首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cumming M  Leung S  McCallum J  McManus MT 《FEBS letters》2007,581(22):4139-4147
Recombinant ATP sulfurylase (AcATPS1) and adenosine-5'-phosphosulfate reductase (AcAPR1) from Allium cepa have been used to determine if these enzymes form protein-protein complexes in vitro. Using a solid phase binding assay, AcAPR1 was shown to interact with AcATPS1. The AcAPR1 enzyme was also expressed in E. coli as the N-terminal reductase domain (AcAPR1-N) and the C-terminal glutaredoxin domain (AcAPR1-C), but neither of these truncated proteins interacted with AcATPS1. The solid-phase interactions were confirmed by immune-precipitation, where anti-AcATPS1 IgG precipitated the full-length AcAPR1 protein, but not AcAPR1-N and AcAPR1-C. Finally, using the ligand binding assay, full-length AcATPS1 has been shown to bind to membrane-localised full-length AcAPR1. The significance of an interaction between chloroplastidic ATPS and APR in A. cepa is evaluated with respect to the control of the reductive assimilation of sulfate.  相似文献   

2.
Hemmati S  Schmidt TJ  Fuss E 《FEBS letters》2007,581(4):603-610
A cDNA encoding a pinoresinol-lariciresinol reductase PLR (PLR-Lp1) was isolated from a cell culture of Linum perenne Himmelszelt accumulating the arylnaphthalene lignan justicidin B. The recombinant PLR-Lp1 prefers (+)-pinoresinol in the first reaction step, but (-)-lariciresinol in the second step. Therefore, it is the first PLR described with opposite enantiospecificity within the two reaction steps catalysed by PLRs. Hairy root lines transformed with an ihpRNAi construct to suppress plr gene expression show less mRNA accumulation for the plr-Lp1 gene and PLR enzyme activity. Justicidin B accumulation was reduced down to 24% in comparison to control lines showing the involvement of PLR-Lp1 in the biosynthesis of justicidin B.  相似文献   

3.
Crude protein extracts from the chickpea (Cicer arietinum) pathogenic fungus Ascochyta rabiei catalyze the hydroxylation of the pterocarpan phytoalexins medicarpin and maackiain to the corresponding 1a-hydroxy-1,4-diene-3-one derivatives. The enzyme reaction depends on NAD(P)H and molecular oxygen. Low amounts of FAD are necessary for maximal enzyme activity. The pterocarpan hydroxylase is a new flavoprotein monooxygenase with a molecular weight of 58 kDa in SDS-PAGE. The soluble enzyme can utilize NADH and NADPH with similar values for K m and V max respectively. The pterocarpan hydroxylase and a pterocarpan reductase (M r 29 kDa; Höhl and Barz 1987) are constitutively expressed by A. rabiei isolates.Abbreviations AAS atomic absorption spectroscopy - BCS bathocuproindisulfonate - BSA bovine serum albumin - FAD flavin-adenine dinucleotide - FMN flavin-mononucleotide - M r molecular weight - PAGE polyacrylamide gelelectrophoresis - pda pisatin demethylating ability - SDS sodium dodecylsulfate - Tris tris(hydroxymethyl)aminomethane  相似文献   

4.
Isoflavonoids are commonly found in leguminous plants, where they play important roles in plant defense and have significant health benefits for animals and humans. Vestitone reductase catalyzes a stereospecific NADPH-dependent reduction of (3R)-vestitone in the biosynthesis of the antimicrobial isoflavonoid phytoalexin medicarpin. The crystal structure of alfalfa (Medicago sativa L.) vestitone reductase has been determined at 1.4 A resolution. The structure contains a classic Rossmann fold domain in the N terminus and a small C-terminal domain. Sequence and structural analysis showed that vestitone reductase is a member of the short-chain dehydrogenase/reductase (SDR) superfamily despite the low levels of sequence identity, and the prominent structural differences from other SDR enzymes with known structures. The putative binding sites for the co-factor NADPH and the substrate (3R)-vestitone were defined and located in a large cleft formed between the N and C-terminal domains of enzyme. Potential key residues for enzyme activity were also identified, including the catalytic triad Ser129-Tyr164-Lys168. A molecular docking study showed that (3R)-vestitone, but not the (3S) isomer, forms favored interactions with the co-factor and catalytic triad, thus providing an explanation for the enzyme's strict substrate stereo-specificity.  相似文献   

5.
There are two structural classes of HMG-CoA reductase, the third enzyme of the mevalonate pathway of isopentenyl diphosphate biosynthesis-the Class I enzymes of eukaryotes and the Class II enzymes of certain eubacteria. Structural requirements for ligand binding to the Class II HMG-CoA reductase of Pseudomonas mevalonii were investigated. For conversion of mevalonate to HMG-CoA the -CH(3), -OH, and -CH(2)COO(-) groups on carbon 3 of mevalonate were essential for ligand recognition. The statin drug Lovastatin inhibited both the conversion of HMG-CoA to mevalonate and the reverse of this reaction. Inhibition was competitive with respect to HMG-CoA or mevalonate and noncompetitive with respect to NADH or NAD(+). K(i) values were millimolar. The over 10(4)-fold difference in statin K(i) values that distinguishes the two classes of HMG-CoA reductase may result from differences in the specific contacts between the statin and residues present in the Class I enzymes but lacking in a Class II HMG-CoA reductase.  相似文献   

6.
Random sequencing of a peppermint essential oil gland secretory cell cDNA library revealed a large number of clones that specified redox-type enzymes. Full-length acquisitions of each type were screened by functional expression in Escherichia coli using a newly developed in situ assay. cDNA clones encoding the monoterpene double-bond reductases (-)-isopiperitenone reductase and (+)-pulegone reductase were isolated, representing two central steps in the biosynthesis of (-)-menthol, the principal component of peppermint essential oil, and the first reductase genes of terpenoid metabolism to be described. The (-)-isopiperitenone reductase cDNA has an open reading frame of 942 nucleotides that encodes a 314 residue protein with a calculated molecular weight of 34,409. The recombinant reductase has an optimum pH of 5.5, and K(m) values of 1.0 and 2.2 microM for (-)-isopiperitenone and NADPH, respectively, with k(cat) of 1.3s(-1) for the formation of the product (+)-cis-isopulegone. The (+)-pulegone reductase cDNA has an open reading frame of 1026 nucleotides and encodes a 342 residue protein with a calculated molecular weight of 37,914. This recombinant reductase catalyzes the reduction of the 4(8)-double bond of (+)-pulegone to produce both (-)-menthone and (+)-isomenthone in a 55:45 ratio, has an optimum pH of 5.0, and K(m) values of 2.3 and 6.9 microM for (+)-pulegone and NADPH, respectively, with k(cat) of 1.8s(-1). Deduced sequence comparison revealed that these two highly substrate specific double-bond reductases show less than 12% identity. (-)-Isopiperitenone reductase is a member of the short-chain dehydrogenase/reductase superfamily and (+)-pulegone reductase is a member of the medium-chain dehydrogenase/reductase superfamily, implying very different evolutionary origins in spite of the similarity in substrates utilized and reactions catalyzed.  相似文献   

7.
与氮转化有关的土壤酶活性对抑制剂施用的响应   总被引:41,自引:6,他引:35  
利用室内模拟培养试验,研究好气条件下施用尿素后土壤脲酶、脲酸还原酶、亚硝酸还原酶和羟胺还原酶活性对脲酶抑制剂氢醌(HQ)与硝化抑制剂包被碳化钙(ECC)和双氰胺(DCD)组合(HQ ECC、HQ DCD)的响应、结果表明,HQ DCD组合与其它抑制剂处理相比能更有效地降低土壤脲酶活性,增加硝酸还原酶、亚硝酸还原酶、羟胺还原酶活性,不同处理土壤脲酶、亚硝酸还原酶和羟胺还原酶活性与土壤NH4^ 、NO3^-、NH3挥发和N2O排放速率间存在不同形式的显著相关关系:土壤脲酶、亚硝酸还原酶和羟胺还原酶活性之间存在不同形式的显著正相关关系。  相似文献   

8.
Recently it was found that cell cultures and plants of Linum species contain lignans of various chemical structures. The stereochemistry of these compounds differ among species. Cell cultures of L. album accumulate (-)-podophyllotoxin together with pure (-)-secoisolariciresinol. The presence of both enantiomers of the precursor pinoresinol indicates that in L. album cell cultures the reactions from pinoresinol to secoisolariciresinol are the first steps determining enantiospecificity in biosynthesis of podophyllotoxin. Seeds of L. usitatissimum contain almost enantiomerically pure (+)-secoisolariciresinoldiglucosid derived from (+)-secoisolariciresinol. A cell culture of this species contains a mixture of both enantiomers of pinoresinol and pure (+)-secoisolariciresinol. In order to get more insight into the mechanism of (-)- and (+)-secoisolariciresinol biosynthesis, respectively, we isolated a cDNA encoding pinoresinol-lariciresinol reductase (PLR) from L. album. The heterologously expressed PLR-La1 converts only (+)-pinoresinol into (-)-secoisolariciresinol. In contrast, the heterologously expressed PLR from L. usitatissimum converts only (-)-pinoresinol to (+)-secoisolariciresinol confirming the results from others. Comparison of all available PLR protein sequences resulted in a few amino acids which may be responsible for the action of the PLRs with respect to the different enantioselectivity. A mutagenesis approach could not confirm this hypothesis. Aspects about the evolution of PLRs are discussed.  相似文献   

9.
Accumulation of intracellular sorbitol due to increased aldose reductase (ALR2) activity has been implicated in the development of various secondary complications of diabetes. In this study we show that curcumin inhibits ALR2 with an IC50 of 10 μM in a non-competitive manner, but is a poor inhibitor of closely-related members of the aldo-keto reductase superfamily, particularly aldehyde reductase. Results from molecular docking studies are consistent with the pattern of inhibition of ALR2 by curcumin and its specificity. Moreover, curcumin is able to suppress sorbitol accumulation in human erythrocytes under high glucose conditions, demonstrating an in vivo potential of curcumin to prevent sorbitol accumulation. These results suggest that curcumin holds promise as an agent to prevent or treat diabetic complications.  相似文献   

10.
APS reductase catalyzes the first committed step of reductive sulfate assimilation in pathogenic bacteria, including Mycobacterium tuberculosis, and is a promising target for drug development. We report the 2.7 A resolution crystal structure of Pseudomonas aeruginosa APS reductase in the thiosulfonate intermediate form of the catalytic cycle and with substrate bound. The structure, high-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry, and quantitative kinetic analysis, establish that the two chemically discrete steps of the overall reaction take place at distinct sites on the enzyme, mediated via conformational flexibility of the C-terminal 18 residues. The results address the mechanism by which sulfonucleotide reductases protect the covalent but labile enzyme-intermediate before release of sulfite by the protein cofactor thioredoxin. P. aeruginosa APS reductase contains an [4Fe-4S] cluster that is essential for catalysis. The structure reveals an unusual mode of cluster coordination by tandem cysteine residues and suggests how this arrangement might facilitate conformational change and cluster interaction with the substrate. Assimilatory 3'-phosphoadenosine 5'-phosphosulfate (PAPS) reductases are evolutionarily related, homologous enzymes that catalyze the same overall reaction, but do so in the absence of an [Fe-S] cluster. The APS reductase structure reveals adaptive use of a phosphate-binding loop for recognition of the APS O3' hydroxyl group, or the PAPS 3'-phosphate group.  相似文献   

11.
We provide evidence of an important role for ascorbate free radical (AFR) reductase, dehydroascorbate (DHA) reductase, glutathione, and glutathione reductase as components of an oxidant-scavenging system in the midgut of larval Helicoverpa zea. Also, midgut ortho-quinone reductase is a potentially important constituent of the protective system against quinones. The midgut activities of AFR reductase, DHA reductase, glutathione reductase, and ortho-quinone reductase were, respectively, 168, 22.1, 6, and 39.5 nmol/min/mg protein. The relatively high activity of these enzymes in the midgut provides circumstantial evidence for a protective mechanism utilizing ascorbate as an antioxidant and glutathione and/or NADPH as reductants. To our knowledge, the enzymes AFR reductase and DHA reductase have not been reported in insects. The particular relevance of this system to antioxidant protection, and in particular to the detoxication of quinones formed in damaged leaf tissues, is discussed.  相似文献   

12.
Effect of high intracellular concentrations of the antioxidants ascorbate and glutathione on the extractable activity of the reducting enzymes dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase were investigated with spinach cells ( Spinacia oleracea ). An elevated ascorbate concentration was obtained by treatment with the ascorbate biosynthesis precursor L-galactono-1,4-lactone (GAL). To increase the intracellular level of glutathione, cells were treated with the 5-oxo-L-proline analog L-2-oxothiazolidin-4-carboxylate (OTC), or with the peroxidative herbicide acifluorfen (sodium 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid). Extractable monodehydroascorbate reductase activity increased in the presence of a high level of ascorbate or glutathione, and enzyme activity was at maximum when cells were treated with acifluorfen + OTC, or acifluorfen + GAL. Extractable dehydroascorbate reductase activity decreased when the intracellular concentration of glutathione was high and non-enzymatic reduction of dehydroascorbate by glutathione was the dominant reaction. Maximal decrease of enzyme activity was found in cells treated with acifluorfen + OTC. Extractable activity of glutathione reductase (GR) increased after treatment of cells with acifluorfen alone, or acifluorfen + OTC, but enzyme activity was unaffected by a high intracellular concentration of glutathione obtained by treatment of cells with OTC alone, or by treatment with acifluorfen + GAL. The degree of GR activation seemed to be controlled by several factors including inhibition by a high concentration of glutathione and possibly oxidative damage to the enzyme. Overall, the enzymes tested in this study, which provide the reduced forms of ascorbate and glutathione, were differently affected by high antioxidant levels.  相似文献   

13.
Malaria parasites adapt to the oxidative stress during their erythrocytic stages with the help of vital thioredoxin redox system and glutathione redox system. Glutathione reductase and thioredoxin reductase are important enzymes of these redox systems that help parasites to maintain an adequate intracellular redox environment. In the present study, activities of glutathione reductase and thioredoxin reductase were investigated in normal and Plasmodium berghei-infected mice red blood cells and their fractions. Activities of glutathione reductase and thioredoxin reductase in P. berghei-infected host erythrocytes were found to be higher than those in normal host cells. These enzymes were mainly confined to the cytosolic part of cell-free P. berghei. Full characterization and understanding of these enzymes may promise advances in chemotherapy of malaria.  相似文献   

14.
The versatile carbonyl reductases from Gluconobacter oxydans in the enantioselective reduction of ketones to the corresponding alcohols were exploited by genome search approach. All purified enzymes showed activities toward the tested ketoesters with different activities. In the reduction of 4-phenyl-2-butanone with in situ NAD(P)H regeneration system, (S)-alcohol was obtained with an e.e. of up to 100% catalyzed by Gox0644. Under the same experimental condition, all enzymes catalyzed ethyl 4-chloroacetoacetate to give chiral products with an excellent e.e. of up to 99%, except Gox0644. Gox2036 had a strict requirement for NADH as the cofactor and showed excellent enantiospecificity in the synthesis of ethyl (R)-4-chloro-3-hydroxybutanoate. For the reduction of ethyl 2-oxo-4-phenylbutyrate, excellent e.e. (>99%) and high conversion (93.1%) were obtained by Gox0525, whereas the other enzymes showed relatively lower e.e. and conversions. Among them, Gox2036 and Gox0525 showed potentials in the synthesis of chiral alcohols as useful biocatalysts.  相似文献   

15.
We have determined the crystal structure of the bi-functional deaminase/reductase enzyme from Escherichia coli (EcRibD) that catalyzes two consecutive reactions during riboflavin biosynthesis. The polypeptide chain of EcRibD is folded into two domains where the 3D structure of the N-terminal domain (1-145) is similar to cytosine deaminase and the C-terminal domain (146-367) is similar to dihydrofolate reductase. We showed that EcRibD is dimeric and compared our structure to tetrameric RibG, an ortholog from Bacillus subtilis (BsRibG). We have also determined the structure of EcRibD in two binary complexes with the oxidized cofactor (NADP(+)) and with the substrate analogue ribose-5-phosphate (RP5) and superposed these two in order to mimic the ternary complex. Based on this superposition we propose that the invariant Asp200 initiates the reductive reaction by abstracting a proton from the bound substrate and that the pro-R proton from C4 of the cofactor is transferred to C1 of the substrate. A highly flexible loop is found in the reductase active site (159-173) that appears to control cofactor and substrate binding to the reductase active site and was therefore compared to the corresponding Met20 loop of E. coli dihydrofolate reductase (EcDHFR). Lys152, identified by comparing substrate analogue (RP5) coordination in the reductase active site of EcRibD with the homologous reductase from Methanocaldococcus jannaschii (MjaRED), is invariant among bacterial RibD enzymes and could contribute to the various pathways taken during riboflavin biosynthesis in bacteria and yeast.  相似文献   

16.
Traditionally, drugs are discovered by testing compounds synthesized in time consuming multi-step processes against a battery of invivo biological screens. Promising compounds are then further studied in development, where their pharmacokinetic properties, metabolism and potential toxicity were investigated. Here, we present a study on herbal lead compounds and their potential binding affinity to the effectors molecules of major disease like Prostate Cancer. Clinical studies demonstrate a positive correlation between the extent of 5-α reductase type 2 (isoform 2) and malignant progression of precancerous lesions in prostate. Therefore, identification of effective, well-tolerated 5-α reductase inhibitors represents a rational chemo preventive strategy. This study has investigated the effects of naturally occurring nonprotein compounds berberine and monocaffeyltartaric acid that inhibits 5-α reductase type 2. Our results reveal that these compounds use less energy to bind to 5-α reductase and inhibit its activity. Their high ligand binding affinity to 5-α reductase introduces the prospect for their use in chemopreventive applications. In addition, they are freely available natural compounds that can be safely used to prevent prostate cancer.  相似文献   

17.
Urig S  Lieske J  Fritz-Wolf K  Irmler A  Becker K 《FEBS letters》2006,580(15):3595-3600
The substrate spectrum of human thioredoxin reductase (hTrxR) is attributed to its C-terminal extension of 16 amino acids carrying a selenocysteine residue. The concept of an evolutionary link between thioredoxin reductase and glutathione reductase (GR) is presently discussed and supported by the fact that almost all residues at catalytic and substrate recognition sites are identical. Here, we addressed the question if a deletion of the C-terminal part of TrxR leads to recognition of glutathione disulfide (GSSG), the substrate of GR. We introduced mutations at the putative substrate binding site to enhance GSSG binding and turnover. However, none of these enzyme species accepted GSSG as substrate better than the full length cysteine mutant of TrxR, excluding a role of the C-terminal extension in preventing GSSG binding. Furthermore, we show that GSSG binding at the N-terminal active site of TrxR is electrostatically disfavoured.  相似文献   

18.
Summary Eighteen mutant strains of the unicellular cyanobacterium Anacystis nidulans R2 that are unable to assimilate nitrate have been isolated after transposon Tn901 mutagenesis. Characterization of phenotypes and transformation tests have allowed the distinction of five different mutant types. The mutants exhibiting a nitrate reductase-less phenotype were identified as being affected in previously defined loci, as they could be transformed to the wild type by one of the plasmids pNR12, pNR63 or pNR193, which contain cloned genes of A. nidulans R2 involved in nitrate reduction. The mutations in strains FM2 and FM16 appear to affect two other genes involved in nitrate assimilation. Strain FM2 apparently bears a single mutation which results in both lack of nitrite reductase activity and loss of ammonium-promoted repression of nitrate reductase synthesis. FM16 has a low but significant level of nitrate reductase that is also freed from repression by ammonium, and an increased level of nitrite reductase activity. FM16 exhibited properties which indicate that this mutant strain might also be affected in the transport of nitrate into the cell.Abbreviations EDTA ethylenediamine-tetraacetic acid - MTA mixed alkyltrimethylammonium bromide - TES N-tris (hydroxymethyl)methyl-2-aminoethane sulfonic acid - Tricine N-[2-hydroxy-1,1-bis (hydroxymethyl)ethyl]-glycine - Tris Tris(hydroxymethyl)aminomethane  相似文献   

19.
Tetrahydrobiopterin (BH(4)) is a cofactor for aromatic amino acid hydroxylases and nitric oxide synthase. The biosynthesis includes two reduction steps catalyzed by sepiapterin reductase. An intermediate, 6-pyruvoyltetrahydropterin (PPH(4)) is reduced to 1(')-oxo-2(')-hydroxypropyl-tetrahydropterin (1(')-OXPH(4)) or 1(')-hydroxy-2(')-oxopropyl-tetrahydropterin (2(')-OXPH(4)), which is further converted to BH(4). However, patients with sepiapterin reductase deficiency show normal urinary excretion of pterins without hyperphenylalaninemia, suggesting that other enzymes catalyze the two reduction steps. In this study, the reductase activities for the tetrahydropterin intermediates were examined using several human recombinant enzymes belonging to the aldo-keto reductase (AKR) family and short-chain dehydrogenase/reductase (SDR) family. In the reduction of PPH(4) by AKR family enzymes, 2(')-OXPH(4) was formed by 3 alpha-hydroxysteroid dehydrogenase type 2, whereas 1(')-OXPH(4) was produced by aldose reductase, aldehyde reductase, and 20 alpha-hydroxysteroid dehydrogenase, and both 1(')-OXPH(4) and 2(')-OXPH(4) were detected as the major and minor products by 3 alpha-hydroxysteroid dehydrogenases (types 1 and 3). The activities of aldose reductase and 3 alpha-hydroxysteroid dehydrogenase type 2 (106 and 35 nmol/mg/min, respectively) were higher than those of the other enzymes (0.2-4.0 nmol/mg/min). Among the SDR family enzymes, monomeric carbonyl reductase exhibited low 1(')-OXPH(4)-forming activity of 5.0 nmol/mg/min, but L-xylulose reductase and peroxisomal tetrameric carbonyl reductase did not form any reduced product from PPH(4). Aldose reductase reduced 2(')-OXPH(4) to BH(4), but the other enzymes were inactive towards both 2(')-OXPH(4) and 1(')-OXPH(4). These results indicate that the tetrahydropterin intermediates are natural substrates of the human AKR family enzymes and suggest a novel alternative pathway from PPH(4) to BH(4), in which 3 alpha-hydroxysteroid dehydrogenase type 2 and aldose reductase work in concert.  相似文献   

20.
人红细胞NADH-细胞色素b5还原酶是使高铁血红蛋白还原的主要酶类, 其缺陷将导致遗传性高铁血红蛋白血症. 目前, 主要通过分光光度法测定b5还原酶活性. 我们将b5还原酶抗体点于硝酸纤维膜上, 以此捕获并富集红细胞胞浆b5还原酶. 有b5还原酶活性的斑点用噻唑蓝染色. 此法简单直观, 可用于b5还原酶的定性和半定量测定, 为遗传性高铁血红蛋白血症的诊断提供了一种新的实验手段.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号