首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
All analysis of the sodium and potassium conductances of Myxicola giant axons was made in terms of the Hodgkin-Huxley m, n, and h variables. The potassium conductance is proportional to n2. In the presence of conditioning hyperpolarization, the delayed current translates to the right along the time axis. When this effect was about saturated, the potassium conductance was proportional to n3. The sodium conductance was described by assuming it proportional to m3h. There is a range of potentials for which τh and h values fitted to the decay of the sodium conductance may be compared to those determined from the effects of conditioning pulses. τh values determined by the two methods do not agree. A comparison of h values determined by the two methods indicated that the inactivation of the sodium current is not governed by the Hodgkin-Huxley h variable. Computer simulations show that action potentials, threshold, and subthreshold behavior could be accounted for without reference to data on the effects of initial conditions. However, recovery phenomena (refractoriness, repetitive discharges) could be accounted for only by reference to such data. It was concluded that the sodium conductance is not governed by the product of two independent first order variables.  相似文献   

2.
The pH dependence for sensitized photochemical block of sodium channels in lobster giant axons was determined and compared with direct channel block by protons. Isolated axons were studied in a double sucrose gap voltage clamp arrangement and the pH of the external bath was varied over the range 4.1–11.0. Irreversible photochemical block was achieved by illumination with visible light in the presence of eosin Y or acridine orange. The rate constant for photochemical block of sodium channels was depressed at both high and low pH relative to that at neutral pH, revealing the existence of two receptors involved in the process with pK values of 4.8 and 10.4. A direct reversible channel-blocking receptor titrates with a pK of 4.8, the same as one of the receptors involved in the photochemical block, and senses about 9% of the electric field as determined by a Woodhull analysis. Lowering the pH from 8.2 to 4.6 shifted the sodium conductance versus voltage relation in the depolarizing direction. It is proposed as a hypothesis that the low and high pK receptors are histidine imidazole and primary amino groups, photooxidation of which leads to channel block via cross-linking of channel proteins.  相似文献   

3.
Isolated giant axons were voltage-clamped in seawater solutions having constant sodium concentrations of 230 mM and variable potassium concentrations of from zero to 210 mM. The inactivation of the initial transient membrane current normally carried by Na+ was studied by measuring the Hodgkin-Huxley h parameter as a function of time. It was found that h reaches a steady-state value within 30 msec in all solutions. The values of h , τh, αh,and βh as functions of membrane potential were determined for various [K o]. The steady-state values of the h parameter were found to be inversely related, while the time constant, τh, was directly related to external K+ concentration. While the absolute magnitude as well as the slopes of the h vs. membrane potential curves were altered by varying external K+, only the magnitude and not the shape of the corresponding τh curves was altered. Values of the two rate constants, αh and βh, were calculated from h and τh values. αh is inversely related to [Ko] while βh is directly related to [Ko] for hyperpolarizing membrane potentials and is independent of [Ko] for depolarizing membrane potentials. Hodgkin-Huxley equations relating αh and βh to Em were rewritten so as to account for the observed effects of [Ko]. It is concluded that external potassium ions have an inactivating effect on the initial transient membrane conductance which cannot be explained solely on the basis of potassium membrane depolarization.  相似文献   

4.
Newcastle disease virus in allantoamnionic fluid was photosensitized with acridine orange, and then photodynamically inactivated. The inactivation rate was directly proportional to light intensity and to dye concentrations up to a level of approximately 100 to 200 μg/ml. Inactivation occurred at approximately an exponential rate for the first 4.5 log10 units of virus, and then continued at a decreasing rate.  相似文献   

5.
Experiments were conducted on Myxicola giant axons to determine if the sodium activation and inactivation processes are coupled or independent. The main experimental approach was to examine the effects of changing test pulses on steady-state inactivation curves. Arguments were presented to show that in the presence of a residual uncompensated series resistance the interpretation of the results depends critically on the manner of conducting the experiment. Analytical and numerical calculations were presented to show that as long as test pulses are confined to an approximately linear negative conductance region of the sodium current-voltage characteristic, unambiguous interpretations can be made. When examined in the manner of Hodgkin and Huxley, inactivation in Myxicola is quantitatively similar to that described by the h variable in squid axons. However, when test pulses were increased along the linear negative region of the sodium current-voltage characteristic, steady-state inactivation curves translate to the right along the voltage axis. The shift in the inactivation curve is a linear function of the ratio of the sodium, conductance of the test pulses, showing a 5.8 mv shift for a twofold increase in conductance. An independent line of evidence indicated that the early rate of development of inactivation is a function of the rise of the sodium conductance.  相似文献   

6.
The inactivation properties of a model of the nerve membrane are examined. The inactivation kinetics are closely first order and may be characterized by Hodgkin-Huxley (H-H) parameters h and τh which depend on potential in agreement with experiments. Some differences from the H-H equations are identified. The forms predicted for τh variation with hyper-polarization and change of external [K+] agree with available data. While the inactivation time delay predicted by the model is too small to be detected experimentally, there are grounds for expecting that it may be larger in other tissues, as observed in Myxicola giant axons. The variation of the delay with test potential is predicted to be exponential. Although the model is coupled in the sense defined by Hoyt, it gives rise to an inactivation shift of negligible magnitude. However, introducing a simple variability in one physical parameter leads to the observed form of both the peak transient current voltage relation and the inactivation shift. Inactivation shift thus does not unambiguously indicate coupling; that it results from parametric heterogeneity may be a better hypothesis, and is readily testable. The inactivation shift dependence on current ratio, from experimental data, can be used to correct for the effects of parametric heterogeneity and obtain the value of a previously predicted fundamental parameter of excitable membranes. It is suggested that the effects of parametric heterogeneity must be considered in interpreting experiments and designing models for excitable systems.  相似文献   

7.
Changes in the expression of γ-aminobutyric acid type A (GABAA) receptors can either drive or mediate homeostatic alterations in neuronal excitability. A homeostatic relationship between α5 subunit-containing GABAA (α5GABAA) receptors that generate a tonic inhibitory conductance, and HCN channels that generate a hyperpolarization-activated cation current (Ih) was recently described for cortical neurons, where a reduction in Ih was accompanied by a reciprocal increase in the expression of α5GABAA receptors resulting in the preservation of dendritosomatic synaptic function. Here, we report that in mice that lack the α5 subunit gene (Gabra5−/−), cultured embryonic hippocampal pyramidal neurons and ex vivo CA1 hippocampal neurons unexpectedly exhibited a decrease in Ih current density (by 40% and 28%, respectively), compared with neurons from wild-type (WT) mice. The resting membrane potential and membrane hyperpolarization induced by blockade of Ih with ZD-7288 were similar in cultured WT and Gabra5−/− neurons. In contrast, membrane hyperpolarization measured after a train of action potentials was lower in Gabra5−/− neurons than in WT neurons. Also, membrane impedance measured in response to low frequency stimulation was greater in cultured Gabra5−/− neurons. Finally, the expression of HCN1 protein that generates Ih was reduced by 41% in the hippocampus of Gabra5−/− mice. These data indicate that loss of a tonic GABAergic inhibitory conductance was followed by a compensatory reduction in Ih. The results further suggest that the maintenance of resting membrane potential is preferentially maintained in mature and immature hippocampal neurons through the homeostatic co-regulation of structurally and biophysically distinct cation and anion channels.  相似文献   

8.
Charges and Potentials at the Nerve Surface : Divalent ions and pH   总被引:57,自引:33,他引:24  
The voltage dependence of the voltage clamp responses of myelinated nerve fibers depends on the concentration of divalent cations and of hydrogen ions in the bathing medium. In general, increases of the [Ca], [Ni], or [H] increase the depolarization needed to elicit a given response of the nerve. An e-fold increase of the [Ca] produces the following shifts of the voltage dependence of the parameters in the Hodgkin-Huxley model: m, 8.7 mv; h, 6.5 mv; τn, 0.0 mv. The same increase of the [H], if done below pH 5.5, produces the following shifts: m, 13.5 mv; h, 13.5 mv; τn, 13.5 mv; and if done above pH 5.5: m, 1.3 mv; h, 1.3 mv; τn, 4.0 mv. The voltage shifts are proportional to the logarithm of the concentration of the divalent ions and of the hydrogen ion. The observed voltage shifts are interpreted as evidence for negative fixed charges near the sodium and potassium channels. The charged groups are assumed to comprise several types, of varying affinity for divalent and hydrogen ions. The charges near the sodium channels differ from those near the potassium channels. As the pH is lowered below pH 6, the maximum sodium conductance decreases quickly and reversibly in a manner that suggests that the protonation of an acidic group with a pKa of 5.2 blocks individual sodium channels.  相似文献   

9.
Knowledge about the sensitivity of the test organism is essential for the evaluation of any disinfection method. In this work we show that sensitivity of Escherichia coli MG1655 to three physical stresses (mild heat, UVA light, and sunlight) that are relevant in the disinfection of drinking water with solar radiation is determined by the specific growth rate of the culture. Batch- and chemostat-cultivated cells from cultures with similar specific growth rates showed similar stress sensitivities. Generally, fast-growing cells were more sensitive to the stresses than slow-growing cells. For example, slow-growing chemostat-cultivated cells (D = 0.08 h−1) and stationary-phase bacteria from batch culture that were exposed to mild heat had very similar T90 (time until 90% of the population is inactivated) values (T90, chemostat = 2.66 h; T90, batch = 2.62 h), whereas T90 for cells growing at a μ of 0.9 h−1 was 0.2 h. We present evidence that the stress sensitivity of E. coli is correlated with the intracellular level of the alternative sigma factor RpoS. This is also supported by the fact that E. coli rpoS mutant cells were more stress sensitive than the parent strain by factors of 4.9 (mild heat), 5.3 (UVA light), and 4.1 (sunlight). Furthermore, modeling of inactivation curves with GInaFiT revealed that the shape of inactivation curves changed depending on the specific growth rate. Inactivation curves of cells from fast-growing cultures (μ = 1.0 h−1) that were irradiated with UVA light showed a tailing effect, while for slow-growing cultures (μ = 0.3 h−1), inactivation curves with shoulders were obtained. Our findings emphasize the need for accurate reporting of specific growth rates and detailed culture conditions in disinfection studies to allow comparison of data from different studies and laboratories and sound interpretation of the data obtained.  相似文献   

10.
Current-voltage curves for DIDS-insensitive Cl conductance have been determined in human red blood cells from five donors. Currents were estimated from the rate of cell shrinkage using flow cytometry and differential laser light scattering. Membrane potentials were estimated from the extracellular pH of unbuffered suspensions using the proton ionophore FCCP. The width of the Gaussian distribution of cell volumes remained invariant during cell shrinkage, indicating a homogeneous Cl conductance among the cells. After pretreatment for 30 min with DIDS, net effluxes of K+ and Cl were induced by valinomycin and were measured in the continued presence of DIDS; inhibition was maximal at ∼65% above 1 μM DIDS at both 25°C and 37°C. The nonlinear current-voltage curves for DIDS-insensitive net Cl effluxes, induced by valinomycin or gramicidin at varied [K+]o, were compared with predictions based on (1) the theory of electrodiffusion, (2) a single barrier model, (3) single occupancy, multiple barrier models, and (4) a voltage-gated mechanism. Electrodiffusion precisely describes the relationship between the measured transmembrane voltage and [K+]o. Under our experimental conditions (pH 7.5, 23°C, 1–3 μM valinomycin or 60 ng/ml gramicidin, 1.2% hematocrit), the constant field permeability ratio PK/PCl is 74 ± 9 with 10 μM DIDS, corresponding to 73% inhibition of PCl. Fitting the constant field current-voltage equation to the measured Cl currents yields P Cl = 0.13 h−1 with DIDS, compared to 0.49 h−1 without DIDS, in good agreement with most previous studies. The inward rectifying DIDS-insensitive Cl current, however, is inconsistent with electrodiffusion and with certain single-occupancy multiple barrier models. The data are well described either by a single barrier located near the center of the transmembrane electric field, or, alternatively, by a voltage-gated channel mechanism according to which the maximal conductance is 0.055 ± 0.005 S/g Hb, half the channels are open at −27 ± 2 mV, and the equivalent gating charge is −1.2 ± 0.3.  相似文献   

11.
Pope AJ  Leigh RA 《Plant physiology》1988,86(4):1315-1322
Acridine orange altered the response to anions of both ATP and in-organic pyrophosphate-dependent pH gradient formation in tonoplast vesicles isolated from oat (Avena sativa L.) roots and red beet (Beta vulgaris L.) storage tissue. When used as a fluorescent pH probe in the presence of I, ClO3, NO3, Br, or SCN, acridine orange reported lower pH gradients than either quinacrine or [14C]methylamine. Acridine orange, but not quinacrine, reduced [14C]methylamine accumulation when NO3 was present indicating that the effect was due to a real decrease in the size of the pH gradient, not a misreporting of the gradient by acridine orange. Other experiments indicated that acridine orange and NO3 increased the rate of pH gradient collapse both in tonoplast vesicles and in liposomes of phosphatidylcholine and that the effect in tonoplast vesicles was greater at 24°C than at 12°C. It is suggested that acridine orange and certain anions increase the permeability of membranes to H+, possibly because protonated acridine orange and the anions form a lipophilic ion pair within the vesicle which diffuses across the membrane thus discharging the pH gradient. The results are discussed in relation to the use of acridine orange as a pH probe. It is concluded that the recently published evidence for a NO3/H+ symport involved in the export of NO3 from the vacuole is probably an artefact caused by acridine orange.  相似文献   

12.
The effects of several alcohols on the resting potential, action potential, and voltage-clamp currents of the squid giant axon have been measured. All the alcohols employed are similar in that they depress maximum sodium conductance much more than maximum potassium conductance. Octyl alcohol differs from the others (C2 through C5) in that it has less tendency to depolarize the axon. Depolarization is always accompanied by a decrease of gK near the resting potential, such that the ratio gK/gleak is decreased. Steady-state inactivation of the sodium ion current is unaffected by alcohols, as is membrane capacity. Resting membrane conductance is usually decreased by alcohols. The findings are discussed in relation to work on monomolecular films.  相似文献   

13.
Shake flask experiments showed that Pseudomonas oleovorans began to be growth inhibited at 4.65 g of sodium octanoate liter-1, with total inhibition at 6 g liter-1. In chemostat studies with 2 g of ammonium sulfate and 8 g of octanoate liter-1 in the feed, the maximum specific growth rate was 0.51 h-1, and the maximum specific rate of poly-β-hydroxyalkanoate (PHA) production was 0.074 g of PHA g of cellular protein-1 h-1 at a dilution rate (D) of 0.25 h-1. When the specific growth rate (μ) was <0.3 h-1, the PHA composition was relatively constant with a C4/C6/C8/C10 ratio of 0.1:1.7:20.7:1.0. At μ > 0.3 h-1, a decrease in the percentage of C8 with a concomitant increase in C10 monomers as μ increased was probably due to the effects of higher concentrations of unmetabolized octanoate in the fermentor. At D = 0.24 h-1 and an increasing carbon/nitrogen ratio, the percentage of PHA in the biomass was constant at 13% (wt/wt), indicating that nitrogen limitation did not affect PHA accumulation. Under carbon-limited conditions, the yield of biomass from substrate was 0.76 g of biomass g of octanoate-1 consumed, the yield of PHA was 0.085 g of PHA g of octanoate-1 used, and 7.9 g of octanoate was consumed for each gram of NH4+ supplied. The maintenance coefficient was 0.046 g of octanoate g of biomass-1 h-1. Replacement of sodium octanoate with octanoic acid appeared to result in transport-limited growth due to the water insolubility of the acid.  相似文献   

14.
Giant axons were voltage-clamped in solutions of constant sodium concentration (230 mM) and variable potassium concentrations (from 0 to 210 mM). The values of the peak initial transient current, Ip, were measured as a function of conditioning prepulse duration over the range from less than 1 msec to over 3 min. Prepulse amplitudes were varied from E m = -20 mv to E m = -160 mv. The attenuation of the Ip values in high [Ko] was found to vary as a function of time when long duration conditioning potentials were applied. In both high and low [Ko], Ip values which had reached a quasi-steady—state level within a few milliseconds following a few milliseconds of hyperpolarization were found to increase following longer hyperpolarization. A second plateau was reached with a time constant of about 100–500 msec and a third with a time constant in the range of 30 to 200 sec. The intermediate quasi-steady—state level was absent in K-free ASW solutions. Sodium inactivation curves, normalized to I pmax values obtained at either the first or second plateaus, were significantly different in different [Ko]. The inactivation curves, however, tended to superpose after about 1 min of hyperpolarizing conditioning. The time courses and magnitudes of the intermediate and very slow sodium conductance restorations induced by long hyperpolarizing pulses are in agreement with those predicted from the calculated rates and magnitudes of [K+] depletion in the space between the axolemma and the Schwann layer.  相似文献   

15.
Perfused squid axons in which K-conductance is blocked show, under voltage clamp, incomplete inactivation of the sodium conductance. The presence of this phenomenon in nonperfused axons was found by comparing membrane current records before and after tetrodotoxin addition to the bathing solution. Sodium currents in nonperfused axons are comparable in behavior at positive potentials to those seen in Cs-perfused axons.  相似文献   

16.
Ewers FW  Fisher JB  Chiu ST 《Plant physiology》1989,91(4):1625-1631
To determine the efficiency of xylem conductance in the liana (woody vine) Bauhinia fassoglensis Kotschy ex Schweinf., we measured hydraulic conductance per unit stem length (measured Kh), leaf-specific conductivity (LSC = Kh/distal leaf area), transpiration rate (E), xylem water potential (ε), vessel number, and vessel diameter. The measured Kh was 49% (se = 7%) of the predicted Kh from Poiseuille's law. The mean LSC for unbranched stem segments was 1.10 × 10−8 square meters per megapascal per second (se = 0.07). LSCs were much lower (about 0.2) at branch junctions. At midday, with E at 7 × 10−8 meters per second, the measured drop in ε was about 0.08 megapascal per meter along the stems and branches and about 0.27 megapascal in going from stem to leaf. In addition, there was a drop of about 0.20 megapascal at branch junctions as predicted by E/LSC. In diurnal measurements leaf ε never dropped below about −1.2 megapascal. For long (e.g. 16 meters) stems, the predicted mid-day drop in ε through the xylem transport system might be great enough to have substantial physiological impact.  相似文献   

17.
Activation kinetics of the sodium and potassium conductances were re-examined in fresh axons of Loligo forbesi exhibiting very little if any potassium accumulation and a very small leak conductance, special attention being paid to the initial lag phase which precedes the turning-on of the conductances. The axons were kept intact and voltage-clamped at 2–3°C.In all cases, the rising phase of the currents could be fitted with very good accuracy using the Hodgkin-Huxley (1952) equations although, in most cases, the turning-on of the conductance did not coincide with the beginning of the depolarizing test pulse. The delay which separates the change in potential and the turning-on of current (the activation delay) was analyzed quantitatively for different prepulse and pulse potentials. The measured activation delay differed significantly from the delay predicted by the original HH equations. This difference (the non-HH delay) varied with prepulse and pulse potentials. For the potassium current, the relationship between the non-HH delay and pulse potential for a constant prepulse was bell shaped, the maximum value (0.7 ms for a prepulse to –80 mV) being reached for about 0 mV For this same current, the relationship between the non-HH delay and the prepulse potential for a constant pulse potential was sigmoidal, starting from a minimum value of around 0.5 ms at –100 mV and rising to 5 ms at –15 mV Essentially similar results were obtained for the sodium current although the non-HH delay was three to five times smaller and the dependency upon prepulse potential not significant. These results are in agreement with previous observations on squid axons and frog nodes of Ranvier and suggest that the opening of an ionic channel is preceded by a short but essential voltage-dependent conformational change of the channel protein. Offprint requests to: Y. Pichon  相似文献   

18.
Single-channel properties of the Xenopus inositol trisphosphate receptor (IP3R) ion channel were examined by patch clamp electrophysiology of the outer nuclear membrane of isolated oocyte nuclei. With 140 mM K+ as the charge carrier (cytoplasmic [IP3] = 10 μM, free [Ca2+] = 200 nM), the IP3R exhibited four and possibly five conductance states. The conductance of the most-frequently observed state M was 113 pS around 0 mV and ∼300 pS at 60 mV. The channel was frequently observed with high open probability (mean P o = 0.4 at 20 mV). Dwell time distribution analysis revealed at least two kinetic states of M with time constants τ < 5 ms and ∼20 ms; and at least three closed states with τ ∼1 ms, ∼10 ms, and >1 s. Higher cytoplasmic potential increased the relative frequency and τ of the longest closed state. A novel “flicker” kinetic mode was observed, in which the channel alternated rapidly between two new conductance states: F1 and F2. The relative occupation probability of the flicker states exhibited voltage dependence described by a Boltzmann distribution corresponding to 1.33 electron charges moving across the entire electric field during F1 to F2 transitions. Channel run-down or inactivation (τ ∼ 30 s) was consistently observed in the continuous presence of IP3 and the absence of change in [Ca2+]. Some (∼10%) channel disappearances could be reversed by an increase in voltage before irreversible inactivation. A model for voltage-dependent channel gating is proposed in which one mechanism controls channel opening in both the normal and flicker modes, whereas a separate independent mechanism generates flicker activity and voltage- reversible inactivation. Mapping of functional channels indicates that the IP3R tends to aggregate into microscopic (<1 μm) as well as macroscopic (∼10 μm) clusters. Ca2+-independent inactivation of IP3R and channel clustering may contribute to complex [Ca2+] signals in cells.  相似文献   

19.
The effects of ethanol on squid giant axons were studied by means of the sucrose-gap technique. The membrane action potential height is moderately reduced and the duration sometimes shortened by ethanol in sea water. Voltage clamp experiments showed that ethanol in sea water reduced the maximum membrane conductances for sodium (g'Na) and potassium (g'K). In experiments with multiple application of ethyl alcohol to the same spot of membrane, a reduction of g'Na to 82 per cent and of g'K to 80 per cent of their value in sea water was brought about by 3 per cent ethanol (by volume) while 6 per cent caused a decrease of g'Na to 59 per cent and of g'K to 69 per cent. Ethanol has no significant effect on the steady-state inactivation of gNa (as a function of conditioning membrane potential) or on such kinetic parameters as τh or the time course of turning on gi gNa and gK. It is concluded that ethanol mainly reduces gNa and gK in the Hodgkin-Huxley terminology.  相似文献   

20.
A temperature-jump technique for single nodes of Ranvier has been developed using a pulsed laser system. The temperature perturbation was accomplished by firing the laser beam obtained from a neodymium rod through the solution surrounding a single node. The temperature step was achieved within 1 msec using the laser in the normal mode of operation. During the voltage-clamped steady-state current a temperature jump from 4°C increased the current to a new steady-state value within the time course of the T-jump. This finding suggests that the maximum potassium permeability PK has a rapid relaxation time and that the steady-state value of n (the value of potassium permeability divided by its maximum value) is relatively independent of temperature. T-jumps applied during the voltage-clamped sodium currents showed that the sodium permeability changed with a relaxation time that was also shorter than the duration of the normal mode laser output. T-jumps observed during a hyperpolarization or at the resting potential showed no detectable conductance change. When a T-jump immediately preceded a voltage clamp pulse the technique was then used to investigate the effect of changes in the steady-state temperature on the ionic conductances. It was found that the magnitude of the change in membrane current due to a T-clamp was directly related to the level of cathodal polarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号