首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Summary We have compared the competition between strong or weak suppressor tRNAs and translational release factors (RF) at nonsense codons in the lacI gene of Escherichia coli. Using the F'lacIZ fusions developed by Miller and coworkers, UAG, UAA, and UGA codons at positions 189 and 220 were efficiently suppressed by plasmid-borne tRNAtrp suppressors cognate to each nonsense triplet. Introduction of a compatible RF 1 plasmid competed at UAG and UAA but not UGA codons. An RF2 expressing plasmid competed at UAA and UGA but had little effect at UAG. Release factor competition against weak suppressors was measured using combinations of noncognate suppressors and nonsense codons. In each case, release factor plasmids behaved identically towards poorly suppressed codons as they did when the same codons were efficiently suppressed. The implications for these studies on the role of release factors in nonsense suppression context effects are discussed.  相似文献   

2.
The 5' context of 671 Escherichia coli stop codons UGA and UAA has been compared with the context of stop-like codons (UAC, UAU and CAA for UAA; UGG, UGC, UGU and CGA for UGA). We have observed highly significant deviations from the expected nucleotide distribution: adenine is over-represented whereas pyrimidines are under-represented in position -2 upstream from UAA. Uridine is over-represented in position -3 upstream from UGA. Lysine codons are preferable immediately prior to UAA. A complete set of codons for serine and the phenylalanine UUC codon are preferable immediately 5' to UGA. This non-random codon distribution before stop codons could be considered as a molecular device for modulation of translation termination. We have found that certain fragment of E. coli release factor 2 (RF2) (amino acids 93-114) is similar to the amino acid sequences of seryl-tRNA synthetase (positions 10-19 and 80-93) and of beta (small) subunit (positions 72-94) of phenylalanyl-tRNA synthetase from E. coli. Three-dimensional structure of E. coli seryl-tRNA synthetase is known [1]: Its N-terminus represents an antiparallel alpha-helical coiled-coil domain and contains a region homologous to RF2. On the basis of the above-mentioned results we assume that a specific interaction between RF2 and the last peptidyl-tRNA(Ser/Phe) occurs during polypeptide chain termination in prokaryotic ribosomes.  相似文献   

3.
Recoding a stop codon to an amino acid may afford orthogonal genetic systems for biosynthesizing new protein and organism properties. Although reassignment of stop codons has been found in extant organisms, a model organism is lacking to investigate the reassignment process and to direct code evolution. Complete reassignment of a stop codon is precluded by release factors (RFs), which recognize stop codons to terminate translation. Here we discovered that RF1 could be unconditionally knocked out from various Escherichia coli stains, demonstrating that the reportedly essential RF1 is generally dispensable for the E. coli species. The apparent essentiality of RF1 was found to be caused by the inefficiency of a mutant RF2 in terminating all UAA stop codons; a wild type RF2 was sufficient for RF1 knockout. The RF1-knockout strains were autonomous and unambiguously reassigned UAG to encode natural or unnatural amino acids (Uaas) at multiple sites, affording a previously unavailable model for studying code evolution and a unique host for exploiting Uaas to evolve new biological functions.  相似文献   

4.
Mapping and complementation studies of the gene for release factor 1.   总被引:17,自引:8,他引:9       下载免费PDF全文
In Escherichia coli the release factor 1 protein (RF1) recognizes and terminates translation at UAG and UAA codons. Using the technique of ColE1 plasmid integration in polA strains, we have mapped the cloned gene for RF1 to 27 min on the E. coli chromosome. This is the same location as that of the uar gene in which temperature-sensitive mutations increase the suppression of UAG and UAA alleles. In this study we proved that the uar mutation lies in the gene for RF1 by complementation of the uar phenotype with plasmids carrying the RF1 gene and by cloning the uar allele onto the RF1 plasmid by means of homologous recombination. In addition, complementation and P1 mapping data suggest that sueB is also a mutation in the same position as the RF1 gene. We propose that the gene for RF1 be named prfA after protein release factor.  相似文献   

5.
Recognition of translational termination signals   总被引:4,自引:0,他引:4  
Ribosomes can specifically shift at certain codons so that the mRNA is read in two different reading frames. To determine if frameshifting occurs at the level of termination, polymers of defined sequence containing AUG, a coding sequence and an in- or out-of-phase nonsense codon were used to bind a termination substrate or to program synthesis and release of dipeptides in a highly purified in vitro translation system. fMet-tRNA bound to ribosomes with AUGUAA, AUGUAAn, AUGUUU, AUGUUA or AUGUAn was not a substrate for release factor RF-1. In contrast, AUGU1UAA, AUGU3UAAn, AUGU4UAAn, AUGU5UAAn effected RF-1-dependent release of fMet from ribosomes. This suggests that nonsense codons can stimulate release whether they occur in- or out-of-phase. Addition of exogenous UAA and RF-1 stimulated release with all oligonucleotides tested. Propagation restricted the RF-1-dependent recognition of out-of-phase nonsense codons but did not restrict recognition of in-phase UAA in AUGU3UAAn. Release of dipeptides from ribosomes programmed with AUGU4UAAn occurred without EF-G and with a mutant lacking EF-G activity, suggesting that out-of-phase termination can occur prior to translocation outside the ribosomal A-site. We propose that the ribosome X RF complex is required to complete proteins, but is also able to frameshift at a nonsense codon resulting in occasional out-of-phase termination of protein synthesis.  相似文献   

6.
In contrast to bacteria that have two release factors, RF1 and RF2, eukaryotes only possess one unrelated release factor eRF1, which recognizes all three stop codons of the mRNA and hydrolyses the peptidyl-tRNA bond. While the molecular basis for bacterial termination has been elucidated, high-resolution structures of eukaryotic termination complexes have been lacking. Here we present a 3.8 Å structure of a human translation termination complex with eRF1 decoding a UAA(A) stop codon. The complex was formed using the human cytomegalovirus (hCMV) stalling peptide, which perturbs the peptidyltransferase center (PTC) to silence the hydrolysis activity of eRF1. Moreover, unlike sense codons or bacterial stop codons, the UAA stop codon adopts a U-turn-like conformation within a pocket formed by eRF1 and the ribosome. Inducing the U-turn conformation for stop codon recognition rationalizes how decoding by eRF1 includes monitoring geometry in order to discriminate against sense codons.  相似文献   

7.
When the ribosome machinery reaches a stop codon in the mRNA, protein synthesis stops, and nascent polypeptide release is catalysed by class-I release factors (RFs); class-II RFs then promote the release of class-I RFs. Cryo electron microscopy structures of termination complexes and crystal structures of isolated factors have provided insights into key concepts such as bridging of active sites on the ribosome, and conformational changes that regulate the termination process. Recent crystal structures of the four possible functional ribosome complexes that contain the class-I RFs and the three stop codons have uncovered the molecular mechanisms by which RF1/RF2 (i) both recognise UAA, but discriminate specifically between UAG and UGA, and (ii) catalyse peptide release. Moreover, ongoing research also promises to reveal the structure-function relations of class-II RFs.  相似文献   

8.
Bacterial release factors (RFs) 1 and 2 catalyse translation termination at UAG/UAA and UGA/UAA stop codons respectively. It has been shown that limiting the amount of ribosomal protein L11 affects translation termination at UAG and UGA differently. To understand the functional interplay between L11 and RF1/RF2, we isolated 21 distinct mutations in L11 as suppressors of either temperature-sensitive (ts) RF1/RF2 strains or read-through mutants of lacZ nonsense (UAG or UGA) strains. 10 of 21 mutants restored ts lethal growth of RF1 and/or RF2 strains. All the selected L11 mutants, including the RF1ts- and RF2ts-specific suppressors, had the same effect, either enhancing or reducing, on UAG and UGA termination efficiency in vivo. The specific properties of the selected L11 mutations remained unchanged in an RF3 deletion strain. Moreover, ribosomes absent of L11 had equally reduced activity for both RF1- and RF2-mediated peptide release in vitro. These results suggest that, unlike the previous notion, L11 has a common, cooperative role with RF1 and RF2. These L11 mutations were located on the surface of two domains of L11, and interpreted to affect the interaction between L11 and rRNA or the RFs thereby leading to the altered translation termination.  相似文献   

9.
Bacterial release factor RF2 promotes termination of protein synthesis, specifically recognizing stop codons UAA or UGA. The crystal structure of Escherichia coli RF2 has been determined to a resolution of 1.8 A. RF2 is structurally distinct from its eukaryotic counterpart eRF1. The tripeptide SPF motif, thought to confer RF2 stop codon specificity, and the universally conserved GGQ motif, proposed to be involved with the peptidyl transferase center, are exposed in loops only 23 A apart, and the structure suggests that stop signal recognition is more complex than generally believed.  相似文献   

10.
Bacterial release factors RF1 and RF2 are methylated on the Gln residue of a universally conserved tripeptide motif GGQ, which interacts with the peptidyl transferase center of the large ribosomal subunit, triggering hydrolysis of the ester bond in peptidyl-tRNA and releasing the newly synthesized polypeptide from the ribosome. In vitro experiments have shown that the activity of RF2 is stimulated by Gln methylation. The viability of Escherichia coli K12 strains depends on the integrity of the release factor methyltransferase PrmC, because K12 strains are partially deficient in RF2 activity due to the presence of a Thr residue at position 246 instead of Ala. Here, we study in vivo RF1 and RF2 activity at termination codons in competition with programmed frameshifting and the effect of the Ala-246 --> Thr mutation. PrmC inactivation reduces the specific termination activity of RF1 and RF2(Ala-246) by approximately 3- to 4-fold. The mutation Ala-246 --> Thr in RF2 reduces the termination activity in cells approximately 5-fold. After correction for the decrease in level of RF2 due to the autocontrol of RF2 synthesis, the mutation Ala-246 --> Thr reduced RF2 termination activity by approximately 10-fold at UGA codons and UAA codons. PrmC inactivation had no effect on cell growth in rich media but reduced growth considerably on poor carbon sources. This suggests that the expression of some genes needed for optimal growth under such conditions can become growth limiting as a result of inefficient translation termination.  相似文献   

11.
Organisms that use the standard genetic code recognize UAA, UAG, and UGA as stop codons, whereas variant code species frequently alter this pattern of stop codon recognition. We previously demonstrated that a hybrid eRF1 carrying the Euplotes octocarinatus domain 1 fused to Saccharomyces cerevisiae domains 2 and 3 (Eo/Sc eRF1) recognized UAA and UAG, but not UGA, as stop codons. In the current study, we identified mutations in Eo/Sc eRF1 that restore UGA recognition and define distinct roles for the TASNIKS and YxCxxxF motifs in eRF1 function. Mutations in or near the YxCxxxF motif support the cavity model for stop codon recognition by eRF1. Mutations in the TASNIKS motif eliminated the eRF3 requirement for peptide release at UAA and UAG codons, but not UGA codons. These results suggest that the TASNIKS motif and eRF3 function together to trigger eRF1 conformational changes that couple stop codon recognition and peptide release during eukaryotic translation termination.  相似文献   

12.
The two codon-specific eubacterial release factors (RF1: UAA/UAG and RF2: UAA/UGA) have specific tripeptide motifs (PXT/SPF) within an exposed recognition loop shown in recent structures to interact with stop codons during protein synthesis termination. The motifs have been inferred to be critical for codon specificity, but this study shows that they are insufficient to determine specificity alone. Swapping the motifs or the entire loop between factors resulted in a loss of codon recognition rather than a switch of codon specificity. From a study of chimeric eubacterial RF1/RF2 recognition loops and an atypical shorter variant in Caenorhabditis elegans mitochondrial RF1 that lacks the classical tripeptide motif PXT, key determinants throughout the whole loop have been defined. It reveals that more than one configuration of the recognition loop based on specific sequence and size can achieve the same desired codon specificity. This study has provided unexpected insight into why a combination of the two factors is necessary in eubacteria to exclude recognition of UGG as stop.  相似文献   

13.
Stop codons have been exploited for genetic incorporation of unnatural amino acids (Uaas) in live cells, but their low incorporation efficiency, which is possibly due to competition from release factors, limits the power and scope of this technology. Here we show that the reportedly essential release factor 1 (RF1) can be knocked out from Escherichia coli by 'fixing' release factor 2 (RF2). The resultant strain JX33 is stable and independent, and it allows UAG to be reassigned from a stop signal to an amino acid when a UAG-decoding tRNA-synthetase pair is introduced. Uaas were efficiently incorporated at multiple UAG sites in the same gene without translational termination in JX33. We also found that amino acid incorporation at endogenous UAG codons is dependent on RF1 and mRNA context, which explains why E. coli tolerates apparent global suppression of UAG. JX33 affords a unique autonomous host for synthesizing and evolving new protein functions by enabling Uaa incorporation at multiple sites.  相似文献   

14.
Termination of protein synthesis is promoted in ribosomes by proper stop codon discrimination by class 1 polypeptide release factors (RFs). A large set of prokaryotic RFs differing in stop codon specificity, RF1 for UAG and UAA, and RF2 for UGA and UAA, was analyzed by means of a recently developed computational method allowing identification of the specificity-determining positions (SDPs) in families composed of proteins with similar but not identical function. Fifteen SDPs were identified within the RF1/2 superdomain II/IV known to be implicated in stop codon decoding. Three of these SDPs had particularly high scores. Five residues invariant for RF1 and RF2 [invariant amino acid residues (IRs)] were spatially clustered with the highest-scoring SDPs that in turn were located in two zones within the SDP/IR area. Zone 1 (domain II) included PxT and SPF motifs identified earlier by others as 'discriminator tripeptides'. We suggest that IRs in this zone take part in the recognition of U, the first base of all stop codons. Zone 2 (domain IV) possessed two SDPs with the highest scores not identified earlier. Presumably, they also take part in stop codon binding and discrimination. Elucidation of potential functional role(s) of the newly identified SDP/IR zones requires further experiments.  相似文献   

15.
Release factors (RF) 1 and 2 trigger the hydrolysis of the peptide from the peptidyl-tRNA during translation termination. RF1 binds to the ribosome in response to the stop codons UAG and UAA, whereas RF2 recognizes UAA and UGA. RF1 and RF2 have been shown to bind to several ribosomal proteins. To study this interaction in vivo, prfA1, a mutant form of RF1 has been used. A strain with the prfA1 mutation is temperature sensitive (Ts) for growth at 42 degrees C and shows an increased misreading of UAG and UAA. In this work we show that a point mutation in ribosomal protein S4 can, on the one hand, make the RF1 mutant strain Ts(+); on the other hand, this mutation increases the misreading of UAG, but not UAA, caused by prfA1. The S4 mutant allele, rpsD101, is a missense mutation (Tyr51 to Asp), which makes the cell cold sensitive. The behaviour of rpsD101 was compared to the well-studied S4 alleles rpsD12, rpsD14, and rpsD16. These three mutations all confer both a Ts (44 degrees C) phenotype and show a ribosomal ambiguity phenotype, which rpsD101 does not. The three alleles were sequenced and shown to be truncations of the S4 protein. None of the three mutations could compensate for the Ts phenotype caused by the prfA1 mutation. Hence, rpsD101 differs in all studied characteristics from the three above mentioned S4 mutants. Because rpsD101 can compensate for the Ts phenotype caused by prfA1 but enhances the misreading of UAG and not UAA, we suggest that S4 influences the interaction of RF1 with the decoding center of the ribosome and that the Ts phenotype is not a consequence of increased readthrough.  相似文献   

16.
In eubacteria, termination of translation is signaled by any one of the stop codons UAA, UAG, and UGA moving into the ribosomal A site. Two release factors, RF1 and RF2, recognize and bind to the stop codons with different affinities and trigger the hydrolysis of the ester bond that links the polypeptide with the P-site tRNA. Cryo-electron microscopy (cryo-EM) results obtained in this study show that ribosome-bound RF1 is in an open conformation, unlike the closed conformation observed in the crystal structure of the free factor, allowing its simultaneous access to both the decoding center and the peptidyl-transferase center. These results are similar to those obtained for RF2, but there is an important difference in how the factors bind to protein L11, which forms part of the GTPase-associated center of the large ribosomal subunit. The difference in the binding position, C-terminal domain for RF2 versus N-terminal domain for RF1, explains a body of L11 mutation studies that revealed differential effects on the activity of the two factors. Very recent data obtained with small-angle X-ray scattering now reveal that the solution structure of RF1 is open, as here seen on the ribosome by cryo-EM, and not closed, as seen in the crystal.  相似文献   

17.
In eukaryotes with the universal genetic code a single class I release factor (eRF1) most probably recognizes all stop codons (UAA, UAG and UGA) and is essential for termination of nascent peptide synthesis. It is well established that stop codons have been reassigned to amino acid codons at least three times among ciliates. The codon specificities of ciliate eRF1s must have been modified to accommodate the variant codes. In this study we have amplified, cloned and sequenced eRF1 genes of two hypotrichous ciliates, Oxytricha trifallax (UAA and UAG for Gln) and Euplotes aediculatus (UGA for Cys). We also sequenced/identified three protist and two archaeal class I RF genes to enlarge the database of eRF1/aRF1s with the universal code. Extensive comparisons between universal code eRF1s and those of Oxytricha, Euplotes, and Tetrahymena which represent three lineages that acquired variant codes independently, provide important clues to identify stop codon-binding regions in eRF1. Domain 1 in the five ciliate eRF1s, particularly the TASNIKS heptapeptide and its adjacent region, differs significantly from domain 1 in universal code eRF1s. This observation suggests that domain 1 contains the codon recognition site, but that the mechanism of eRF1 codon recognition may be more complex than proposed by Nakamura et al. or Knight and Landweber.  相似文献   

18.
During of protein synthesis, or translation, four stages are usually recognized: initiation, elongation, termination, and recycling. Translation termination involves two protein types, the factors of termination of the first class participate in recognition of stop-codons and the termination factors of the second class are GTP-ases, which stimulate activity of the first class factors. Bacteria have two proteins of class 1, RF1 and RF2 (release factor), with overlapping codon specificity; both factors are capable to recognize the codon UAA, while the codons UAG and UGA are only decoded by RF1 and RF2, respectively. In addition, bacteria contain one factor of class 2, RF3, which not only stimulates activity of RF1 and RF2, but also promotes release of the first class factors after completion of termination. In contrast to prokaryotes, eukaryotic organisms have only one termination factor of class 1, eRF1. This protein recognizes each of the three stop-codons, which results in hydrolysis of peptidyl-tRNA. Eukaryotic cells also have only one factor of class 2, eRF3.  相似文献   

19.
20.
Y Inagaki  Y Bessho    S Osawa 《Nucleic acids research》1993,21(6):1335-1338
In Mycoplasma capricolum, a relative of Gram-positive eubacteria with a high genomic AT-content (75%), codon UGA is assigned to tryptophan instead of termination signal. Thus, in this bacterium the release factor 2 (RF-2), that recognizes UAA and UGA termination codons in eubacteria such as Escherichia coli and Bacillus subtilis, would be either specific to UAA or deleted. To test this, we have constructed a cell-free translation system using synthetic mRNA including codon UAA [mRNA(UAA)], UAG [mRNA(UAG)] and UGA [mRNA(UGA)] in-frame. In the absence of tryptophan, the translation of mRNA(UGA) ceased at UGA sites without appreciable release of the synthesized peptides from the ribosomes, whereas with mRNA(UAA) or mRNA(UAG) the bulk of the peptides was released. Upon addition of the E.coli S-100 fraction or B.subtilis S-100 fraction to the translation system, the synthesized peptides with mRNA(UGA) were almost completely released from the ribosomes, presumably because of the presence of RF-2 active to UGA in the added S-100 fraction. These data suggest that RF-2 is deleted or its activity to UGA is strongly weakened in M.capricolum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号