首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Gene》1997,191(1):1-6
Visual pigment genes have been isolated from a marine lamprey, Petromyzon marinus. We report here the rhodopsin gene, spanning 21.2 kb from start to stop codons, making it the longest opsin gene known in vertebrates. Southern analysis suggests that the lamprey genome contains a single rhodopsin gene. The amino acid (aa) sequence deduced from this gene has 92% sequence similarity with that of the river lamprey rhodopsin. The data reveal that aa substitutions occurred more often in the transmembrane region than in the non-transmembrane region, possibly reflecting functional adaptation of the rhodopsin during the last 500 million years of the jawless fish evolution.  相似文献   

2.
Summary In common with other cyclostomata, the Japanese river lamprey (Lampetra japonica) has a retina consisting of distinct types of photoreceptor cells called long and short photoreceptor cells. After freeze-fracture, disc membranes of these photoreceptor cells were characterized in common by a homogeneous distribution of intramembrane particles on the protoplasmic fracture faces, in contrast to those of the myeloid bodies bearing scattering particles.Immunofluorescent examination was applied to the retina with monoclonal antibodies raised against bovine and chicken rhodopsins. Positive immunoreactivity was found to be limited to outer segments of the short cell, leaving the entire body of the long cell and all other components of the retina negative. The results suggest that the short cell is more closely related to a rod-type photoreceptor cell characterized by rhodopsin as its visual pigment.  相似文献   

3.
Retinal extracts of the Australian gecko, Phyllurus milii (White), have revealed the presence of a photosensitive pigment, unusual for terrestrial animals, because of its absorption maximum at 524 mµ. This pigment has an absorption spectrum which is identical in form with that of other visual chromoproteins. It is not a porphyropsin, for bleaching revealed the presence, not of retinene2, but of retinene1 as a chromophore. Photolabile pigments with characteristics similar to those of the Phyllurus visual pigment were also detected in retinal extracts of six other species of nocturnal geckos. The presence of this retinal chromoprotein adequately accounts for the unusual visual sensitivity curve described by Denton for the nocturnal gecko. This pigment may have special biological significance in terms of the unique phylogenetic position of geckos as living representatives of nocturnal animals which retain some of the characteristics of their diurnal ancestors. The occurrence of this retinene1 pigment, intermediate in spectral position between rhodopsin and iodopsin, is interpreted in support of the transmutation theory of Walls. The results and interpretation of this investigation point up the fact that, from a phylogenetic point of view, too great an emphasis on the duplicity theory may serve to detract attention from the evolutionary history of the retina and the essential unitarianism of the visual cells.  相似文献   

4.
The life cycle of the sea lamprey, Petromyzon marinus, includes two metamorphoses. At the end of a period spent as a blind larva, buried in the mud of streams, a first metamorphosis prepares it to migrate downstream to the sea or a lake for its growth phase. Then, following a second metamorphosis, it migrates upstream as a sexually mature adult to spawn and die. The downstream migrants have a visual system based upon rhodopsin and vitamin A1, whereas that of the upstream migrants is based upon porphyropsin and vitamin A2. The livers contain vitamin A1 at all stages. The sea lamprey therefore exhibits a metamorphosis of visual systems, like those observed earlier among amphibia. The presence of porphyropsin in this member of the most primitive living group of vertebrates, as in fishes and amphibia, supports the notion that porphyropsin may have been the primitive vertebrate visual pigment. Its association with fresh water existence throughout this range of organisms also is consistent with the view that the vertebrate stock originated in fresh water. The observation that in the life cycle of the lamprey rhodopsin precedes porphyropsin is not at variance with the idea that porphyropsin is the more primitive pigment, since this change is part of the second metamorphosis, marking the return to the original environment. The observation that in lampreys, fishes, and amphibia, porphyropsin maintains the same general association with fresh water, and rhodopsin with marine and terrestrial habit, suggests that a single genetic mechanism may govern this association throughout this wide span of organisms.  相似文献   

5.
Purpose: Photoreceptors cannot regenerate and recover their functions once disordered. Transplantation of retinal pigment epithelium (RPE) has recently become a possible therapeutic approach for retinal degeneration. In the present study, we investigated the induction of photoreceptors by coculturing primate embryonic stem cells (ESCs) with ESC-derived RPE cells. Methods: RPE cells were derived by coculturing ESCs and Sertoli cells. Photoreceptors were then induced by using ESC-derived RPE cells and retinoic acid (RA) Results: RPE cell generation was confirmed by morphological analysis, which revealed highly pigmented polygonal cells with a compact cell-cell arrangement. After coculturing ESCs and RPE cells, some ESC derivatives became immunopositive for rhodopsin. RT-PCR analysis demonstrated the expression of retina-related gene markers such as Pax6, CRX, IRBP, rhodopsin, rhodopsin kinase, and Muschx10A. When RA was added, a distinct increase in the expression of photoreceptor-specific proteins and genes was found. In addition, the differentiation of bipolar horizontal cells was demonstrated by protein and gene expression. The ESCs that were cocultured with RPE cells and treated with RA were transplanted into the renal capsule or intra-vitreal space of nude mice. Grafted ESC derivatives demonstrated extensive rhodopsin expression, and they survived and organized into recipient tissues, although they formed teratomas. Conclusion: These results indicate that coculturing ESCs with ESC-derived RPE cells is a useful and efficient method for inducing photoreceptors and providing an insight into the use of ESCs for retina regeneration.  相似文献   

6.
Retinal extracts have been prepared from dark-adapted mudsuckers by treatment of retinal tissue or of isolated outer segments of the visual cells with digitonin solution. The extracts were examined spectrophotometrically and found to absorb light maximally between the wave lengths of 488 and 510 mµ, depending on the proportion of yellow impurities and light-sensitive pigment present. This photosensitive pigment was shown to be homogeneous by partial bleaching of the extracts with monochromatic light of various wave lengths from 390 to 660 mµ. The mudsucker pigment was specifically demonstrated not to be a mixture of rhodopsin and porphyropsin; the adequacy of the method used to analyze such mixtures was shown by performing a control experiment with an artificial mixture of bullfrog rhodopsin and carp porphyropsin. Comparison of the hydroxylamine difference spectrum and of the absorption maximum of the purest retinal extract located the mudsucker photosensitive pigment maximum at 512 ± 1 mµ. Extraction of retinal tissue with a fat solvent after exposure to white light gave a preparation which after the addition of antimony chloride reagent developed the absorption band maximal near 664 mµ, which is characteristic of retinene1. If an hour intervened between exposure of the retinal tissue to light and extraction of the carotenoid, the antimony trichloride test gave a color band maximal at 620 mµ, characteristic of vitamin A1. No evidence of retinene2 or vitamin A2 was obtained. The euryhaline mudsucker has, therefore, a photosensitive retinal pigment with an absorption maximum halfway between the peaks of rhodopsins and of porphyropsins and belonging to the retinene1 system characteristic of rhodopsins. The pigment is therefore named a retinene1 pigment 512 of the mudsucker, Gillichthys mirabilis. It is uncertain whether this type of photosensitive pigment will be found in other euryhaline fishes.  相似文献   

7.
Lipid metabolism-related gene mutations can cause retinitis pigmentosa, a currently untreatable blinding disease resulting from progressive neurodegeneration of the retina. Here, we demonstrated the influence of adiponectin receptor 1 (ADIPOR1) deficiency in retinal neurodegeneration using Adipor1 knockout (KO) mice. Adipor1 mRNA was observed to be expressed in photoreceptors, predominately within the photoreceptor inner segment (PIS), and increased after birth during the development of the photoreceptor outer segments (POSs) where photons are received by the visual pigment, rhodopsin. At 3 weeks of age, visual function impairment, specifically photoreceptor dysfunction, as recorded by electroretinography (ERG), was evident in homozygous, but not heterozygous, Adipor1 KO mice. However, although photoreceptor loss was evident at 3 weeks of age and progressed until 10 weeks, the level of visual dysfunction was already substantial by 3 weeks, after which it was retained until 10 weeks of age. The rhodopsin mRNA levels had already decreased at 3 weeks, suggesting that reduced rhodopsin may have contributed to early visual loss. Moreover, inflammation and oxidative stress were induced in homozygous KO retinas. Prior to observation of photoreceptor loss via optical microscopy, electron microscopy revealed that POSs were present; however, they were misaligned and their lipid composition, including docosahexaenoic acid (DHA), which is critical in forming POSs, was impaired in the retina. Importantly, the expression of Elovl2, an elongase of very long chain fatty acids expressed in the PIS, was significantly reduced, and lipogenic genes, which are induced under conditions of reduced endogenous DHA synthesis, were increased in homozygous KO mice. The causal relationship between ADIPOR1 deficiency and Elovl2 repression, together with upregulation of lipogenic genes, was confirmed in vitro. Therefore, ADIPOR1 in the retina appears to be indispensable for ELOVL2 induction, which is likely required to supply sufficient DHA for appropriate photoreceptor function and survival.Subject terms: Mechanisms of disease, Developmental neurogenesis  相似文献   

8.
INHERITED RETINAL DYSTROPHY IN THE RAT   总被引:13,自引:6,他引:7       下载免费PDF全文
Retinal dystrophies, known in man, dog, mouse, and rat, involve progressive loss of photoreceptor cells with onset during or soon after the developmental period. Functional (electroretinogram), chemical (rhodopsin analyses) and morphological (light and electron microscopy) data obtained in the rat indicated two main processes: (a) overproduction of rhodopsin and an associated abnormal lamellar tissue component, (b) progressive loss of photoreceptor cells. The first abnormality recognized was the appearance of swirling sheets or bundles of extracellular lamellae between normally developing retinal rods and pigment epithelium; membrane thickness and spacing resembled that in normal outer segments. Rhodopsin content reached twice normal values, was present in both rods and extracellular lamellae, and was qualitatively normal, judged by absorption maximum and products of bleaching. Photoreceptors attained virtually adult form and ERG function. Then rod inner segments and nuclei began degenerating; the ERG lost sensitivity and showed selective depression of the a-wave at high luminances. Outer segments and lamellae gradually degenerated and rhodopsin content decreased. No phagocytosis was seen, though pigment cells partially dedifferentiated and many migrated through the outer segment-debris zone toward the retina. Eventually photoreceptor cells and the b-wave of the ERG entirely disappeared. Rats kept in darkness retained electrical activity, rhodopsin content, rod structure, and extracellular lamellae longer than litter mates in light.  相似文献   

9.
A rapid electrical potential, which we have named the M-potential, can be obtained from the Drosophila eye using a high energy flash stimulus. The potential can be elicited from the normal fly, but it is especially prominent in the mutant norp AP12 (a phototransduction mutant), particularly if the eye color pigments are genetically removed from the eye. Several lines of evidence suggest that the M-potential arises from photoexcitation of long-lived metarhodopsin. Photoexcitation of rhodopsin does not produce a comparable potential. The spectral sensitivity of the M-potential peaks at about 575 nm. The M-potential pigment (metarhodopsin) can be shown to photoconvert back and forth with a "silent pigment(s)" absorbing maximally at about 485 nm. The silent pigment presumably is rhodopsin. These results support the recent spectrophotometric findings that dipteran metarhodopsin absorbs at much longer wavelengths than rhodopsin. The M-potential probably is related to the photoproduct component of the early receptor potential (ERP). Two major differences between the M-potential and the classical ERP are: (a) Drosophila rhodopsin does not produce a rapid photoresponse, and (b) an anesthetized or freshly sacrificed animal does not yield the M-potential. As in the case of the ERP, the M-potential appears to be a response associated with a particular state of the fly visual pigment. Therefore, it should be useful in in vivo investigations of the fly visual pigment, about which little is known.  相似文献   

10.
Mammals contain 1 melanopsin (Opn4) gene that is expressed in a subset of retinal ganglion cells to serve as a photopigment involved in non-image-forming vision such as photoentrainment of circadian rhythms. In contrast, most nonmammalian vertebrates possess multiple melanopsins that are distributed in various types of retinal cells; however, their functions remain unclear. We previously found that the lamprey has only 1 type of mammalian-like melanopsin gene, which is similar to that observed in mammals. Here we investigated the molecular properties and localization of melanopsin in the lamprey and other cyclostome hagfish retinas, which contribute to visual functions including image-forming vision and mainly to non-image-forming vision, respectively. We isolated 1 type of mammalian-like melanopsin cDNA from the eyes of each species. We showed that the recombinant lamprey melanopsin was a blue light-sensitive pigment and that both the lamprey and hagfish melanopsins caused light-dependent increases in calcium ion concentration in cultured cells in a manner that was similar to that observed for mammalian melanopsins. We observed that melanopsin was distributed in several types of retinal cells, including horizontal cells and ganglion cells, in the lamprey retina, despite the existence of only 1 melanopsin gene in the lamprey. In contrast, melanopsin was almost specifically distributed to retinal ganglion cells in the hagfish retina. Furthermore, we found that the melanopsin-expressing horizontal cells connected to the rhodopsin-containing short photoreceptor cells in the lamprey. Taken together, our findings suggest that in cyclostomes, the global distribution of melanopsin in retinal cells might not be related to the melanopsin gene number but to the extent of retinal contribution to visual function.  相似文献   

11.
Rhodopsin and Porphyropsin Fields In the Adult Bullfrog Retina   总被引:2,自引:0,他引:2  
Though it had been supposed earlier that the bullfrog undergoes a virtually complete metamorphosis of visual systems from vitamin A2 and porphyropsin in the tadpole to vitamin A1 and rhodopsin in the adult, the present observations show that the retina of the adult frog may contain as much as 30–40% porphyropsin, all of it segregated in the dorsal zone. The most dorsal quarter of the adult retina may contain 81–89% porphyropsin mixed with a minor amount of rhodopsin; the ventral half contains only rhodopsin. Further, the dorsal zone contains a two to three times higher concentration of visual pigments than the ventral retina. The pigment epithelium underlying the retina contains a corresponding distribution of vitamins A1 and A2, predominantly vitamin A2 in the dorsal pigment epithelium, exclusively vitamin A1 in the ventral zone. The retina accepts whatever vitamin A the pigment epithelium provides it with, and turns it into the corresponding visual pigment. Thus, a piece of light-adapted dorsal retina laid back on ventral pigment epithelium regenerates rhodopsin, whereas a piece of light-adapted ventral retina laid back on dorsal pigment epithelium regenerates predominantly porphyropsin. Vitamin A2 must be made from vitamin A1, by dehydrogenation at the 3,4-bond in the ring. This conversion must occur in the pigment epithelium, presumably through the action of a vitamin A-3,4-dehydrogenase. The essential change at metamorphosis is to make much less of this dehydrogenase, and to sequester it in the dorsal pigment epithelium. Some adult bullfrogs, perhaps characteristically taken in the summer, contain very little porphyropsin—only perhaps 5%—still sequestered in the dorsal retina. The gradient of light over the retinal surface has little if any effect on this distribution. The greater density of visual pigments in the dorsal retina, and perhaps also—although this is less clear—the presence of porphyropsin in this zone, has some ecological importance in increasing the retinal sensitivity to the dimmer and, on occasion, redder light received from below.  相似文献   

12.
In order to maintain visual sensitivity at all light levels, the vertebrate eye possesses a mechanism to regenerate the visual pigment chromophore 11-cis retinal in the dark enzymatically, unlike in all other taxa, which rely on photoisomerization. This mechanism is termed the visual cycle and is localized to the retinal pigment epithelium (RPE), a support layer of the neural retina. Speculation has long revolved around whether more primitive chordates, such as tunicates and cephalochordates, anticipated this feature. The two key enzymes of the visual cycle are RPE65, the visual cycle all-trans retinyl ester isomerohydrolase, and lecithin:retinol acyltransferase (LRAT), which generates RPE65’s substrate. We hypothesized that the origin of the vertebrate visual cycle is directly connected to an ancestral carotenoid oxygenase acquiring a new retinyl ester isomerohydrolase function. Our phylogenetic analyses of the RPE65/BCMO and N1pC/P60 (LRAT) superfamilies show that neither RPE65 nor LRAT orthologs occur in tunicates (Ciona) or cephalochordates (Branchiostoma), but occur in Petromyzon marinus (Sea Lamprey), a jawless vertebrate. The closest homologs to RPE65 in Ciona and Branchiostoma lacked predicted functionally diverged residues found in all authentic RPE65s, but lamprey RPE65 contained all of them. We cloned RPE65 and LRATb cDNAs from lamprey RPE and demonstrated appropriate enzymatic activities. We show that Ciona ß-carotene monooxygenase a (BCMOa) (previously annotated as an RPE65) has carotenoid oxygenase cleavage activity but not RPE65 activity. We verified the presence of RPE65 in lamprey RPE by immunofluorescence microscopy, immunoblot and mass spectrometry. On the basis of these data we conclude that the crucial transition from the typical carotenoid double bond cleavage functionality (BCMO) to the isomerohydrolase functionality (RPE65), coupled with the origin of LRAT, occurred subsequent to divergence of the more primitive chordates (tunicates, etc.) in the last common ancestor of the jawless and jawed vertebrates.  相似文献   

13.
Cis-trans isomers of vitamin A and retinene in the rhodopsin system   总被引:28,自引:14,他引:14  
Vitamin A and retinene, the carotenoid precursors of rhodopsin, occur in a variety of molecular shapes, cis-trans isomers of one another. For the synthesis of rhodopsin a specific cis isomer of vitamin A is needed. Ordinary crystalline vitamin A, as also the commercial synthetic product, both primarily all-trans, are ineffective. The main site of isomer specificity is the coupling of retinene with opsin. It is this reaction that requires a specific cis isomer of retinene. The oxidation of vitamin A to retinene by the alcohol dehydrogenase-cozymase system displays only a low degree of isomer specificity. Five isomers of retinene have been isolated in crystalline condition: all-trans; three apparently mono-cis forms, neoretinenes a and b and isoretinene a; and one apparently di-cis isomer, isoretinene b. Neoretinenes a and b were first isolated in our laboratory, and isoretinenes a and b in the Organic Research Laboratory of Distillation Products Industries. Each of these substances is converted to an equilibrium mixture of stereoisomers on simple exposure to light. For this reaction, light is required which retinene can absorb; i.e., blue, violet, or ultraviolet light. Yellow, orange, or red light has little effect. The single geometrical isomers of retinene must therefore be protected from low wave length radiation if their isomerization is to be avoided. By incubation with opsin in the dark, the capacity of each of the retinene isomers to synthesize rhodopsin was examined. All-trans retinene and neoretinene a are inactive. Neoretinene b yields rhodopsin indistinguishable from that extracted from the dark-adapted retina (λmax· 500 mµ). Isoretinene a yields a similar light-sensitive pigment, isorhodopsin, the absorption spectrum of which is displaced toward shorter wave lengths (λmax· 487 mµ). Isoretinene b appears to be inactive, but isomerizes preferentially to isoretinene a, which in the presence of opsin is removed to form isorhodopsin before the isomerization can go further. The synthesis of rhodopsin in solution follows the course of a bimolecular reaction, as though one molecule of neoretinene b combines with one of opsin. The synthesis of isorhodopsin displays similar kinetics. The bleaching of rhodopsin, whether by chemical means or by exposure to yellow or orange (i.e., non-isomerizing) light, yields primarily or exclusively all-trans retinene. The same appears to be true of isorhodopsin. The process of bleaching is therefore intrinsically irreversible. The all-trans retinene which results must be isomerized to active configurations before rhodopsin or isorhodopsin can be regenerated. A cycle of isomerization is therefore an integral part of the rhodopsin system. The all-trans retinene which emerges from the bleaching of rhodopsin must be isomerized to neoretinene b before it can go back; or if first reduced to all-trans vitamin A, this must be isomerized to neovitamin Ab before it can regenerate rhodopsin. The retina obtains new supplies of the neo-b isomer: (a) by the isomerization of all-trans retinene in the eye by blue or violet light; (b) by exchanging all-trans vitamin A for new neovitamin Ab from the blood circulation; and (c) the eye tissues may contain enzymes which catalyze the isomerization of retinene and vitamin A in situ. When the all-trans retinene which results from bleaching rhodopsin in orange or yellow light is exposed to blue or violet light, its isomerization is accompanied by a fall in extinction and a shift of absorption spectrum about 5 mµ toward shorter wave lengths. This is a second photochemical step in the bleaching of rhodopsin. It converts the inactive, all-trans isomer of retinene into a mixture of isomers, from which mixtures of rhodopsin and isorhodopsin can be regenerated. Isorhodopsin, however, is an artefact. There is no evidence that it occurs in the retina; nor has isovitamin Aa or b yet been identified in vivo. In rhodopsin and isorhodopsin, the prosthetic groups appear to retain the cis configurations characteristic of their retinene precursors. In accord with this view, the β-bands in the absorption spectra of both pigments appear to be cis peaks. The conversion to the all-trans configuration occurs during the process of bleaching. The possibility is discussed that rhodopsin may represent a halochromic complex of a retinyl ion with opsin. The increased resonance associated with the ionic state of retinene might then be responsible both for the color of rhodopsin and for the tendency of retinene to assume the all-trans configuration on its release from the complex. A distinction must be made between the immediate precursor of rhodopsin, neovitamin Ab, and the vitamin A which must be fed in order that rhodopsin be synthesized in vivo. Since vitamin A isomerizes in the body, it is probable that any geometrical isomer can fulfill all the nutritional needs for this vitamin.  相似文献   

14.
Summary Light-induced phosphorylation and dephosphorylation of the visual pigment protein, opsin, was investigated in isolated retinae of the blowfly making use of the fact that photon capture by rhodopsin leads to the formation of a thermostable metarhodopsin. Retinae were exposed, in the presence of exogenous32P-orthophosphate, to an intense blue light which initiated the phosphorylation of opsin (half-time about 5 min at 25 °C). Subsequent exposure of the retina to red light converted all the metarhodopsin present into rhodopsin and triggered a relatively rapid dephosphorylation of rhodopsin (half-time less than 20 s). It is proposed that the phosphorylated forms of rhodopsin and metarhodopsin represent inactive states of the pigment, i.e. phosphorylated metarhodopsin does not initiate reactions leading to the excitation of the photoreceptor cell and phosphorylated rhodopsin cannot be converted into physiologically active metarhodopsin without first being dephosphorylated.Abbreviations R1–6 peripheral retinula cells of the blowfly ommatidium - PDA prolonged depolarizing afterpotential - R rhodopsin - M metarhodopsin - R-P n phosphorylated rhodopsin - M-P n phosphorylated metarhodopsin - SDS-PAGE sodium dodecylsulphate polyacrylamide gel electrophoresis  相似文献   

15.
Digitonin extracts have been prepared from the retinae of a dozen species of marine and euryhaline teleost fishes from turbid water habitats. Spectrophotometric analysis of the extracts shows that the photosensitive retinal pigments of these species have maximum absorption above 500 mµ. In nine species there are retinene1 pigments with λmax between 504 and 512 mµ. In the marine but euryhaline mullet, Mugil cephalus, there is a porphyropsin with λmax 520 mµ. A mixture of rhodopsin and porphyropsin in an extract of a marine puffer, Sphoeroides annulatus, was disclosed by partial bleaching with colored light. In addition, one other species has a 508 mµ pigment, of which the nature of the chromophore was not determined. The habitats in which these fishes live are relatively turbid, with the water greenish or yellowish in color. The spectral transmission of such waters is probably maximal between 520 and 570 mµ. It is suggested that the fishes have become adapted to these conditions by small but significant shifts in spectral absorption of their retinal pigments. These pigments are decidedly more effective than rhodopsin in absorption of wavelengths above 500 mµ. This offers a possible interpretation of the confusing array of retinal pigments described from marine and euryhaline fishes.  相似文献   

16.
The regeneration of visual pigment in rod photoreceptors of the vertebrate retina requires an exchange of retinoids between the neural retina and the retinal pigment epithelium (RPE). It has been hypothesized that interphotoreceptor retinoid-binding protein (IRBP) functions as a two-way carrier of retinoid through the aqueous compartment (interphotoreceptor matrix) that separates the RPE and the photoreceptors. The first part of this review summarizes the cellular and molecular biology of IRBP. Work on the IRBP gene indicates that the protein contains a four-fold repeat structure that may be involved in binding multiple retinoid and fatty acid ligands. These repeats and other aspects of the gene structure indicate that the gene has had an active and complex evolutionary history. IRBP mRNA is detected only in retinal photoreceptors and in the pineal gland; expression is thus restricted to the two photosensitive tissues of vertebrate organisms. In the second part of this review, we consider the results obtained in experiments that have examined the activity of IRBP in the process of visual pigment regeneration. We also consider the results obtained on the bleaching and regeneration of rhodopsin in the acutely detached retina, as well as in experiments testing the ability of IRBP to protect its retinoid ligand from isomerization and oxidation. Taken together, the findings provide evidence that, in vivo, IRBP facilitates both the delivery of all-trans retinol to the RPE and the transfer of 11-cis retinal from the RPE to bleached rod photoreceptors, and thereby directly supports the regeneration of rhodopsin in the visual cycle.  相似文献   

17.
By the use of appropriate light intensities the expression of the transient nature of the receptor potential observed in the trp mutant of Drosophila melanogaster can be confined to the peripheral retinula cells in which the visual pigment can also be manipulated predictably, affording an experimental means to probe in these receptors the relationship of the visual pigment to the “electrogenic membrane”. Repeated blue light exposures cause w;trp flies to respond in a manner like cn;bw flies in which the dark-adapted rhodopsin fraction is reduced to 0.5% of the normal level by vitamin A deprivation: this comparable response behaviour, since the amount of visual pigment in w;trp flies is normal, implies that only some subfraction of the photoequilibrium value of rhodopsin may be available. Recovery of the peripheral receptors' sensitivity in ambient light conditions which would render them insensitive by expression of the phenotype is paradoxical and allows a “wavelength effectivity” curve to be constructed which identifies the involvement of the rhodopsin. Resolution of the paradox is discussed.  相似文献   

18.
Molecular-genetic mechanisms of regeneration of adult newt (Pleurodeles waltl) retina were studied. For the first time, a comparative analysis of the expression of regulatory genes Pax6, Otx2, and Six3 and FGF2 genes encoding signal molecules was performed in the normal retinal pigment epithelium (RPE) and retina and at successive stages of retina regeneration. Cell differentiation types were determined using genetic markers of cell differentiation in the RPE (RPE65) and the retina (βII-tubulin and Rho). Activation of the expression of neurospecific genes Pax6 and Six3 and the growth factor gene FGF2 and suppression of activation of the regulatory gene Otx2 and the RPE65 were observed at the stage of multipotent neuroblast formation in the regenerating retina. The expression of genes Pax6, Six3, and Fgf2 was retained at a later stage of retina regeneration at which the expression of retinal differentiation markers, the genes encoding β II-tubulin (βII-tubulin) and rhodopsin (Rho), was also detected. We assume that the above regulatory genes are multifunctional and control not only transdifferentiation of RPE cells (the key stage of retina regeneration) but also differentiation of regenerating retina cells. The results of this study, demonstrating coexpression of Pax6, Six3, Fgf2, βII-tubulin, and Rho genes, provide indirect evidence for the interaction of regulatory and specific genes during retina regeneration.  相似文献   

19.
Summary The prolonged depolarizing afterpotential (PDA) is a phenomenon which is tightly linked to visual pigment conversion. In order to determine whether processes underlying PDA induction and depression can spread in space, the PDA was recorded intracellularly in white-eyedCalliphora R1-6 photoreceptors and used to examine interactions between processes induced by activating statistically different photopigment molecules (Figs. 3–6). It was found that a PDA induced by converting some fraction of rhodopsin (R) molecules forward into the metarhodopsin (M) state can be completely depressed by equal or smaller amounts of pigment conversion, backward from metarhodopsin to rhodopsin even when largely different sets of pigment molecules were shifted in the respective directions, in agreement with previous experiments conducted on the barnacle. The characteristics of the afterpotentials obtained following the cessation of strong blue and green light stimuli which did not cause a net pigment conversion was examined (Figs. 7, 8). It was found that these afterpotentials, obtained when nonet R to M conversion took place, could not be depressed by an opposite net large M to R pigment conversion. Accordingly we propose to restrict the term PDA to an afterpotential which can be depressed by a net M to R pigment conversion. It is concluded: (a) that some processes underlying PDA induction and depression inCalliphora must interact at a distance which extends at least to the nearest neighboring pigment molecule, and (b) that inCalliphora photoreceptors net pigment conversion is required in order to induce and depress a PDA.Abbreviations R rhodopsin - M metarhodopsin - R to M rhodopsin to metarhodopsin pigment conversion - M to R metarhodopsin to rhodopsin pigment conversion - PDA prolonged depolarizing afterpotential - ERG electroretinogram - M potential metarhodopsin potential - ERP early receptor potential  相似文献   

20.
The review considers tapetoretinal degeneration (TD), a severe incurable disease occurring at a frequency of 1 per 3500–5000 people. TD is most commonly caused by mutations of the genes for rhodopsin (RHO), peripherin (RDS), and retinol acetyltransferase (RPE65). Since pigmentary degeneration strongly correlates with mutations of these genes, it is possible to develop approaches to DNA diagnosis of hereditary retinal dystrophies, which are common in practical ophthalmology, and to exactly, rather than probabilistically, evaluate its risk. Molecular analysis of the TD-associated changes in the genes that ensure the proper function of photoreceptors and the retinal pigment epithelium will provide for a better understanding of the physiological and pathological processes occurring in the retina, as well as for the development of pathogenetic therapy in TD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号