首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
DNA isolated from (a) liver chromatin digested in situ with endogenous Ca2+, Mg2+-dependent endonuclease, (b) prostate chromatin digested in situ with micrococcal nuclease or pancreatic DNAase I, and (c) isolated liver chromatin digested with micrococcal nuclease or pancreatic DNAase I has been analyzed electrophoretically on polyacrylamide gels. The electrophoretic patterns of DNA prepared from chromatin digested in situ with either endogenous endonuclease (liver nuclei) or micrococcal nuclease (prostate nuclei) are virtually identical. Each pattern consists of a series of discrete bands representing multiples of the smallest fragment of DNA 200 +/- 20 base pairs in length. The smallest DNA fragment (monomer) accumulates during prolonged digestion of chromatin in situ until it accounts for nearly all of the DNA on the gel; approx. 20% of the DNA of chromatin is rendered acid soluble during this period. Digestion of liver chromatin in situ in the presence of micrococcal nuclease results initially in the reduction of the size of the monomer from 200 to 170 base pairs of DNA and subsequently results in its conversion to as many as eight smaller fragments. The electrophoretic pattern obtained with DNA prepared from micrococcal nuclease digests of isolated liver chromatin is similar, but not identical, to that obtained with liver chromatin in situ. These preparations are more heterogeneous and contain DNA fragments smaller than 200 base pairs in length. These results suggest that not all of the chromatin isolated from liver nuclei retains its native structure. In contrast to endogenous endonuclease and micrococcal nuclease digests of chromatin, pancreatic DNAase I digests of isolated chromatin and of chromatin in situ consist of an extremely heterogeneous population of DNA fragments which migrates as a continuum on gels. A similar electrophoretic pattern is obtained with purified DNA digested by micrococcal nuclease. The presence of spermine (0.15 mM) and spermidine (0.5 mM) in preparative and incubation buffers decreases the rate of digestion of chromatin by endogenous endonuclease in situ approx. 10-fold, without affecting the size of the resulting DNA fragments. The rates of production of the smallest DNA fragments, monomer, dimer, and trimer, are nearly identical when high molecular weight DNA is present in excess, indicating that all of the chromatin multimers are equally susceptible to endogenous endonuclease. These observations points out the effects of various experimental conditions on the digestion of chromatin by nucleases.  相似文献   

2.
DNA restriction fragments located 5' to the human c-myc gene display anomalous electrophoretic mobility on polyacrylamide gels. Computer modeling of the c-myc flanking DNA suggests that the slow-moving DNA fragments spanning nucleotides -1690 to -1054 (relative to c-myc promoter P1) and -718 to -452 form large left handed superhelices or curved structures while the fast-moving DNA fragment spanning nucleotides -407 to +78 has an unusually straight structure. These analyses also predict a periodic array of localized regions of bending through the superhelical domains. Micrococcal nuclease digestion of isolated nuclei reveals that the slow-moving DNA fragments exist in an ordered chromatin structure stable to nuclease, whereas the digestion pattern of the fast-moving DNA fragment suggests a less ordered array of nucleosomes or a non-nucleosomal chromatin structure.  相似文献   

3.
Nascent DNA in nucleosome like structures from chromatin   总被引:17,自引:0,他引:17  
A Levy  K M Jakob 《Cell》1978,14(2):259-267
We have used chromatin sensitivity to cleavage by micrococcal nuclease as a probe for differences between chromatin containing nascent DNA and that containing bulk DNA. Micrococcal nuclease digested the nascent DNA in chromatin of swimming blastulae of sea urchins more rapidly to acid-soluble nucleotides than the DNA of bulk chromatin. A part of the nascent DNA occurred in micrococcal nuclease-resistant structures which were either different from, or temporary modifications of, the bulk nucleosomes. This was inferred from the size differences between bulk and nascent DNA fragments in 10% polyacrylamide gels after micrococcal nuclease digestion of nuclei from a mixture of 14C-thymidine long- and 3H-thymidine pulse-labeled embryos. Bulk monomer and dimer DNA fragments contained about 170 and 410 base pairs (bp), respectively, when 18% of the bulk DNA had been rendered acid-soluble. At this level of digestion, “nascent monomer DNA” fragments of about 150 bp as well as 305 bp “large nascent DNA fragments” were observed. Increasing levels of digestion indicated that the large nascent DNA fragment was derived from a chromatin structure which was more resistant to micrococcal nuclease cleavage than bulk dimer chromatin subunits. Peaks of 3H-thymidine-labeled DNA fragments from embryos which had been pulse-labeled and then chased or labeled for several minutes overlapped those of 14C-thymidine long-labeled monomer, dimer and trimer fragments. This indicated that the chromatin organization at or near the replication fork which had temporarily changed during replication had returned to the organization of its nonreplicating state.  相似文献   

4.
The chromatin of the lepidopteran Ephestia kuehniella was digested by micrococcal nuclease, DNase I and S1-nuclease combined with DNase I pretreatment. The resulting DNA fragments were analyzed by gel electrophoresis and compared with the DNA fragments of rat liver nuclei obtained by the same process. Extensive homology was revealed between insect and mammalian chromatin structure. The combined DNase I- S1-nuclease digestion yields double-stranded DNA fragments of lengths from 30 to 110 base-pairs. These DNA fragments are not obtained from nuclei predigested extensively with micrococcal nuclease. The results are discussed with respect to the internal structure of the chromatin subunit.  相似文献   

5.
Micrococcal nuclease digestion of nuclei from sea urchin embryos revealed transient changes in chromatin structure which resulted in a reduction in the repeat length of nascent chromatin DNA as compared with bulk DNA. This was considered to be entirely the consequence of in vivo events at the replication fork (Cell 14, 259, 1978). However, a micrococcal nuclease-generated sliding of nucleosome cores relative to nascent DNA, which might account for the smaller DNA fragments, was not excluded. In vivo [3H]thymidine pulse-labeled nuclei were fixed with a formaldehyde prior to micrococcal nuclease digestion. This linked chromatin proteins to DNA and thus prevented any in vitro sliding of histone cores. All the nascent DNAs exhibiting shorter repeat lengths after micrococcal nuclease digestion, were resolved at identical mobilities in polyacrylamide gels of DNA from fixed and unfixed nuclei. We conclude that these differences in repeat lengths between nascent and bulk DNA was generated in vivo by changes in chromatin structure during replication, rather than by micrococcal nuclease-induced sliding of histone cores in vitro.  相似文献   

6.
Jean O. Thomas  R.J. Thompson 《Cell》1977,10(4):633-640
We have used micrococcal nuclease as a probe of the repeating structure of chromatin in four nuclear populations from three tissues of the rabbit. Neuronal nuclei isolated from the cerebral cortex contain about 160 base pairs of DNA in the chromatin repeat unit, as compared with about 200 base pairs for nonastrocytic glial cell nuclei from the same tissue, neuronal nuclei from the cerebellum and liver nuclei. All four types of nuclei show the same features of nucleosomal organization as other eucaryotic nuclei so far studied: nucleosomes liberated by digestion with micrococcal nuclease give a “core particle” containing 140 base pairs as a metastable intermediate on further digestion and a series of single-strand DNA fragments which are mutiples of 10 bases after digestion with DNAase I. Nuclei from cerebral cortex neurons, which have a short repeat, are distinct from the others in being larger, in having a higher proportion of euchromatin (dispersed chromatin) as judged by microscopy and in being more active in RNA synthesis in vitro.  相似文献   

7.
The structure of chromatin containing amplified N-myc in neuroblastoma and retinoblastoma cells was investigated using micrococcal nuclease digestion of isolated nuclei. The size distribution of DNA fragments containing N-myc, produced by micrococcal nuclease digestion of nuclei, was determined and compared to that of DNA containing the structural gene for dihydrofolate reductase. A perturbation of the native structure of chromatin containing N-myc was evident from the association of N-myc with more extensively digested DNA when compared with chromatin containing dihydrofolate reductase.  相似文献   

8.
A purification scheme for satellite DNA containing chromatin from mouse liver has been developed. It is based on the highly condensed state of the satellite chromatin and also takes advantage of its resistance to digestion by certain restriction nucleases. Nuclei are first treated with micrococcal nuclease and the satellite chromatin enriched 3-5 fold by extraction of the digested nuclei under appropriate conditions. Further purification is achieved by digestion of the chromatin with a restriction nuclease that leaves satellite DNA largely intact but degrades non-satellite DNA extensively. In subsequent sucrose gradient centrifugation the rapidly sedimenting chromatin contains more than 70% satellite DNA. This material has the same histone composition as bulk chromatin. No significant differences were detected in an analysis of minor histone variants. Nonhistone proteins are present only in very low amounts in the satellite chromatin fraction, notably the HMG proteins are strongly depleted.  相似文献   

9.
10.
Chromatin assembly in isolated mammalian nuclei.   总被引:4,自引:1,他引:3       下载免费PDF全文
Cellular DNA replication was stimulated in confluent monolayers of CV-1 monkey kidney cells following infection with SV40. Nuclei were isolated from CV-1 cells labeled with [3H]thymidine and then incubated in the presence of [alpha-32P]deoxyribonucleoside triphosphates under conditions that support DNA replication. To determine whether or not the cellular DNA synthesized in vitro was assembled into nucleosomes the DNA was digested in situ with either micrococcal nuclease or pancreatic DNase I, and the products were examined by electrophoretic and sedimentation analysis. The distribution of DNA fragment lengths on agarose gels following micrococcal nuclease digestion was more heterogeneous for newly replicated than for the bulk of the DNA. Nonetheless, the state of cellular DNA synthesized in vitro (32P-labeled) was found to be identical with that of the DNA in the bulk of the chromatin (3H-labeled) by the following criteria: (i) The extent of protection against digestion by micrococcal nuclease of DNase I. (ii) The size of the nucleosomes (180 base pairs) and core particles (145 base pairs). (iii) The number and sizes of DNA fragments produced by micrococcal nuclease in a limit digest. (iv) The sedimentation behavior on neutral sucrose gradients of nucleoprotein particles released by micrococcal nuclease. (v) The number and sizes of DNA fragments produced by DNase I digestion. These results demonstrate that cellular DNA replicated in isolated nuclei is organized into typical nucleosomes. Consequently, subcellular systems can be used to study the relationship between DNA replication and the assembly of chromatin under physiological conditions.  相似文献   

11.
The influence of cis-diamminedichloroplatinum (II) (cis-DDP) binding to chromatin in chicken erythrocyte nuclei and the nucleosomal core particle is investigated. The cis-DDP modifications alter DNA-protein interactions associated with the higher order structure of chromatin to significantly inhibit the rate of micrococcal nuclease digestion and alter the digestion profile. However, cis-DDP modification of core particle has little effect on the digestion rate and the relative distribution of DNA fragments produced by microccocal nuclease digestion. Analysis of the monomer DNA fragments derived from the digestion of modified nuclei suggests that cis-DDP binding does not significantly disrupt the DNA structure within the core particle, with its major influence being on the internucleosomal DNA. Together these findings suggest that cis-DDP may preferentially bind to the internucleosomal region and/or that the formation of the intrastrand cross-link involving adjacent guanines exhibits a preference for the linker region. Sucrose gradient profiles of the modified nucleoprotein complexes further confirm that the digestion profile for micrococcal nuclease is altered by cis-DDP binding and that the greatest changes occur at the initial stages of digestion. The covalent cross-links within bulk chromatin fix a sub-population of subnucleosomal and nucleosomal products, which are released only after reversal by NaCN treatment. Coupled with our previous findings, it appears that this cis-DDP mediated cross-linking network is primarily associated with protein-protein crosslinks of the low mobility group (LMG) proteins.  相似文献   

12.
Organization of 5S genes in chromatin of Xenopus laevis.   总被引:5,自引:2,他引:3       下载免费PDF全文
The chromatin organization of the genes coding for 5S RNA in Xenopus laevis has been investigated with restriction endonucleases and micrococcal nuclease. Digestion of nuclei from liver, kidney, blood and kidney cells maintained in culture with micrococcal nuclease reveals that these Xenopus cells and tissues have shorter nucleosome repeat lengths than the corresponding cells and tissues from other higher organisms. 5S genes are organized in nucleosomes with repeat lengths similar to those of the bulk chromatin in liver (178 bp) and cultured cells (165 bp); however, 5S gene chromatin in blood cells has a shorter nucleosome repeat (176 bp) than the bulk of the genome in these cells (184 bp). From an analysis of the 5S DNA fragments produced by extensive restriction endonuclease cleavage of chromatin in situ, no special arrangement of the nucleosomes with respect to the sequence of 5S DNA can be detected. The relative abundance of 5S gene multimers follows a Kuhn distribution, with about 57% of all HindIII sites cleaved. This suggests that HindIII sites can be cleaved both in the nucleosome core and linker regions.  相似文献   

13.
After purification by buoyant density centrifugation in ethidium bromide - CsCl gradient and electrophoretic fractionation, the DNA fragments isolated from P. lividus egg nuclei incubated with micrococcal nuclease exhibit a typical oligomeric pattern. Analysis of chromatin samples digested to an increasing extent by micrococcal nuclease reveals that the structural organization of egg chromatin is heterogeneous, both in terms of repeat size and degree of sensitivity to nuclease attack. The nucleosomal repeats of P. lividus sperms and embryos up to the mesenchyme blastula stage have also been determined, for comparison.  相似文献   

14.
Cross-linking of DNA with trimethylpsoralen is a probe for chromatin structure   总被引:19,自引:0,他引:19  
T Cech  M L Pardue 《Cell》1977,11(3):631-640
  相似文献   

15.
Digestion of chromatin in nuclei by micrococcal nuclease, measured as the change in the concentration of monomer-length DNA with time, displays Michaelis-Menten kinetics. Redigestion of soluble chromatin prepared from nuclei by micrococcal nuclease treatment, however, is apparently first order in enzyme and independent of chromatin concentration. This qualitative difference results from an increase in the apparent second order rate constant, kcat/Km, for liberation of monomer DNA: the apparent Km for soluble chromatin is lower by close to 3 orders of magnitude than that for chromatin in nuclei, whereas kcat decreases by less than 1 order of magnitude. Neither the integrity of the nuclear membrane nor the presence of histone H1 contributes to the high Michaelis constant characteristic of chromatin in nuclei. Moreover, differences due to the buffers used for digestion and redigestion are minimal. Low catalytic efficiency is, however, correlated with the presence of higher order chromatin superstructure. Micrococcal nuclease added to soluble chromatin under nondigesting conditions at low ionic strength (I = 0.002) co-sediments with chromatin in sucrose gradients. In 0.15 M NaCl, added nuclease no longer sediments with chromatin and redigestion kinetics become first order in both enzyme and substrate. Kinetic analysis of this type may afford an assay for native, higher order structures in chromatin. Our results suggest that micrococcal nuclease binds to soluble chromatin through additional interactions not present in nuclei, which may be partly ionic in nature.  相似文献   

16.
17.
Conformational changes in the chromatin of skeletal muscle of 3-, 14-and 30 day-old developing rats have been studied using DNase I and micrococcal nuclease (MCN). Purified nuclei were digested separately by MCN and DNase I. The rate and extent of digestion by MCN decreases gradually as development proceeds. The electrophoretic pattern of MCN digested DNA, however, shows no change. The kinetics of digestion of nuclei by DNase I show no change with development. However, the electrophoretic pattern of DNase I digested DNA shows a gradual decrease in the amount of 10–30 bp fragments with progressive development. These studies show that the chromatin of the skeletal muscle undergoes certain conformational changes during postnatal development, and such changes in chromatin may be necessary for terminal differentiation of this tissue.  相似文献   

18.
19.
20.
We have examined in some detail the chromatin structure of a 6.2 kilobase pair (kbp) chromosomal region containing the chicken beta-globin gene. The chromatin structure was probed with three nucleases, DNase I, micrococcal nuclease, and DNase II, and the rate of digestion of specific subfragments of the region was compared with the rate of bulk DNA digestion. We have characterized the rate of digestion of each fragment in terms of a sensitivity factor which measures the sensitivity of a fragment to a particular nuclease relative to bulk DNA. The sensitivity factors were determined by a least squares curve fitting method based on target analysis. In nuclei isolated from 14-day-old chicken embryo red blood cells, the entire 6.2-kbp region shows approximately a 10- to 20-fold increase in sensitivity to DNase I, a 3-fold increased sensitivity to micrococcal nuclease, and a 6-fold increased sensitivity to DNase II. In addition to the adult beta-globin gene, this region contains 5' and 3' flanking sequences, the 5' half of the inactive, embryonic globin gene, epsilon, and some repeated sequences. There is no obvious correlation between these genetic elements and the overall chromatin structure as measured by the nuclease sensitivity. This same region shows little or no special sensitivity in nuclei isolated from 14-day-old chicken embryo brain. Furthermore, fragments of the inactive ovalbumin gene show little or no sensitivity in either red blood cells or brain. These results support the conclusion that the entire 6.2-kbp region is largely packaged as active chromatin in 14-day-old chicken embryo red blood cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号