首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rifampicin-resistant mutants of Streptomyces coelicolor A3(2)   总被引:4,自引:0,他引:4  
  相似文献   

2.
3.
4.
NAD+-dependent L-valine dehydrogenase was purified 180-fold from Streptomyces cinnamonensis, and to homogeneity, as judged by gel electrophoresis. The enzyme has an Mr of 88,000, and appears to be composed of subunits of Mr 41,200. The enzyme catalyses the oxidative deamination of L-valine, L-leucine, L-2-aminobutyric acid, L-norvaline and L-isoleucine, as well as the reductive amination of their 2-oxo analogues. The enzyme requires NAD+ as the only cofactor, which cannot be replaced by NADP+. The enzyme activity is significantly decreased by thiol-reactive reagents, although purine and pyrimidine bases, and nucleotides, do not affect activity. Initial-velocity and product-inhibition studies show that the reductive amination proceeds through a sequential ordered ternary-binary mechanism; NADH binds to the enzyme first, followed by 2-oxoisovalerate and NH3, and valine is released first, followed by NAD+. The Michaelis constants are as follows; L-valine, 1.3 mM; NAD+, 0.18 mM; NADH, 74 microM; 2-oxoisovalerate, 0.81 mM; and NH3, 55 mM. The pro-S hydrogen at C-4' of NADH is transferred to the substrate; the enzyme is B-stereospecific. It is proposed that the enzyme catalyses the first step of valine catabolism in this organism.  相似文献   

5.
6.
RNA polymerase heterogeneity in Streptomyces coelicolor A3(2)   总被引:21,自引:3,他引:18  
  相似文献   

7.
The stringent response in Streptomyces coelicolor A3(2)   总被引:3,自引:0,他引:3  
  相似文献   

8.
New Sporulation Loci in Streptomyces coelicolor A3(2)   总被引:6,自引:0,他引:6       下载免费PDF全文
Sporulation mutants of Streptomyces coelicolor appear white because they are defective in the synthesis of the grey polyketide spore pigment, and such white (whi) mutants had been used to define eight sporulation loci, whiA, whiB, whiD, whiE, whiG, whiH, whiI, and whiJ (K. F. Chater, J. Gen. Microbiol. 72:9-28, 1972; N. J. Ryding, Ph.D. thesis, University of East Anglia, 1995). In an attempt to identify new whi loci, we mutagenized S. coelicolor M145 spores with nitrosoguanidine and identified 770 mutants with colonies ranging from white to medium grey. After excluding unstable strains, we examined the isolates by phase-contrast microscopy and chose 115 whi mutants with clear morphological phenotypes for further study. To exclude mutants representing cloned whi genes, self-transmissible SCP2*-derived plasmids carrying whiA, whiB, whiG, whiH, or whiJ (but not whiD, whiE, or whiI) were introduced into each mutant by conjugation, and strains in which the wild-type phenotype was restored either partially or completely by any of these plasmids were excluded from further analysis. In an attempt to complement some of the remaining 31 whi mutants, an SCP2* library of wild-type S. coelicolor chromosomal DNA was introduced into 19 of the mutants by conjugation. Clones restoring the wild-type phenotype to 12 of the 19 strains were isolated and found to represent five distinct loci, designated whiK, whiL, whiM, whiN, and whiO. Each of the five loci was located on the ordered cosmid library: whiL, whiM, whiN, and whiO occupied positions distinct from previously cloned whi genes; whiK was located on the same cosmid overlap as whiD, but the two loci were shown by complementation to be distinct. The phenotypes resulting from mutations at each of these new loci are described.  相似文献   

9.
10.
Genetics of actinorhodin biosynthesis by Streptomyces coelicolor A3(2)   总被引:19,自引:0,他引:19  
A series of 76 mutants of Streptomyces coelicolor A3(2) specifically blocked in the synthesis of the binaphthoquinone antibiotic actinorhodin were classified into seven phenotypic classes on the basis of antibiotic activity, accumulation of pigmented precursors or shunt products of actinorhodin biosynthesis, and cosynthesis of actinorhodin in pairwise combinations of mutants. The polarity of cosynthetic reactions, and other phenotypic properties, allowed six of the mutant classes to be arranged in the most probable linear sequence of biosynthetic blocks. One member of each mutant class was mapped unambigiguously to the chromosomal linkage map in the short segment between the hisD and guaA loci, suggesting that structural genes for actinorhodin biosynthesis may form an uninterrupted cluster of chromosomal genes.  相似文献   

11.
The unstable feature of ristomycin resistance in S. coelicolor A3 (2) was studied. It was shown that the frequency of ristomycin-resistant derivatives was high in both chloramphenicol sensitive mutants and their resistant revertants. The 15- and 20-kb DNA sequences capable of amplifying were detected in the chloramphenicol resistant revertants. In the genomes of the studied strains they were represented by 50 and 40 copies, respectively.  相似文献   

12.
Abstract Streptomyces coelicolor was found to be devoid of glutaminyl-tRNA synthetase. In this bacterium, tRNAGln is aminoacylated by glutamyl-tRNA synthetase to yield glutamyl-tRNAGln, followed by correction to glutaminyl-tRNAGln by a tRNA-dependent amidotransferase.  相似文献   

13.
Wang L  Yu Y  He X  Zhou X  Deng Z  Chater KF  Tao M 《Journal of bacteriology》2007,189(6):2310-2318
Streptomyces coelicolor A3(2) does not have a canonical cell division cycle during most of its complex life cycle, yet it contains a gene (ftsK(SC)) encoding a protein similar to FtsK, which couples the completion of cell division and chromosome segregation in unicellular bacteria such as Escherichia coli. Here, we show that various constructed ftsK(SC) mutants all grew apparently normally and sporulated but upon restreaking gave rise to many aberrant colonies and to high frequencies of chloramphenicol-sensitive mutants, a phenotype previously associated with large terminal deletions from the linear chromosome. Indeed, most of the aberrant colonies had lost large fragments near one or both chromosomal termini, as if chromosome ends had failed to reach their prespore destination before the closure of sporulation septa. A constructed FtsK(SC)-enhanced green fluorescent protein fusion protein was particularly abundant in aerial hyphae, forming distinctive complexes before localizing to each sporulation septum, suggesting a role for FtsK(SC) in chromosome segregation during sporulation. Use of a fluorescent reporter showed that when ftsK(SC) was deleted, several spore compartments in most spore chains failed to express the late-sporulation-specific sigma factor gene sigF, even though they contained chromosomal DNA. This suggested that sigF expression is autonomously activated in each spore compartment in response to completion of chromosome transfer, which would be a previously unknown checkpoint for late-sporulation-specific gene expression. These results provide new insight into the genetic instability prevalent among streptomycetes, including those used in the industrial production of antibiotics.  相似文献   

14.
The SCO2837 open-reading frame is located within the conserved central core region of the Streptomyces coelicolor A3(2) genome, which contains genes required for essential cellular functions. SCO2837 protein (SCO2837p) expressed by Pichia pastoris is a copper metalloenzyme, catalyzing the oxidation of simple alcohols to aldehydes and reduction of dioxygen to hydrogen peroxide. Distinct optical absorption spectra are observed for oxidized and one-electron reduced holoenzyme, and a free radical EPR signal is present in the oxidized apoprotein, characteristic of the Tyr-Cys redox cofactor previously reported for fungal secretory radical copper oxidases, galactose oxidase and glyoxal oxidase, with which it shares weak sequence similarity. SCO2837p was detected in the growth medium of both S. coelicolor and a recombinant expression host (Streptomyces lividans TK64) by Western blotting, with the expression level dependent on the nature of the carbon source. This represents the first characterized example of a prokaryotic radical copper oxidase.  相似文献   

15.
We identified and characterized a malate dehydrogenase from Streptomyces coelicolor A3(2) (ScMDH). The molecular mass of ScMDH was 73,353.5 Da with two 36,675.0 Da subunits as analyzed by matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry (MALDI-TOF-MS). The detailed kinetic parameters of recombinant ScMDH are reported here. Heat inactivation studies showed that ScMDH was more thermostable than most MDHs from other organisms, except for a few extremely thermophile bacteria. Recombinant ScMDH was highly NAD(+)-specific and displayed about 400-fold (k(cat)) and 1,050-fold (k(cat)/K(m)) preferences for oxaloacetate reduction over malate oxidation. Substrate inhibition studies showed that ScMDH activity was inhibited by excess oxaloacetate (K(i)=5.8 mM) and excess L-malate (K(i)=12.8 mM). Moreover, ScMDH activity was not affected by most metal ions, but was strongly inhibited by Fe(2+) and Zn(2+). Taken together, our findings indicate that ScMDH is significantly thermostable and presents a remarkably high catalytic efficiency for malate synthesis.  相似文献   

16.
17.
A-factor is a potent pleiotropic effector produced by Streptomyces griseus and is essential for streptomycin production and spore formation in this organism. Its production is widely distributed among various actinomycetes including Streptomyces coelicolor A3(2). Genetic analysis of A-factor production was carried out with S. coelicolor A3(2), and two closely linked loci for A-factor mutations (afsA and B) were identified between cysD and leuB on the chromosomal linkage map. In contrast, genetic crosses of A-factor-negative mutants of S. griseus, using a protoplast fusion technique, failed to give a fixed locus for A-factor gene(s) and suggested involvement of an extrachromosomal or transposable genetic element in A-factor synthesis in this organism.  相似文献   

18.
SCO6571 protein from Streptomyces coelicolor A3(2) was overexpressed and purified using Rhodococcus erythropolis as an expressing host. Crystals of selenomethionine-substituted SCO6571 have been obtained by vapor diffusion method. SCO6571 crystals diffract to 2.3 A and were found to belong to the orthorhombic space group P2(1)2(1)2(1) with unit cell parameters a = 84.5, b = 171.6, c = 184.8 A. Six molecules in the asymmetric unit give a crystal volume per protein mass (V(M)) of 2.97 A (3) Da(-1) and solvent content of 58.6 %. The structure was solved by the single wavelength anomalous diffraction (SAD) method. SCO6571 is a TIM-barrel fold protein that assembles into a hexameric molecule with D(3) symmetry.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号