after birth. In the adult rat, staining was present in neurons of different sizes, and to varying intensities. No relationship was apparent between the staining intensities and morphologically distinguishable types of neurons. In DRG, the type of reactivity was the same from cervical to sacral ganglia. The selected occurrence of GP in specific neurons of the peripheral nervous system in contrast to the ubiquitous occurrence in all astrocytes of the central nervous system may indicate a different role of neuronal glycogen compared to astrocytic glycogen.  相似文献   

10.
Groves  M. J  Christopherson  T  Giometto  B  Scaravilli  F 《Brain Cell Biology》1997,26(9):615-624
Neuronal death following unilateral axotomy of a sensory nerve has long been inferred from neuronal counts of dorsal root ganglion neurons, using the contralateral ganglia as a control. The counting methods used usually involved the counting of neuronal nucleoli and made assumptions about them which could conceivably be flawed. Very few studies have used direct observations of dying or degenerating neurons to address questions concerning the duration of the period of neuronal death or the mechanisms involved in this process. Here we describe a morphological, morphometric and histochemical study into the nature and duration of sensory neuron death following transection and ligation of the sciatic nerve at mid-thigh level in the adult rat. We show that at least some of this neuronal loss occurs by apoptosis as defined by morphological criteria and in situ end-labelling of damaged DNA. Absolute numbers of apoptotic neurons were counted from serial paraffin sections of ganglia and estimates of neuronal numbers obtained by disector analysis at 1, 2, 3 and 6 months after axotomy. Using this approach we show that axotomy-induced apoptosis begins at around 1 week and continues up to at least 6 months after axotomy.  相似文献   

11.
12.
13.
14.
Stem cells in the adult mammalian central nervous system   总被引:23,自引:0,他引:23  
Over the past year, evidence has accrued that adult CNS stem cells are a widespread progenitor cell type. These cells may normally replace neurons and/or glia in the adult brain and spinal cord. Advances have been made in understanding the signals that regulate stem cell proliferation and differentiation. A deeper understanding of the structure of germinal zones has helped us move towards identifying stem cells in vivo. Recent studies suggest that the fate of stem cell progeny in vivo may be linked to the complexity of the animal's environment.  相似文献   

15.
16.
17.
Possible sensory receptor of nonadrenergic inhibitory nervous system   总被引:2,自引:0,他引:2  
To determine the sensory receptor of the nonadrenergic inhibitory nervous system (NAIS), 22 cats were anesthetized and serotonin was continuously administered (50-250 micrograms.kg-1.min-1 iv) to increase pulmonary resistance (RL) to 377 +/- 57% (SE) of the control value. We then 1) mechanically irritated the trachea, 2) intravenously administered capsaicin (5 micrograms/kg), or 3) induced hypoxia (arterial PO2 30-40 Torr) to stimulate irritant and bronchial C-fiber receptors, pulmonary C-fiber receptors, or the carotid body (chemoreceptors), respectively. After treatment with atropine (3 mg/kg iv) and propranolol (2 mg/kg iv), the serotonin-induced change in RL was reduced by 58.6 +/- 14.3% by mechanical irritation and 63.3 +/- 12.1% by intravenous capsaicin. However, hypoxia produced no dilatation of the airways. In further experiments, we employed capsaicin inhalation to stimulate bronchial C-fiber receptors. Inhaled capsaicin (0.1%, for 5 breaths) also reduced RL by 79.2 +/- 9.2% of the elevated value, after atropine and propranolol. Treatment with a ganglionic blocking agent, hexamethonium (2 mg/kg iv), abolished bronchodilator responses, implying that a reflex pathway through vagal nerves is involved in this phenomenon. These results suggest that pulmonary and bronchial C-fiber receptors may be involved as sensory receptors in NAIS reflex bronchodilatation.  相似文献   

18.
The specific functions of intrinsic regulators of oligodendrocyte progenitor cell (OPC) division are poorly understood. Type 2 cyclin-dependent kinase (Cdk2) controls cell cycle progression of OPCs, but whether it acts during myelination and repair of demyelinating lesions remains unexplored. Here, we took advantage of a viable Cdk2(-/-) mutant mouse to investigate the function of this cell cycle regulator in OPC proliferation and differentiation in normal and pathological conditions. During central nervous system (CNS) development, Cdk2 loss does not affect OPC cell cycle, oligodendrocyte cell numbers, or myelination. However, in response to CNS demyelination, it clearly alters adult OPC renewal, cell cycle exit, and differentiation. Importantly, Cdk2 loss accelerates CNS remyelination of demyelinated axons. Thus, Cdk2 is dispensable for myelination but is important for adult OPC renewal, and could be one of the underlying mechanisms that drive adult progenitors to differentiate and thus regenerate myelin.  相似文献   

19.
20.
Orexin-A and -B are neuropeptides mainly expressed in the lateral hypothalamic area (LHA). A role for orexins was first demonstrated in the regulation of feeding behaviour. Subsequently, the peptides have been implicated in the control of arousal. To date, two receptors for orexins have been characterised: orexin-1 and -2 receptors (OX-R1 and OX-R2). Both receptor genes are widely expressed within the rat brain. Particularly high expression of both receptor genes in certain hypothalamic and pons nuclei could be responsible for the orexigenic and arousal properties of the peptides. It is, however, presently unclear if one given receptor subtype or both subtypes may mediate a specific biological effect of orexins such as an increase in food intake. We have recently reported the distribution of the OX-R1 protein in the rat nervous system. In this study, we report the distribution of the OX-R2 protein in the rat brain and spinal cord using specific anti-peptide antisera raised against the OX-R2 protein. We also assess the expression profile of the OX-R2 gene in different brain regions. Immunolabelling for the OX-R2 protein was observed in brain regions that exhibited OX-R1-like immunoreactivity (cerebral neocortex, basal ganglia, hippocampal formation, and many other regions in the hypothalamus, thalamus, midbrain and reticular formation). Differences in the OX-R1 and OX-R2 distribution were, however, noticed in the hippocampus, hypothalamus and dorso-lateral pons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号