首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twelve species of the harpacticoid genus Elaphoidella, most of them exclusively groundwater species, have been recorded in Slovenia (SE Europe). Their distribution and ecology are reviewed with the aim of evaluating distribution patterns, species preferences for groundwater habitats, ecological preferences and interactions with other copepod species at regional scale. Data on Elaphoidella species were obtained partly from the existing literature and partly from the author's (AB) own sampling campaigns carried out together with his co-workers. During the rich history of collecting copepods in Slovenia (from the 1920s to present), Elaphoidella species were recorded at 78 sampling sites altogether. The majority of collecting was conducted in the southern (Dinaric region) and north-western (Alpine region) Slovenia. The most intensively sampled habitats were porous aquifers of alluvial plains, springs in the karstic unsaturated zone and percolation water in caves. The highest species richness of Elaphoidella was recorded in the southern Slovenia, where 10 species were found. The strictly “Dinaric” species are E. charon, E. franci, E. karstica, E. stammeri, E. sp. 1 and E. sp. 2, while E. phreatica and E. bidens were found exclusively in the north-western Slovenia. From the latest data on the copepod distributions (2002–2004), where the environmental characteristics of sampling sites were also measured, the relationship between selected environmental characteristics of the habitats and the presence of Elaphoidella species was analysed. The distribution of Elaphoidella species in Slovenia was found to be related with the region, habitat type, altitude, conductivity and pH of the water.  相似文献   

2.
Species richness in ground water is still largely underestimated, and this situation stems from two different impediments: the Linnaean (i.e. the taxonomic) and the Wallacean (i.e. the biogeographical) shortfalls. Within this fragmented frame of knowledge of subterranean biodiversity, this review was aimed at (i) assessing species richness in ground water at different spatial scales, and its contribution to overall freshwater species richness at the continental scale; (ii) analysing the contribution of historical and ecological determinants in shaping spatial patterns of stygobiotic species richness across multiple spatial scales; (iii) analysing the role of β-diversity in shaping patterns of species richness at each scale analysed. From data of the present study, a nested hierarchy of environmental factors appeared to determine stygobiotic species richness. At the broad European scale, historical factors were the major determinants in explaining species richness patterns in ground water. In particular, Quaternary glaciations have strongly affected stygobiotic species richness, leading to a marked latitudinal gradient across Europe, whereas little effects were observed in surface fresh water. Most surface-dwelling fauna is of recent origin, and colonized this realm by means of post-glacial dispersal. Historical factors seemed to have also operated at the smaller stygoregional and regional scales, where different karstic and porous aquifers showed different values of species richness. Species richness at the small, local scale was more difficult to be explained, because the analyses revealed that point-diversity in ground water was rather low, and at increasing values of regional species richness, reached a plateau. This observation supports the coarse-grained role of truncated food webs and oligotrophy, potentially reflected in competition for food resources among co-occurring species, in shaping groundwater species diversity at the local scale. Alpha-diversity resulted decoupled from γ-diversity, suggesting that β-diversity accounted for the highest values of total species richness at the spatial scales analysed.  相似文献   

3.
Global and regional patterns in lotic meiofauna   总被引:4,自引:0,他引:4  
  • 1 Parsimony analysis of endemicity (PAE) was used to assess patterns in the distribution of harpacticoid copepods (all freshwater species and stream species only) at global and regional scales. These analyses provided a focus for reviewing large scale patterns and processes in freshwater meiofauna.
  • 2 On a global scale, PAE suggested that large‐scale biogeographical events have been most important in shaping present‐day distributions in the Canthocamptidae. A small proportion (4%) of canthocamptid species were widespread (i.e. occurred in more than one biogegraphical region), suggesting that dispersal may also play a role in determining distribution at the species level. Global distribution patterns for other meiofauna suggest varying roles for dispersal and vicariant events. No consistent latitudinal trends in species diversity were evident, although a lack of distributional data for many regions, and uncertainty over the status of many cosmopolitan species, precludes more robust analyses. Molecular techniques should prove useful in identifying truly cosmopolitan taxa.
  • 3 On a regional scale, a PAE within Western Europe demonstrated a clear link between the distribution of canthocamptid species and the extent of the Last (Wiechselian) glaciation. Northern and southern areas of Europe contain distinctive harpacticoid faunas and the recolonisation of northern Europe appears to have been from the Balkans rather than other Mediterranean peninsulae. The high harpacticoid diversity in southern Europe, may reflect a lack of glacial disruption of groundwater habitats.
  • 4 A PAE of lotic data for harpacticoid copepods within the Holarctic reflected the global PAE for freshwater harpacticoids as a whole, but not the regional PAE. A high proportion of stream‐dwelling harpacticoids are widespread species, but only one (Bryocamptus zschokkei) was found in streams across the Holarctic. Other cosmopolites were restricted to streams in Europe or North America, suggesting that species‘ niche requirements might differ among regions. There appeared to be some convergence in the composition of lotic copepod communities in terms of the number of species within genera.
  • 5 We conclude that large‐scale processes inevitably have a major influence on the local composition of lotic meiofaunal communities, but that the relative importance of small scale vs. large scale processes is unclear at present, largely due to a paucity of suitable data.
  相似文献   

4.
1. This paper is a synthesis of a special issue on groundwater biodiversity with a focus on obligate subterranean species, the stygobionts. The series of papers constitutes a great leap forward in assessing and understanding biodiversity patterns because of the use of large quantitative data sets obtained over a broad geographic scale. They also represent a conceptual shift, away from a purely taxonomic and phylogenetic focus to the analysis of whole groundwater assemblages.
2. The general patterns emerging for groundwater fauna are: very high levels of endemism, low local diversity relative to regional diversity, a limited number of lineages, occurrence of many relicts, and truncated food webs with very few predators.
3. β-Diversity is at least as important as α-diversity in determining total richness at different scales (aquifer, basin and region) and overall taxa richness increases across spatial scales.
4. Advances in understanding groundwater biodiversity patterns further include identification of several important factors related to geology and hydrology that determine the composition of European stygobiotic assemblages.
5. Important challenges for future research include improving sampling strategies, filling gaps in sampling coverage, intensifying research on theoretical and statistical models, and including functional and genetic diversity components in biodiversity assessments.
6. Strategies are proposed for protecting groundwater biodiversity and an argument is made to integrate biodiversity in groundwater management. Applying principles such as complementarity and flexibility for groundwater biodiversity conservation is a major step toward delineating a reserve network that maximise species representation at the European scale.  相似文献   

5.
The resettlement behavior of meiobenthic copepods, which actively migrated from sediments in a seagrass bed, was investigated in a shallow subtidal area in Tampa Bay, Florida, U.S.A. Experimental studies were conducted to determine whether meiobenthic copepods after emerging from sediments at sunset reenter the sedimentary substratum or select other subhabitats, water and seagrass blades. Migrating copepods were collected with emergence traps and transferred to experimental aquaria in the field which contained sediment, seagrass-blade and water treatments. Settlement into each type of treatment was measured in separate 2-h and 9-h experiments. Differences in densities of copepod taxa retrieved from emergence traps and introduced into experimental aquaria were recorded as were differing relative proportions of each copepod species returning to the substratum treatments. Settlement patterns of total copepods and three dominant copepod species, Zausodes arenicolus, Halicyclops sp. and Robertsonia hamata, departed from those expected by chance. The populations of R. hamata and Halicyclops sp. which settled were generally skewed towards males and a close matching of males and copepodites within treatment dishes was evident. Similar to nighttime-emergence patterns, timing and magnitude of postmigration reentry differs among copepod taxa and such reentry may be linked to reproductive events. Complex behavioral processes previously noted for fish and macrofaunal organisms in seagrass beds may also be important in recruitment and reassortment of meiobenthic copepods.  相似文献   

6.
The biomass and diversity of the mesozooplankton and fish larvaecommunity were investigated across a frontal zone in the centralNorth Sea in the early summer, to investigate whether larvalfish predation is a regulator of mesozooplankton production.Pronounced changes in the mesozooplankton community were observedacross the front off the Jutlandic coast. The biomass and thediversity of copepods changed across the front as the populationof Calanus finmarchicus became abundant in the deeper water.The crustaceans (Acartia spp. and Evadne spp.) and polychaetelarvae dominated the mesozooplankton in the coastal water. Thebiomass of fish larvae was dominated by gadoid larvae. As inthe copepods, a shift in fish diversity was observed in thefrontal zone. On the coastal side of the front, whiting (Merlangiusmerlangus) dominated the biomass, while offshore from the frontwhiting were absent and cod (Gadus morhua) was the dominantlarval fish species on the deeper stations. The present investigationdemonstrates two different trophic pathways related to hydrographyin the central North Sea. First, in the shallow coastal water,the abundant small neritic copepods are predominately predatedby whiting, while in the offshore region the larger oceaniccopepods are predated by cod larvae. However, the predationpressure by the fish larvae was in general low (<10%) relativeto copepod production per day. Consequently, in the early summer,the copepod production potentially results in a build-up ofcopepod biomass on both sides of the front.  相似文献   

7.
It is widely accepted that species diversity is contingent upon the spatial scale used to analyze patterns and processes. Recent studies using coarse sampling grains over large extents have contributed much to our understanding of factors driving global diversity patterns. This advance is largely unmatched on the level of local to landscape scales despite being critical for our understanding of functional relationships across spatial scales. In our study on West African bat assemblages we employed a spatially explicit and nested design covering local to regional scales. Specifically, we analyzed diversity patterns in two contrasting, largely undisturbed landscapes, comprising a rainforest area and a forest‐savanna mosaic in Ivory Coast, West Africa. We employed additive partitioning, rarefaction, and species richness estimation to show that bat diversity increased significantly with habitat heterogeneity on the landscape scale through the effects of beta diversity. Within the extent of our study areas, habitat type rather than geographic distance explained assemblage composition across spatial scales. Null models showed structure of functional groups to be partly filtered on local scales through the effects of vegetation density while on the landscape scale both assemblages represented random draws from regional species pools. We present a mixture model that combines the effects of habitat heterogeneity and complexity on species richness along a biome transect, predicting a unimodal rather than a monotonic relationship with environmental variables related to water. The bat assemblages of our study by far exceed previous figures of species richness in Africa, and refute the notion of low species richness of Afrotropical bat assemblages, which appears to be based largely on sampling biases. Biome transitions should receive increased attention in conservation strategies aiming at the maintenance of ecological and evolutionary processes.  相似文献   

8.
Copepods are the dominant taxa in zooplankton communities of the ocean worldwide. Although bioluminescence of certain copepods has been known for more than a 100 years, there is very limited information about the structure and evolutionary history of copepod luciferase genes. Here, we report the cDNA sequences of 11 copepod luciferases isolated from the superfamily Augaptiloidea in the order Calanoida. Highly conserved amino acid residues in two similar repeat sequences were confirmed by the multiple alignment of all known copepod luciferases. Copepod luciferases were classified into two groups of Metridinidae and Heterorhabdidae/Lucicutiidae families based on phylogenetic analyses, with confirmation of the interrelationships within the Calanoida using 18S ribosomal DNA sequences. The large diversity in the specific activity of planktonic homogenates and copepod luciferases that we were able to express in mammalian cultured cells illustrates the importance of bioluminescence as a protective function against predators. We also discuss the relationship between the evolution of copepod bioluminescence and the aspects of their ecological characteristics, such as swimming activity and vertical habitat.  相似文献   

9.
In the Northern California Current (NCC), zooplankton communities show interannual and multiyear shifts in species dominance that are tracked by survival of salmon populations. These zooplankton community changes correlate with the Pacific Decadal Oscillation (PDO) index: a ‘warm‐water’ copepod species group is more abundant during warm (positive) phases of the PDO and less abundant during cold (negative) phases; the reverse occurs for a ‘cold‐water’ species group. The observed relationship led to the hypothesis that the relative dominance of warm/cold‐water copepods in the NCC is driven by changes in the horizontal advection of surface water over different phases of the PDO. To test this hypothesis, variation in surface water advection to coastal regions of the NCC over the period of 1950–2008 was investigated using a Regional Ocean Modeling System (ROMS) and passive tracer experiments, then was compared with zooplankton collected off Oregon since 1996. Results showed that surface water advection varied with the phase of the PDO; the low‐frequency component of advection anomalies strongly correlated with copepod species composition (R>0.9). During positive phases of the PDO, current anomalies were northward and onshore, resulting in transport of warmer waters and the associated copepods into the region. During negatives phases, increased equatorward current anomalies led to a copepod community that was dominated by cold‐water taxa. Our results support the hypothesis that climate‐driven changes in basin‐scale circulation controls copepod community composition in the NCC, and demonstrate that large‐scale climate forcings downscale to influence local and regional ecosystem structure.  相似文献   

10.
Oligochaetes in southern European groundwater: new records and an overview   总被引:1,自引:1,他引:0  
This work deals with an overview of the faunal composition and presents a general ecological approach to the groundwater oligochaetes in southern Europe. The species richness is high and similar to that of the superficial waters in the same area. Among the 150 species that we found, about 29 are stygobiont, so the total number of stygobiont species in the area studied has been increased to 58. Ten of these species are tubificids with marine phyletic affinities. A list of the most frequently found species and the relative abundance of the different families and genera collected in the main environments investigated are presented. Although enchytraeids often dominated the fauna, lumbriculids and tubificids exhibit a high level of diversity and comprised the majority of stygobiont and stygophilous taxa found. The discovery of members of the family Parvidrilidae in southern European caves is the first outside of North America. This indicates that the family is widely distributed in the Palearctic region and typical of underground waters. Here, we update the previous evaluation of the knowledge about oligochaetes inhabiting groundwater: 96 species of stygobiont freshwater oligochaetes (sensu stricto) are now known in the world and 81 of them have been recorded from the Palearctic region.  相似文献   

11.
Toward understanding the genetic diversity and distribution of copepod-associated symbiotic ciliates and the evolutionary relationships with their hosts in the marine environment, we developed a small subunit ribosomal RNA gene (18S rDNA)-based molecular method and investigated the genetic diversity and genotype distribution of the symbiotic ciliates on copepods. Of the 10 copepod species representing six families collected from six locations of Pacific and Atlantic Oceans, 9 were found to harbor ciliate symbionts. Phylogenetic analysis of the 391 ciliate 18S rDNA sequences obtained revealed seven groups (ribogroups), six (containing 99% of all the sequences) belonging to subclass Apostomatida, the other clustered with peritrich ciliate Vorticella gracilis. Among the Apostomatida groups, Group III were essentially identical to Vampyrophrya pelagica, and the other five groups represented the undocumented ciliates that were close to Vampyrophrya/Gymnodinioides/Hyalophysa. Group VI ciliates were found in all copepod species but one (Calanus sinicus), and were most abundant among all ciliate sequences obtained, indicating that they are the dominant symbiotic ciliates universally associated with copepods. In contrast, some ciliate sequences were found only in some of the copepods examined, suggesting the host selectivity and geographic differentiation of ciliates, which requires further verification by more extensive sampling. Our results reveal the wide occurrence and high genetic diversity of symbiotic ciliates on marine copepods and highlight the need to systematically investigate the host- and geography-based genetic differentiation and ecological roles of these ciliates globally.  相似文献   

12.
Functional trait diversity is a popular tool in modern ecology, mainly used to infer assembly processes and ecosystem functioning. Patterns of functional trait diversity are shaped by ecological processes such as environmental filtering, species interactions and dispersal that are inherently spatial, and different processes may operate at different spatial scales. Adding a spatial dimension to the analysis of functional trait diversity may thus increase our ability to infer community assembly processes and to predict change in assembly processes following disturbance or land‐use change. Richness, evenness and divergence of functional traits are commonly used indices of functional trait diversity that are known to respond differently to large‐scale filters related to environmental heterogeneity and dispersal and fine‐scale filters related to species interactions (competition). Recent developments in spatial statistics make it possible to separately quantify large‐scale patterns (variation in local means) and fine‐scale patterns (variation around local means) by decomposing overall spatial autocorrelation quantified by Moran's coefficient into its positive and negative components using Moran eigenvector maps (MEM). We thus propose to identify the spatial signature of multiple ecological processes that are potentially acting at different spatial scales by contrasting positive and negative components of spatial autocorrelation for each of the three indices of functional trait diversity. We illustrate this approach with a case study from riparian plant communities, where we test the effects of disturbance on spatial patterns of functional trait diversity. The fine‐scale pattern of all three indices was increased in the disturbed versus control habitat, suggesting an increase in local scale competition and an overall increase in unexplained variance in the post‐disturbance versus control community. Further research using simulation modeling should focus on establishing the proposed link between community assembly rules and spatial patterns of functional trait diversity to maximize our ability to infer multiple processes from spatial community structure.  相似文献   

13.
Knowledge of in situ copepod diet diversity is crucial for accurately describing pelagic food web structure but is challenging to achieve due to lack of an easily applicable methodology. To enable analysis with whole copepod-derived DNAs, we developed a copepod-excluding 18S rDNA-based PCR protocol. Although it is effective in depressing amplification of copepod 18S rDNA, its applicability to detect diverse eukaryotes in both mono- and mixed-species has not been demonstrated. Besides, the protocol suffers from the problem that sequences from symbiotic ciliates are overrepresented in the retrieved 18S rDNA libraries. In this study, we designed a blocking primer to make a combined primer set (copepod/symbiotic ciliate-excluding eukaryote-common: CEEC) to depress PCR amplification of symbiotic ciliate sequences while maximizing the range of eukaryotes amplified. We firstly examined the specificity and efficacy of CEEC by PCR-amplifying DNAs from 16 copepod species, 37 representative organisms that are potential prey of copepods and a natural microplankton sample, and then evaluated the efficiency in reconstructing diet composition by detecting the food of both lab-reared and field-collected copepods. Our results showed that the CEEC primer set can successfully amplify 18S rDNA from a wide range of isolated species and mixed-species samples while depressing amplification of that from copepod and targeted symbiotic ciliate, indicating the universality of CEEC in specifically detecting prey of copepods. All the predetermined food offered to copepods in the laboratory were successfully retrieved, suggesting that the CEEC-based protocol can accurately reconstruct the diets of copepods without interference of copepods and their associated ciliates present in the DNA samples. Our initial application to analyzing the food composition of field-collected copepods uncovered diverse prey species, including those currently known, and those that are unsuspected, as copepod prey. While testing is required, this protocol provides a useful strategy for depicting in situ dietary composition of copepods.  相似文献   

14.
Among terrestrial biomes the groundwater domain is generally considered to be a species poor environment. This view results, mainly, from the large geographic scale faunistic surveys (tens and hundreds of kilometres) and the traditionally coarse spatial scale (i.e. macroscale level) of ecological analysis. This view has been challenged by Margalef (1993) who suggests that high diversities are to be expected in the subterranean environment comparable to those found in the deep sea because of environmental similarities, e.g. low energetic resources. During the last twenty years long-term ecological research on much smaller scales, i.e. metres to hundred metres for interstitial media, a mesoscale approach, or kilometre size for karst systems was carried on. Long-term projects on limnic subsurface systems have shown that the species richness (SR) of the microcrustacea (Harpacticoida, Cyclopopoida, Ostracoda) is much higher than previously considered. Details on Harpacticoida of the alluvial bedsediments of a Pyreneean brook, the Lachein, and on Ostracoda of the alluvial sediments of the Danube plain (the phreatic zone), near Vienna, are presented. The SR values of the interstitial microcrustacea obtained through investigations at a mesoscale level are comparable to those of karstic and/or surface freshwater benthic water systems; they are lower than those of the deep-sea data sets for equivalent crustacean groups at a similar scale of investigation. From the data presented we infer the following points: (a) The subterranean waters are much more rich in species than earlier accepted, at least for some organismic groups like the microcrustacean copepods and ostracods. (b) Hence, to describe the still unknown fauna it is appropriate to sample the subsurface waters at an ecological scale. (c) Only studies during long-term ecological projects and with intensive, quantitative, sampling programmes allow a correct evaluation of the subterranean faunal diversity. (d) The species richness of a given subsurface site is strongly dependent on the structure of the habitats and the functioning of the underlying ecosystems. (e) Finally we consider the rationale for the protection of the subterranean faunal diversity.  相似文献   

15.
The Frasassi cave system in central Italy hosts one of the few known examples of a groundwater metazoan community that is supported by sulfur-based lithoautotrophic microbes. Despite the challenging conditions represented by high concentrations of H2S and low concentrations of O2, this cave system is home to many invertebrate species. Here, we analyzed the copepods inhabiting sulfidic lakes and non-sulfidic dripping pools in order to investigate how environmental conditions in sulfidic waters regulate the spatial distribution of the cave microcrustacean community over time. We also sampled copepod assemblages of sulfidic lakes under conditions of both high and low H2S concentration. Cluster analysis and canonical correspondence analysis separated the copepod assemblages inhabiting dripping pools from those of sulfidic lakes. H2S concentration, pH and O2 concentration were identified as the main factors regulating community structure. These results indicate that the distribution of groundwater copepods within the cave system is ecologically and spatially structured. Sulfidic lakes showed lower Simpson dominance, higher Shannon diversity and higher Pielou equitability at higher H2S concentrations. The complex community structure of the copepods of the Frasassi cave system suggests that a chemosynthetically produced food source facilitated the colonization of stygobionts in sulfidic groundwater due to their tolerance to the environmental conditions.  相似文献   

16.
Zooplankton feed in any of three ways: they generate a feeding current while hovering, cruise through the water or are ambush feeders. Each mode generates different hydrodynamic disturbances and hence exposes the grazers differently to mechanosensory predators. Ambush feeders sink slowly and therefore perform occasional upward repositioning jumps. We quantified the fluid disturbance generated by repositioning jumps in a millimetre-sized copepod (Re ∼ 40). The kick of the swimming legs generates a viscous vortex ring in the wake; another ring of similar intensity but opposite rotation is formed around the decelerating copepod. A simple analytical model, that of an impulsive point force, properly describes the observed flow field as a function of the momentum of the copepod, including the translation of the vortex and its spatial extension and temporal decay. We show that the time-averaged fluid signal and the consequent predation risk is much less for an ambush-feeding than a cruising or hovering copepod for small individuals, while the reverse is true for individuals larger than about 1 mm. This makes inefficient ambush feeding feasible in small copepods, and is consistent with the observation that ambush-feeding copepods in the ocean are all small, while larger species invariably use hovering or cruising feeding strategies.  相似文献   

17.
Planktonic predators and copepod abundance near the Dutch coast   总被引:2,自引:0,他引:2  
Hypotheses that planktonic predators are responsible for thespring-summer decrease in copepod abundance and that the dominantpredator, Pleurobrachia pileus, is associated with high concentrationsof copepods were investigated at a station near the Dutch coast.Neither hypothesis was supported. Predators and copepods weresampled together with a 156 L ‘water box’ from lateApril through early July, including the season of P.pileus abundance.Using predators and copepods from the same box samples, hencefrom the same water parcel, feeding rates on copepod naupliiand copepodites + adults were measured onboard ship. Less than6% of the copepods, the sensitivity of the method, were removedper day. In additional shipboard feeding experiments net-caughtP.pileus were added to ambient copepod densities. By combiningwater volume cleared of copepods with ambient P.pileus densityin the sea, the predicted impact was 0–1.6% of copepodseaten per day from late April to early July. The hypothesisthat P.pileus associates with copepod concentrations was testedby comparing abundances of both groups from the same box samples.The correlations were not significant for any sample series.The ways measurement methods have restricted progress in understandingthe predatory impact of Pleurobrachia sp. are also considered.  相似文献   

18.
Early juvenile Japanese temperate bass Lateolabrax japonicus samples were collected during four cruises to study the spatial and temporal patterns of distribution and feeding habits of the fish in Chikugo estuary, Ariake Sea, Japan. Gut contents were studied by separating, identifying and counting the prey organisms. Plankton samples were collected during each cruise to study the numerical abundance of copepods in the water. Copepod dry biomass and gut content dry mass were estimated. Juveniles were distributed over wide estuarine areas in salinities ranging from as low as 0·37 to as high as 28·81. Considerable spatial and temporal variations were observed in the copepod distribution in the environment and in the food habits of the fish. Two distinctly different copepod assemblages were identified along the estuary: one in the upper river, dominated by a single species Sinocalanus sinensis, and the other a multi‐specific assemblage in the lower estuary dominated by common coastal copepods such as Acartia omorii, Oithona davisae, Paracalanus parvus and Calanus sinicus. The gut content composition corresponded strongly with the copepod composition in the environment, i.e. a single species (S. sinensis) dietary habit at the upper river and a multi‐specific dietary habit dominated by the common coastal copepods in the lower estuary. Ivlev's electivity index showed that the fish strongly preferred larger copepods and avoided smaller ones. Higher dry biomass of copepods in the water as well as higher dry masses of the gut contents were recorded in the low‐to‐medium saline upper river areas, indicating that these areas are of particular importance as nursery grounds for the juvenile Japanese temperate bass. It was speculated that ascending to the upstream nursery areas to utilize S. sinensis, which is the single dominant copepod in these areas, is one of the most important survival strategies of the Japanese temperate bass juveniles in the Chikugo estuary.  相似文献   

19.
海南岛西北沿岸海域浮游桡足类的分布及群落特征   总被引:4,自引:0,他引:4  
为了解昌江沿岸海域生态系统的现状, 探讨海域环境因素对浮游动物的生存环境造成的影响。本文根据2008年11月至2009年7月在海南西部昌江沿岸水域21个测站、4个季度月调查所获的浮游桡足类样品数据, 对该海域浮游桡足类群落结构、分布、季节变化及影响因素进行了分析。本调查共鉴定出桡足类44种, 隶属4目17科24属, 其中秋季25种, 冬季23种, 春季22种, 夏季23种。本次调查共发现优势种6种, 分别是微刺哲水蚤(Canthocalanus pauper)、亚强次真哲水蚤(Subeucalanus subcrassus)、锥形宽水蚤(Temora turbinata)、刺尾纺锤水蚤(Acartia spinicauda)、椭形长足水蚤(Calanopia elliptica)和精致真刺水蚤(Euchaeta concinna), 优势种以近岸暖水种居多。浮游桡足类丰度季节变化明显: 冬季最高, 达409 ind./m3; 秋季次之, 为144 ind./m3, 春季为55 ind./m3, 夏季最低仅为17 ind./m3。其丰度的平面分布显示: 秋、冬季节分别在海区中部和南部形成明显密集区, 春、夏季节则大致呈现由外海向近岸逐渐递减的趋势。浮游桡足类的多样性指数(H')表现为夏季>春季>秋季>冬季, 春、夏季的均匀度指数(J')明显高于秋、冬季。本调查反映出该海区的桡足类群落具有热带—亚热带区系特征, 种类组成季节更替明显, 桡足类种群受海域水温和硅藻的影响明显, 受盐度影响不明显。  相似文献   

20.
Communities are assembled from species that evolve or colonise a given geographic region, and persist in the face of abiotic conditions and interactions with other species. The evolutionary and colonisation histories of communities are characterised by phylogenetic diversity, while functional diversity is indicative of abiotic and biotic conditions. The relationship between functional and phylogenetic diversity infers whether species functional traits are divergent (differing between related species) or convergent (similar among distantly related species). Biotic interactions and abiotic conditions are known to influence macroecological patterns in species richness, but how functional and phylogenetic diversity of guilds vary with biotic factors, and the relative importance of biotic drivers in relation to geographic and abiotic drivers is unknown. In this study, we test whether geographic, abiotic or biotic factors drive biome‐scale spatial patterns of functional and phylogenetic diversity and functional convergence in vertebrate herbivores across the Arctic tundra biome. We found that functional and phylogenetic diversity both peaked in the western North American Arctic, and that spatial patterns in both were best predicted by trophic interactions, namely vegetation productivity and predator diversity, as well as climatic severity. Our results show that both bottom–up and top–down trophic interactions, as well as winter temperatures, drive the functional and phylogenetic structure of Arctic vertebrate herbivore assemblages. This has implications for changing Arctic ecosystems; under future warming and northward movement of predators potential increases in phylogenetic and functional diversity in vertebrate herbivores may occur. Our study thus demonstrates that trophic interactions can determine large‐scale functional and phylogenetic diversity just as strongly as abiotic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号