共查询到20条相似文献,搜索用时 0 毫秒
1.
Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy 总被引:6,自引:0,他引:6
A new vibrational imaging method based on coherent anti-Stokes Raman scattering (CARS) has been used for high-speed, selective imaging of neutral lipid droplets (LDs) in unstained live fibroblast cells. LDs have a high density of C-H bonds and show a high contrast in laser-scanning CARS images taken at 2,845 cm-1, the frequency for aliphatic C-H vibrations. The contrast from LDs was confirmed by comparing CARS and Oil Red O (ORO)-stained fluorescence images. The fluorescent labeling processes were examined with CARS microscopy. It was found that ORO staining of fixed cells caused aggregation of LDs, whereas fixing with formaldehyde or staining with Nile Red did not affect LDs. CARS microscopy was also used to monitor the 3T3-L1 cell differentiation process, revealing that there was an obvious clearance of LDs at the early stage of differentiation. After that, the cells started to differentiate and reaccumulate LDs in the cytoplasm in a largely unsynchronized manner. Differentiated cells formed small colonies surrounded by undifferentiated cells that were devoid of LDs. These observations demonstrate that CARS microscopy can follow dynamic changes in live cells with chemical selectivity and noninvasiveness. CARS microscopy, in tandem with other techniques, provides exciting possibilities for studying LD dynamics under physiological conditions without perturbation of cell functions. 相似文献
2.
Lipid droplets (LDs) are highly dynamic organelles that perform multiple functions, including the regulated storage and release of cholesterol and fatty acids. Information on the molecular composition of individual LDs within their cellular context is crucial in understanding the diverse biological functions of LDs, as well as their involvement in the development of metabolic disorders such as obesity, type II diabetes, and atherosclerosis. Although ensembles of LDs isolated from cells and tissues were analyzed in great detail, quantitative information on the heterogeneity in lipid composition of individual droplets, and possible variations within single lipid droplets, is lacking. Therefore, we used a label-free quantitative method to image lipids within LDs in 3T3-L1 cells. The method combines submicron spatial resolution in three dimensions, using label-free coherent anti-Stokes Raman scattering microscopy, with quantitative analysis based on the maximum entropy method. Our method allows quantitative imaging of the chemistry (level of acyl unsaturation) and physical state (acyl chain order) of individual LDs. Our results reveal variations in lipid composition and physical state between LDs contained in the same cell, and even within a single LD. 相似文献
3.
Raman microspectroscopy can provide the chemical contrast needed to characterize the complex intracellular environment and macromolecular organization in cells without exogenous labels. It has shown a remarkable ability to detect chemical changes underlying cell differentiation and pathology-related chemical changes in tissues but has not been widely adopted for imaging, largely due to low signal levels. Broadband coherent anti-Stokes Raman scattering (B-CARS) offers the same inherent chemical contrast as spontaneous Raman but with increased acquisition rates. To date, however, only spectrally resolved signals from the strong CH-related vibrations have been used for CARS imaging. Here, we obtain Raman spectral images of single cells with a spectral range of 600-3200 cm−1, including signatures from weakly scattering modes as well as CH vibrations. We also show that B-CARS imaging can be used to measure spectral signatures of individual cells at least fivefold faster than spontaneous Raman microspectroscopy and can be used to generate maps of biochemical species in cells. This improved spectral range and signal intensity opens the door for more widespread use of vibrational spectroscopic imaging in biology and clinical diagnostics. 相似文献
4.
Quantitative coherent anti-Stokes Raman scattering imaging of lipid distribution in coexisting domains 下载免费PDF全文
We demonstrate quantitative vibrational imaging of specific lipid molecules in single bilayers using laser-scanning coherent anti-Stokes Raman scattering (CARS) microscopy with a lateral resolution of 0.25 mum. A lipid is spectrally separated from other molecules by using deuterated acyl chains that provide a large CARS signal from the symmetric CD(2) stretch vibration around 2100 cm(-1). Our temperature control experiments show that d62-DPPC has similar bilayer phase segregation property as DPPC when mixing with DOPC. By using epi-detection and optimizing excitation and detection conditions, we are able to generate a clear vibrational contrast from d62-DPPC of 10% molar fraction in a single bilayer of DPPC/d62-DPPC mixture. We have developed and experimentally verified an image analysis model that can derive the relative molecular concentration from the difference of the two CARS intensities measured at the peak and dip frequencies of a CARS band. With the above strategies, we have measured the molar density of d62-DPPC in the coexisting domains inside the DOPC/d62-DPPC (1:1) supported bilayers incorporated with 0-40% cholesterol. The observed interesting changes of phospholipid organization upon addition of cholesterol to the bilayer are discussed. 相似文献
5.
Despite the ubiquitous roles of lipids in biology, the detection of lipids has relied on invasive techniques, population measurements, or nonspecific labeling. Such difficulties can be circumvented by a label-free imaging technique known as coherent anti-Stokes Raman (CARS) microscopy, which is capable of chemically selective, highly sensitive, and high-speed imaging of lipid-rich structures with submicron three-dimensional spatial resolution. We review the broad applications of CARS microscopy to studies of lipid biology in cell cultures, tissue biopsies, and model organisms. Recent technical advances, limitations of the technique, and perspectives are discussed. 相似文献
6.
《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2020,1865(9):158758
Lipid droplets (LDs) are dynamic organelles involved in intracellular lipid metabolism, and the biogenesis of LDs in endothelium is triggered by the excess of lipids in the environment. In this paper we present the methodology aimed to define the composition of endothelial LDs formed upon stimulation with oleic acid (OA) in two models: endothelial cells cultured in vitro and in isolated blood vessel ex vivo. The biochemical composition of LDs was determined using Raman imaging, followed by the lipid unsaturation calibration analysis and modelling of spectral bands based on individual spectra of selected lipids. Among LDs formed in response to OA in vitro or ex vivo conditions there were two types of LDs; those with more unsaturated (average number of CC bonds equalled 1.40) or saturated (average number of CC bonds equalled 0.95) lipids. The modelling of endothelial LDs composition revealed the OA represented a major component of LDs (80.6–91.3%) with an important content of arachidonic acid (8.7–19.4%). In conclusion, endothelial LDs consist of exogenous oleic acid uptaken from the extracellular space, and the endogenous arachidonic acid released from plasma membranes. 相似文献
7.
Confocal Raman microscopy was used to illustrate changes of molecular composition in secondary plant cell wall tissues of poplar (Populus nigra x Populus deltoids) wood. Two-dimensional spectral maps were acquired and chemical images calculated by integrating the intensity of characteristic spectral bands. This enabled direct visualization of the spatial variation of the lignin content without any chemical treatment or staining of the cell wall. A small (0.5 microm) lignified border toward the lumen was observed in the gelatinous layer of poplar tension wood. The variable orientation of the cellulose was also characterized, leading to visualization of the S1 layer with dimensions smaller than 0.5 mum. Scanning Raman microscopy was thus shown to be a powerful, nondestructive tool for imaging changes in molecular cell wall organization with high spatial resolution. 相似文献
8.
Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-stokes Raman scattering microscopy 下载免费PDF全文
Nonperturbative monitoring of intracellular organelle transport in unstained living cells was achieved with coherent anti-Stokes Raman scattering (CARS) microscopy. To avoid possible interference with the organelle transport introduced by laser radiation, we first examined different illumination conditions. Using a new photodamage criterion based on morphological changes of the cells, we determined the threshold values of both pulse energy and average power at relevant wavelengths. Under excitation conditions much milder than the threshold levels, we were able to monitor the motions of lipid droplet (LD) organelles in steroidogenic mouse adrenal cortical (Y-1) cells with CARS microscopy in real time without perturbations to the cells. Particle tracking analyses revealed subdiffusion as well as active transport of LDs along microtubules. Interestingly, LD active transport is only present in Y-1 cells that rounded up in culture, a morphological change associated with steroidogenesis, suggesting possible involvements of LD active transport in the latter. Simultaneous imaging of LDs and mitochondria with CARS and two-photon fluorescence microscopy clearly showed that interactions between the two organelles could be facilitated by high LD motility. These observations demonstrate CARS microscopy as a powerful noninvasive imaging tool for studying dynamic processes in living cells. 相似文献
9.
Yuki Ohsaki Yuki Shinohara Michitaka Suzuki Toyoshi Fujimoto 《Histochemistry and cell biology》2010,133(4):477-480
The lipid droplet (LD) has become a focus of intense research. Fluorescence labeling is indispensable for the cell biological
analysis of the LD, and a lipophilic fluorescence dye, BODIPY 493/503, which emits bright green fluorescence has been used
extensively for LD labeling. The dye is convenient for double fluorescence labeling, but we noticed that it emits red fluorescence
under certain conditions, which could lead to erroneous interpretations. We propose a protocol to preclude such a possibility. 相似文献
10.
The recently developed Coherent Anti-stokes Raman Scattering (CARS) microscopy and Stimulated Raman Scattering (SRS) microscopy have provided new methods to visualize the localization and regulation of biological molecules without the use of invasive and potentially perturbative labels. They allow rapid imaging of specific molecules with high resolution and sensitivity. These tools have been effectively applied to the study of lipid metabolism using Caenorhabditis elegans as a genetic model, unraveling new lipid storage phenotypes and their regulatory mechanisms. Here we review the underlying principle of CARS and SRS microscopy, as well as their recent applications in lipid biology research in C. elegans. 相似文献
11.
Débarre D Supatto W Pena AM Fabre A Tordjmann T Combettes L Schanne-Klein MC Beaurepaire E 《Nature methods》2006,3(1):47-53
Lipid bodies have an important role in energy storage and lipid regulation. Here we show that lipid bodies are a major source of contrast in third-harmonic generation (THG) microscopy of cells and tissues. In hepatocytes, micrometer-sized lipid bodies produce a THG signal 1-2 orders of magnitude larger than other structures, which allows one to image them with high specificity. THG microscopy with approximately 1,200 nm excitation can be used to follow the distribution of lipid bodies in a variety of unstained samples including insect embryos, plant seeds and intact mammalian tissue (liver, lung). We found that epi-THG imaging is possible in weakly absorbing tissues because bulk scattering redirects a substantial fraction of the forward-generated harmonic light toward the objective. Finally, we show that the combination of THG microscopy with two-photon and second-harmonic imaging provides a new tool for exploring the interactions between lipid bodies, extracellular matrix and fluorescent compounds (vitamin A, NADH and others) in tissues. 相似文献
12.
13.
The paper presents a non-contact technique to examine the molecular changes in a collagen fibre subjected to in vitro axial tension. Laser Raman microscopy was employed to monitor the vibrational changes in specific assignments of the Raman spectrum of collagen. Results were presented in the form of Raman wavenumber shift as a function of applied tensile strain. Two distinct responses were observed depending on whether the vibrations were axial to, or normal to, the collagen backbone. The former response produced a decrease in wavenumber values, indicating tension, whereas the latter produced an increase, indicating compression. The rate of wavenumber shift with applied strain was non-linear in form, with a marked increase at higher levels of applied strain, for example, a strain 4% in the case of axial vibrations. This technique can prove to be a powerful tool for examining deformation at the molecular level in collagenous tissues. 相似文献
14.
15.
《Journal of lipid research》2017,58(5):876-883
Raman spectroscopic imaging was used to investigate the uptake of oxidized LDLs (oxLDLs) by human macrophages. To better understand the endocytic pathway and the intracellular fate of modified lipoproteins is of foremost interest with regard to the development of atherosclerotic plaques. To obtain information on the storage process of lipids caused by oxLDL uptake, Raman spectroscopic imaging was used because of its unique chemical specificity, especially for lipids. For the present study, a protocol was established to incorporate deuterated tripalmitate into oxLDL. Subsequently, human THP-1 macrophages were incubated for different time points and their chemical composition was analyzed using Raman spectroscopic imaging. β-Carotene was found to be a reliable marker molecule for the uptake of lipoproteins into macrophages. In addition, lipoprotein administration led to small endocytic vesicles with different concentrations of deuterated lipids within the cells. For the first time, the translocation of deuterated lipids from endocytic vesicles into lipid droplets over time is reported in mature human THP-1 macrophages. 相似文献
16.
Raman microscopy has been used to deduce information about the distributions of endogenous biomolecules without exogenous labeling. Several functional groups, such as alkynes (CC), nitriles (CN), and carbon-deuterium (C–D) bonds, have been employed in recent years as Raman tags to detect target molecules in cells. In this article, we review some recent advances in applications using deuterated fatty acids for lipid analysis, such as investigation of tumor-selective cytotoxicity of γ-linolenic acid (GLA), simultaneous two-color imaging of stearate and oleate using deuterated and protonated alkynes, Raman hyperspectral imaging, and analyses of the physical properties of lipids through spectral unmixing of the C–D vibrational frequencies. In addition, we review some advanced methods for observing intracellular metabolic activities, such as de novo lipogenesis from deuterium-labeled precursors. 相似文献
17.
Neutral lipid droplets (LDs) are dynamic lipid storage organelles found in all eukaryotic cells from yeast to mammals and higher plants. LDs are important to many physiological processes that include basic cellular maintenance, metabolism, and diverse medical pathologies. LD accumulation has been studied extensively by a range of methods, but particularly by microscopy with several fluorescent dyes extensively used for qualitative and quantitative imaging. Here, we compared established LD stains Nile Red and BODIPY 493/503 to the 4', 6-diamidino-2-phenylindole (DAPI)-range dye 1,6-diphenyl-1,3,5-hexatriene (DPH; excitation/emission λmax=350 nm/420 nm) using high-content image analysis. HeLa cells treated with oleic acid or vehicle were used to compare staining patterns between DPH and Nile Red as well as DPH and the LD protein adipophilin. DPH, Nile Red, and BODIPY 493/503 were compared as assay reagents in oleic acid dose-response experiments. Treatment of MCF-7 cells with sodium butyrate was used as a second cellular system for high-content analysis of LD formation. In this experimental context, we demonstrate the compatibility of DPH with GFP, a technical limitation of Nile Red and BODIPY 493/503 dyes. These data show that DPH has comparable sensitivity and specificity to that of Nile Red. Z'-factor analysis of dose-response experiments indicated that DPH and BODIPY 493/503 are well suited for quantitative analysis of LDs for high-throughput screening (HTS) applications. 相似文献
18.
Christopher S. Shaw Mark Sherlock Paul M. Stewart Anton J. M. Wagenmakers 《Histochemistry and cell biology》2009,131(5):575-581
Intramyocellular lipids (IMCL) are stored as discrete lipid droplets which are associated with a number of proteins. The lipid
droplet-associated protein adipophilin (the human orthologue of adipose differentiation-related protein) is ubiquitously expressed
and is one of the predominant lipid droplet-proteins in skeletal muscle. The aim of this study was to investigate the subcellular
distribution of adipophilin in human muscle fibres and to measure the colocalisation of adipophilin with IMCL. Muscle biopsies
from six lean male cyclists (BMI 23.4 ± 0.4, aged 31 ± 2 years, W
max 346 ± 8) were stained for myosin heavy chain type 1, IMCL, adipophilin and mitochondria using immunofluorescence and viewed
with widefield and confocal fluorescence microscopy. The present study shows that like IMCL, the adipophilin content is ~twofold
greater in type I skeletal muscle fibres and is situated in the areas between the mitochondrial network. Colocalisation analysis
demonstrated that 61 ± 2% of IMCL contain adipophilin. Although the majority of adipophilin is contained within IMCL, 36 ± 4%
of adipophilin is not associated with IMCL. In conclusion, this study indicates that the IMCL pool is heterogenous, as the
majority but not all IMCL contain adipophilin. 相似文献
19.
Klein K Gigler AM Aschenbrenner T Monetti R Bunk W Jamitzky F Morfill G Stark RW Schlegel J 《Biophysical journal》2012,102(2):360-368
Confocal Raman spectroscopy is a noninvasive alternative to established cell imaging methods because it does not require chemical fixation, the use of fluorescent markers, or genetic engineering. In particular, single live-cell, high-resolution imaging by confocal Raman microscopy is desirable because it allows further experiments concerning the individually investigated cells. However, to derive meaningful images from the spectroscopic data, one must identify cell components within the dataset. Using immunofluorescence images as a reference, we derive Raman spectral signatures by means of information measures to identify cell components such as the nucleus, the endoplasmic reticulum, the Golgi apparatus, and mitochondria. The extracted signatures allow us to generate representations equivalent to conventional (immuno)fluorescence images with more than three cell components at a time, exploiting the Raman spectral information alone. 相似文献