首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Spectral sensitivity for stimulatory and inhibitory effectsof light on fruit-body formation in Coprinus congregatus wasdetermined between 250 and 730 nm using the Okazaki Large Spectrograph.Eight-day-old dark grown cultures were exposed to varying amountsof monochromatic photon fluences for 60 s. Primordial initiationwas strictly localized in the youngest hyphae of the culture.After a dark period of 24 h at 25C, the primordial initiationwas assayed by counting the number of primordia. The actionspectrum showed peaks of effectiveness at 260, 280, 370 and440 nm. The quantum effectiveness at 280 nm was 4 times higherthan that at 440 nm. The lethal effect of far UV (260–280nm) was demonstrated when using 100 times higher photon fluencesthan that inducing primordial formation. The primordia growing in continuous light required an uninterrupteddark period for 5 h at 25C to produce sporulating fruit-bodies.A brief exposure to light during the dark period inhibited thedevelopment of primordia. The action spectrum for this photoinhibitoryeffect showed maxima at 280, 350, 380, 440 and 460 nm. The quantumeffectiveness at 280 nm was Ca. 1.3 times higher than that ofblue light. The spectral sensitivities for primordial initiationand for inhibition of primordial development were quite similarand suggested a common photoreceptor during fruit-body morphogenesis. 4 Permanent address: Botany Department, Faculty of Science,University of Tokyo, Hongo, Tokyo 113, Japan.  相似文献   

2.
In Pteris vittata, red-light-induction of spore germinationwas completely inhibited by subsequent irradiation with farUV (260 nm), near UV (380 nm) or blue (440 nm) monochromaticlight produced at the Okazaki Large Spectrograph. Germinationbut recovered from these photo-inhibition after less than 48h of darkness. Near UV- and blue-light-induced inhibition werestrongly counteracted by addition of 1 mM KCN, 1 RIM NaN3 or100 mM ethanol. Far UV- and far red light-induced inhibition,however, was not influenced by these chemicals. Consequentlythe heights of peaks of action spectrum for this photo-inhibitionof spore germination was changed by addition of these chemicalsin the blue and near UV region but not at 260 nm. The resultssuggest that either or both of the photoreceptor system andthe signal transduction chain of the photo-inhibition are qualitativelydifferent between the shorter (i.e. far UV) and the longer (i.e.near UV and blue) wavelength regions. (Received August 31, 1989; Accepted February 19, 1990)  相似文献   

3.
The phytochrome-dependent germination of spores was studiedin the fern Pteris vittata. Brief irradiations with red lightgiven at 0 and 25?C resulted in very similar germination rates.Irradiation with far-red light cancelled this promotive effect,irrespective of the temperature at which tested. The maximumrate of germination was induced by red light of ca. 70Jm–2and half of the rate was induced by ca. 15Jm–2 When sporesimbibed in the dark were kept for 1 h at 0 or 25?C under irradiationswith monochromatic lights from 660 to 730 nm at 10 nm intervals,spore germination was induced depending upon the establishedphotostationary states of phytochrome at both temperatures tested.The percent of PFR estimated in spores that had been irradiatedbriefly with red light was consistent with that resulted fromphotostationary states under different monochromatic lightsin terms of the percent of germination of a spore population.The threshold of the % PFR required for the germination of eachspore ranged widely from a few percent to 80% of the PFR. Thisdiversity may vary the timing of germination in nature. 1 Partial preliminary results of this research were introducedin a review by M.F. (1978). 3 Present address: Department of Biology, Faculty of Science,Tokyo Metropolitan University, Setagaya, Tokyo 158, Japan. (Received May 15, 1982; Accepted August 5, 1982)  相似文献   

4.
Action spectra between 350 and 500 nm for the inhibition ofphytochrome-dependent spore germination in the fern Pteris vittatawere obtained. Both action spectra obtained before and afterred light irradiation have peaks at about 440 nm and 380 nmand shoulders from 440 to 480 nm. These results suggest thatthe phytochrome system is not involved in the inhibitory processof spore germination induced by short irradiation with bluelight. (Received October 8, 1970; )  相似文献   

5.
The action spectrum for the inhibition of red-light-inducedgermination of spores in the fern Adiantum capillus-veneriswas determined between 250 and 500 nm using the Okazaki largespectrograph. When monochromatic lights were given after red-lightirradiation, two prominent peaks for inhibition of spore germinationwere observed at 275 and 440 nm and a minor peak at ca. 390nm. 2 Permanent address: Department of Botany, Faculty of Science,University of Tokyo, Hongo, Tokyo 113, Japan.  相似文献   

6.
The relationship between germination and PFR level in sporesof the fern Lygodium japonicum was investigated. Percent PFRestimated from direct spectrophotometric measurement of sporesincreased with the logarithm of total fluence of 660 nm-light.The transformation from PR to PFR was saturated by giving ca.200 Jm–2 of 660 nm-light and half-saturated by ca. 55J–2 of 660 nm-light. Clear positive correlation was observedbetween % PFR levels and germination rates in spores irradiatedwith 660 nm and/or 730 nm-light, or with 686 or 700 nm-light.The PFR percentage in spores was raised to 16–34% by blue(415 nm) light irradiation. This PFR level was enough to causesome germination when produced by monochromatic light of redto far-red region, but blue light did not cause any germination. After 660 nm-light irradiation, the PFR level decreased graduallyin darkness (25±1°C) and PFR completely disappearedin 8 h, but 730 nm-light given even 16 h after 660 nm-lightirradiation inhibited germination. 4Present address: Tropical Botanic Garden and Research Institute,Navaranga Road, Trivandrum 695 011, India. (Received March 15, 1983; Accepted June 4, 1983)  相似文献   

7.
  1. 1. In the fern Pteris vittata, low-energy blue-light-inducedinhibition of phytochrome-dependent spore germination and darkrecovery from this inhibition were repeatedly observed severaltimes at intervals of 3 days at 26. The same amount of incidentenergy of blue light was required for inhibition in each successivetreatment.
  2. 2. The recovery from blue-light-induced inhibitionof germinationwas markedly accelerated by continuous illuminationwith redlight, and this red light effect was not affected bythe presenceof CMU.
  3. 3. The recovery process was not influencedby a single exposureto redlight, but was definitely promotedby brief red irradiationsgiven intermittently, at least 2 times,at equal intervals duringthe first 8 hr after blue light treatment.The effect of intermittentlygiven red light was annulled wheneach red exposure was followedby brief far-red irradiation.These facts suggest that phytochromemay be involved in therestoration of the ability of sporesto germinate (in responseto red light) which had been lostby blue irradiation.
1Present address: Botany Department, Faculty of Science, Universityof Tokyo, Hongo, Tokyo 113.  相似文献   

8.
Regreening of glucose-bleached cells of Chlorella protothecoidesis stimulated by light. Spectral effectiveness in the processshowed maxima around 370, 440 and 480 nm, suggesting a flavoproteinas primary photoreceptor. Action spectra of ALA synthesis provedto be similar to those of chlorophyll formation, indicatingthat light stimulation of greening in this alga is regulatedat the first step of chlorophyll biosynthesis. 1 Present address: Institute of Applied Microbiology, Universityof Tokyo, Tokyo 113, Japan. (Received March 27, 1978; )  相似文献   

9.
Three-day-old etiolated seedlings of Pharbitis nil were exposedto red light for 10 min and sprayed with N6-benzyladenine beforetransfer to a 48-h inductive dark period, after which they weregrown under continuous white light. A second red irradiationpromoted flowering when given at the 5 and 24th hour of theinductive dark period but inhibited flowering at the 10 and15th hour. Far-red light inhibited flowering when given at anytime during the first 24 h of the dark period. Red/far-red reversibilitywas clearly observed at the 0, 5, 10 and 24th hour, but notat the 15th hour when both red and far-red lights completelyinhibited flowering. The action spectrum for the inhibition of flowering at the 15thhour of the inductive dark period had a sharply defined peakat 660 nm and closely resembled the absorption spectrum of thePR form of phytochrome. The photoreceptors involved in thesephotoreactions are discussed. (Received June 10, 1983; Accepted July 6, 1983)  相似文献   

10.
The effects of light on spore germination (protrusion of protonemata)in the liverwort Marchantia polymorpha L. were examined. Sporegermination was found to be light dependent and light irradiationfor 10 h or longer was necessary. Test using specific wavelengthsshowed that the entire spectrum from near UV to red light waseffective, red light being the most effective. Spore germinationcould be induced by intermittent irradiation with 15-min redlight pulses given every 1 or 2 h for 24 h. The effect of intermittentred light was not reversed by subsequent or simultaneous far-redlight irradiation. However, spore germination was inhibitedby the photosynthesis inhibitor DCMU (100 µM). Completeinhibition of spore germination was found when DCMU was givenduring the light period. When DCMU was applied during the darkperiods, only a slight reduction of germination rate was observed.Further, it was found that Chl formed in the spores during imbibitionin darkness. Light sensitivity increased at nearly the samerate as the appearance of Chl. Moreover, spore germination wasinduced in total darkness by the addition of glucose to themedium. These results clearly indicate that photosynthesis mediatesthe photoinduction of spore germination in Marchantia polymorpha. (Received May 13, 1999; Accepted July 14, 1999)  相似文献   

11.
The Photocontrol of Spore Germination in the Fern Ceratopteris richardii   总被引:1,自引:0,他引:1  
This paper describes how different wavelengths of light regulatespore germination in the fern Ceratopteris richardii. This speciesdoes not exhibit any dark germination. Maximum photosensitivityof the spores is reached 7 to 10 d after imbibition. An increasein the red light fluence above the threshold fluence of 1016quanta.m–2 leads to a corresponding increase in germination.In sequential irradiation experiments, farred light can reversethis red light-mediated germination to the level observed withthe far-red light control. Blue light fluences above 1020 quanta.m–2can also block the germination response to red light. Moreover,this antagonistic effect of blue light is not reversed by subsequentirradiation with red light. It is therefore concluded that phytochromeand a distinct blue light photoreceptor control C. richardiispore germination. These interpretations are entirely consistentwith the published literature on other fern genera. (Received November 28, 1986; Accepted April 6, 1987)  相似文献   

12.
An action spectrum for photoinduction of perithecial formationafter a prior 72 h dark growth period was determined in theUV region with apically growing mycelia of a sordariaceous fungus,Gelasinospora reticulispora. The spectrum exhibited a peak at280 nm. Quantum effectiveness of 280 nm irradiation was ca.1.7 times higher than that of 450 nm light. The number of peritheciainduced by UV radiation was saturated at a lower level as comparedwith blue light. UV radiation having a fluence greater thanthe saturation level decreased the number of induced perithecia.UV radiation that was given after a saturating exposure to inductiveblue light inhibited the inductive effect of blue light. Anaction spectrum for this inhibition exhibited a peak between260 and 270 nm. Monochromatic light beyond 350 nm had no inhibitoryeffect. Inhibitory effects of UV radiation given after inductiveblue light irradiation were observed in the fluence range wherephotoinductive effects of UV radiation became obvious. Therefore,the true height of the UV peak in the photoinduction actionspectrum,when free of distortion from the inhibitory effect, should behigher than the peak obtained in this study. (Received August 20, 1983; Accepted November 4, 1983)  相似文献   

13.
Irradiation of spores of the fern Mohria caffrorum Sw. witheither red light (67.4 µW cm–2) or far-red light(63.2 µW cm–2) for a period of 24 h induced maximumlevels of germination. Brief irradiations with blue light (127.6µW cm–2) administered before or after photoinductioncompletely nullified the effects of red or far-red light; however,with prolonged exposure to blue light, germination levels roseto near maximum. The similar effects of red and far-red lightin promoting spore germination makes the involvement of phytochromein this process questionable. Based on energy requirements,the promotive and inhibitory phases of blue light appear toinvolve independent modes of action. Mohria caffrorum, ferns, spore germination, photoinduction, phytochrome  相似文献   

14.
To study the wavelength-effect on photosynthetic carbon metabolism,14C-bicarbon-ate was added to Chlorella vulgaris 1 lh suspensionunder monochromatic blue (456 nm) and red (660 nm) light. Thelight intensities were so adjusted that the rates of 14CO2 fixationunder blue and red light were practically equal. Analysis of14C-fixation products revealed that the rates of 14CO2 incorporationinto sucrose and starch were greater under red light than underblue light, while blue light specifically enhanced 14CO2 incorporationinto alanine, aspartate, glutamate, glutamine, malate, citrate,lipid fraction and alcohol-water insoluble non-carbohydratefraction. Pretreatment of the algal cells in phosphate mediumin the dark, which was essential for the blue light enhancementof PEP carboxylase activity, was not necessary to induce theabove wavelength effects. Superimposition of monochromatic bluelight at low intensity (450 erg.cm–2.sec–1) on thered light at saturating intensity caused a significant decreasein the rate of 14CO2 incorporation into sucrose and increasein incorporation into alanine, lipid-fraction, aspartate andother related compounds, indicating that the path of carbonin photosynthesis is regulated by short wavelengdi light ofvery low intensity. Possible effects of wavelength regulationof photosynthetic carbon metabolism in algal cells are discussed. 1 Part of this investigation was reported at the XII InternationalBotanical Congress, Leningrad, 1975 and the Japan-US CooperativeScience Seminar "Biological Solar Energy Conversion", Miami,1976. Requests for reprints should be addressed to S. Miyachi,Radioisotope Centre, University of Tokyo, Bunkyo-ku, Tokyo 113,Japan. 4 Present address: Department of Chemistry, Faculty of PharmaceuticalSciences, Teikyo Univ., Sagamiko, Kanagawa, Japan. (Received August 6, 1977; )  相似文献   

15.
Washing of PS II preparation by 1 M CaCl2 inactivates oxygenevolution without loss of bound manganese [Ono and Inoue (1983)FEBS Lett. 164: 255]. Most of the high-potential Cyt b550, whichamounts to about a half of the total Cyt b559 in untreated preparation,was converted to its low-potential form by CaCl2-washing. Theeffect was similar to that of Tris-washing. The peak positionof the gs band of the EPR spectrum of the CaCl2-washed preparation(g=2.95) was the same as that of the low potential form of untreatedpreparation but was slightly different from that of the Tris-washedor heat-treated preparation (g=2.98). 1 Present address: Department of Biology, Faculty of Science,Tokyo Metropolitan University, Fukazawa 2-1-1, Setagaya, Tokyo158, Japan. (Received November 14, 1984; Accepted January 30, 1985)  相似文献   

16.
RAI  A. K.; PANDEY  G. P. 《Annals of botany》1981,48(3):361-370
Germination of akinetes of Anabeana vaginicola v. fertilissimaPrasad in response to environmental stress was studied. Additionof nitrate to the medium induced early and maximum germination(96 per cent), whereas less than half of the akinetes germinatedwhen either nitrate or phosphate was omitted from the medium.The pH range over which germination occurred was 7.0–9.0.The desiccated akinetes after rehydration germinated after acertain lag period, depending upon the dehydration state. Thetemperature optimum for germination and vegetative growth wasthe same (25 °C) and germination did not occur at 5 °Cor above 35 °C. The limit of heat shock tolerated was 55°C for 4 min. In addition to white light, only the red partof the visible spectrum induced germination. Ultraviolet radiationreduced germination rate presumably by inducing thymine dimersin DNA. The photoreactivating system (s) in akinetes is certainlynon-photosynthetic. LD50 photon flux densities were 300 Jm–2for akinetes and 240 Jm–2 for vegetative cells. Anabaena vaginicola, blue-green alga, akinete, germination, environmental stress  相似文献   

17.
Phytochrome Control of Its Own Synthesis in Pisum sativum   总被引:1,自引:0,他引:1  
An analysis of phytochrome synthesis in Pisum seedlings by measuringthe activity of polysomal polyadenylated RNA (poly-A+-RNA) codingfor phytochrome apoprotein showed phytochrome control of itsown synthesis; brief red-light irradiation of pea seedlingsinhibited the activity of the RNA, and the red-light effectwas red/far-red reversible. 4 Permanent address: Biology Department, Faculty of Science,University of Tokyo, Hongo, Tokyo 113, Japan. (Received August 13, 1984; Accepted September 17, 1984)  相似文献   

18.
Light inhibited the growth and glucose consumption of colorlessmutant cells of Chlorella vulgaris (# 125). Sugar consumptionwas also inhibited in a medium containing a hexose such as D-fructose,D-galactose and D-mannose. Blue light strongly inhibited growth and glucose consumptionbut red light only slightly affected them. Respiration was notinhibited by blue light. The inhibitions of growth and glucoseconsumption were saturated at light intensities as low as 800mW.m–2 and continued in the dark for at least one dayafter brief illumination with white light. The half-maximumeffect was observed with 15 min of illumination in both casesand the action spectra for light-induced inhibitions of growthand glucose consumption were similar, both showing peaks at370, 457 and 640 nm. The role of light in the inhibitions of growth and glucose consumptionis discussed. (Received June 18, 1984; Accepted October 29, 1984)  相似文献   

19.
SPECTRAL SENSITIVITY OF SEED GERMINATION IN ARTEMISIA MONOSPERMA   总被引:2,自引:0,他引:2  
The absolute requirement for light in the germination of achenesof Artemisia monosperma is as satisfied by radiant energy inthe blue, green, yellow, red and far-red regions of the visiblespectrum, as by unfiltered white light. The same stimulationwas obtained by a short irradiation as by an uninterrupted one.Phytochrome seems to be either absent, or masked by a differentpigment which absorbs light in the entire visible spectrum andthus initiates germination. 1 This study was supported by grant FG-Is-115 from the UnitedStates Department of Agriculture.  相似文献   

20.
Sexual cell division and activation of gametangial cells forconjugation in Closterium acerosum were induced by light. L200cells conjugated at maximum level under the following conditions;(i) a light intensity higher than 1,000 lux in a 16-hr lightand 8-hr dark regime and (ii) an illumination time longer than12 hr at 3,000 lux. L200 cells also conjugated under continuousillumination at 3,000 lux. The action spectrum for the activation of gametangial cellshad peaks around 450, 611 and 665 nm. 3-(4'-Chlorophenyl)-l,l-dimethylurea (CMU) inhibited the accumulationof carbohydrates and sexual cell division at 10–5 M andthe activation of gametangial cells for conjugation at 10–4M. (Received August 15, 1977; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号