首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The prevalence of sexual reproduction of animal species is a paradox for evolutionary theory since it remains unclear whether the evolutionary benefits of sexual reproduction outweigh the costs. One attempt at explaining the maintenance of sex is the Tangled Bank hypothesis: Sexual reproduction shuffles around alleles through crossing over and recombination, resulting in a wide range of individuals, some of whom will be able to survive in the harshest of environments with low and dwindling food resources. Whereas, with respect to clonally reproduced individuals there is arguably less genetic variation so that if food resources start to fluctuate, these individuals may not be able to survive under the new conditions. In our study, we conducted individual based modeling computer simulations using the program EcoSim to investigate two hypotheses related to fluctuating resources: First, in the context of fluctuating resources, populations of sexual species will outpace the populations of asexual species who are unable to adapt to changing conditions. The second hypothesis that we investigated is that with respect to facultative species there will be an increase in sexual reproduction and a decrease in asexual reproduction as a response to fluctuating resources. The control runs involved relatively stable food resources for obligate sexual, obligate asexual and facultatively reproducing prey species, whereas the experimental runs involved unstable fluctuating resources. Although we found that population levels were higher for obligate sexual prey vs. obligate asexual prey, this was not due to the manipulation of the independent variable, food resources, since these results were consistent across experimental, and control runs. However, in terms of the runs for facultative species, we found that in experimental runs, there was a discernably lower level of asexual reproduction and a slight increase in sexual reproduction in the later stages of the runs, which is likely a response to fluctuating resources. These results tend to confirm the hypothesis that in terms of facultative species, there will be a decrease in asexual reproduction and an increase in sexual reproduction in response to fluctuating resources. Moreover, we found that these features may be evolutionary in nature rather than simply a matter of phenotypic plasticity, which to the best of our knowledge is not a result in any other simulation or empirical study on Tangled Bank with respect to facultative species. Our study therefore contributes to the ongoing debate of whether the switch to sex in facultative species is the result of phenotypic plasticity or evolutionary in character.  相似文献   

2.
Maternal effects can significantly impact offspring performance. Provisioning of offspring with energy stores can quantitatively alter their growth rates, survivorship, and future fecundity, and influence population regulatory mechanisms. In this paper, we show that maternal effects can also qualitatively affect offspring reproduction (i.e. their mode of reproduction). The freshwater herbivore Daphnia pulex can change the amount of energy allocated between asexual and ephippial egg production. Our experiments on individuals, experiencing “step‐up” or “step‐down” food manipulations, reveal that offspring qualitatively shift their energy allocation away from asexual reproduction to ephippial egg production when there is a simple mismatch between maternal and offspring food environments. We show that the response is asymmetric with respect to changes in food level, ephippial egg production is higher with a greater mismatch between environments, and that the effect can be observed in dynamic experimental populations. These results point to a “generational memory” that could challenge our interpretation of field patterns and mechanisms influencing population dynamics in Daphnia–algal systems.  相似文献   

3.
In stream ecosystems, the growth of aquatic primary producers is affected by spatial and temporal variations in the riparian canopy, which can influence the availability of light resources. Aquatic plants can acclimate to low light environments by employing a suite of morphological or physiological mechanisms to increase light capture or photosynthetic efficiency. Some species may also use alternate types of propagules to colonize environments with heterogeneous light environments. In a greenhouse experiment we examined the morphological and physiological response of watercress (Nasturtium officinale R. Br.) to a gradient of increasing light levels, which ranged from 7% ambient light to full sunlight. We also determined if watercress seedlings and vegetative fragments differed in their growth response to increasing light levels. Total biomass and root biomass of seedlings and vegetative fragments decreased with decreasing light levels. The difference in plant biomass across treatments was due to morphological changes in total canopy area and leaf area, both of which increased with decreasing light levels. Seedlings and vegetative fragments did not differ in their response to light availability, but vegetative fragments had higher final biomass as a result of higher initial biomass. Physiological acclimation to low light levels appears to be of secondary importance for watercress as the concentrations of total chlorophyll, chlorophyll a, chlorophyll b, and chlorophyll a:b did not differ among light levels or between seedlings and vegetative fragments. Seedlings and vegetative fragments grown under high light levels had a greater percentage of carbon and a lower percentage of nitrogen than plants grown under low light conditions. The results of this study indicate that watercress displays considerable morphological plasticity and acclimates to low light conditions primarily by increasing leaf area and canopy surface area. There is no evidence that the type of watercress propagule (seedling vs. vegetative fragment) imparts any growth advantage in low light environments and watercress grown from either type of propagule showed no differences in their morphological or physiological responses to varying light regimes. Handling editor: S. M. Thomaz  相似文献   

4.
Nematodes are the most abundant invertebrates in soils and are key prey in soil food webs. Uncovering their contribution to predator nutrition is essential for understanding the structure of soil food webs and the way energy channels through soil systems. Molecular gut content analysis of consumers of nematodes, such as soil microarthropods, using specific DNA markers is a novel approach for studying predator–prey interactions in soil. We designed new specific primer pairs (partial 18S rDNA) for individual soil‐living bacterial‐feeding nematode taxa (Acrobeloides buetschlii, Panagrellus redivivus, Plectus velox and Plectus minimus). Primer specificity was tested against more than 100 non‐target soil organisms. Further, we determined how long nematode DNA can be traced in the gut of predators. Potential predators were identified in laboratory experiments including nine soil mite (Oribatida, Gamasina and Uropodina) and ten springtail species (Collembola). Finally, the approach was tested under field conditions by analyzing five mite and three collembola species for feeding on the three target nematode species. The results proved the three primer sets to specifically amplify DNA of the respective nematode taxa. Detection time of nematode DNA in predators varied with time of prey exposure. Further, consumption of nematodes in the laboratory varied with microarthropod species. Our field study is the first definitive proof that free‐living nematodes are important prey for a wide range of soil microarthropods including those commonly regarded as detritivores. Overall, the results highlight the eminent role of nematodes as prey in soil food webs and for channelling bacterial carbon to higher trophic levels.  相似文献   

5.
The ability of asexual propagules to disperse is an important ecological determinant of the spread and establishment of many aquatic species. However, few previous studies have addressed the relationship between the asexual propagule buoyancy and sprouting abilities in submerged macrophytes. For this reason, turions of Potamogeton crispus samples were collected from Lake Liangzi, and an incubator sprouting experiment was conducted. Our results revealed that the floating turions showed higher sprouting rates than that of sinking turions, indicating the former ones are possibly with high levels of primary metabolites. The higher N and P concentrations in the floating turions caused lower C:N, C:P, and N:P ratios in these turions compared with sinking turions, which confirmed the activation of floating turions. The free amino acid and soluble carbohydrate concentrations were also higher in floating turions than those in sinking turions. Our results also revealed that turion leaf porosity rather than starch concentration may determine the density of P. crispus turions. This study makes a contribution to our understanding of how the internal characteristics of turions can (at least partly) determine dispersal outcomes and offers new insights into the dispersal and sprouting of asexual propagules of submerged macrophytes.  相似文献   

6.
We tested some predictions relating metabolic constraints offoraging behavior and prey selection by comparing food handlingand utilization in four sympatric shrew species: Sorex minutus(mean body mass = 3.0 g), S. araneus (8.0 g), Neomys anomalus(10.0 g), and N. fodiens (14.4 g). Live fly larvae, mealwormlarvae, and aquatic arthropods were offered to shrews as smallprey (body mass <0.1 g). Live earthworms, snails, and smallfish were offered as large prey (>0.3 g). The larvae werethe high-nutrition food (>8 kJ/g), and the other prey werethe low-nutrition food (<4 kJ/g). The smallest shrew, S.minutus, utilized (ate + hoarded) <30% of offered food,and the other species utilized >48% of food. The largerthe shrew, the more prey it ate per capita. However, highlyenergetic insect larvae composed 75% of food utilized by S.minutus and only >40% of the food utilized by the other species. Thus, inverse relationships appeared between shrewbody mass and mass-specific food mass utilization and betweenshrew body mass and mass-specific food energy utilization:the largest shrew, N. fodiens, utilized the least food massand the least energy quantity per 1 g of its body mass. Also,the proportion of food hoarded by shrews decreased with increase in size of shrew. With the exception of S. araneus, the sizeof prey hoarded by the shrews was significantly larger thanthe size of prey eaten. Tiny S. minutus hoarded and ate smallerprey items than the other shrews, and large N. fodiens hoardedlarger prey than the other shrews.  相似文献   

7.
Abstract The existence of adaptive phenotypic plasticity demands that we study the evolution of reaction norms, rather than just the evolution of fixed traits. This approach requires the examination of functional relationships among traits not only in a single environment but across environments and between traits and plasticity itself. In this study, I examined the interplay of plasticity and local adaptation of offspring size in the Trinidadian guppy, Poecilia reticulata. Guppies respond to food restriction by growing and reproducing less but also by producing larger offspring. This plastic difference in offspring size is of the same order of magnitude as evolved genetic differences among populations. Larger offspring sizes are thought to have evolved as an adaptation to the competitive environment faced by newborn guppies in some environments. If plastic responses to maternal food limitation can achieve the same fitness benefit, then why has guppy offspring size evolved at all? To explore this question, I examined the plastic response to food level of females from two natural populations that experience different selective environments. My goals were to examine whether the plastic responses to food level varied between populations, test the consequences of maternal manipulation of offspring size for offspring fitness, and assess whether costs of plasticity exist that could account for the evolution of mean offspring size across populations. In each population, full‐sib sisters were exposed to either a low‐ or high‐food treatment. Females from both populations produced larger, leaner offspring in response to food limitation. However, the population that was thought to have a history of selection for larger offspring was less plastic in its investment per offspring in response to maternal mass, maternal food level, and fecundity than the population under selection for small offspring size. To test the consequences of maternal manipulation of offspring size for offspring fitness, I raised the offspring of low‐ and high‐food mothers in either low‐ or high‐food environments. No maternal effects were detected at high food levels, supporting the prediction that mothers should increase fecundity rather than offspring size in noncompetitive environments. For offspring raised under low food levels, maternal effects on juvenile size and male size at maturity varied significantly between populations, reflecting their initial differences in maternal manipulation of offspring size; nevertheless, in both populations, increased investment per offspring increased offspring fitness. Several correlates of plasticity in investment per offspring that could affect the evolution of offspring size in guppies were identified. Under low‐food conditions, mothers from more plastic families invested more in future reproduction and less in their own soma. Similarly, offspring from more plastic families were smaller as juveniles and female offspring reproduced earlier. These correlations suggest that a fixed, high level of investment per offspring might be favored over a plastic response in a chronically low‐resource environment or in an environment that selects for lower reproductive effort  相似文献   

8.
I tested whether the ability of chicks to suspend growth and developmental processes in response to food shortages is greater among alcids with food resources that fluctuate over short time periods than it is among close relatives with food that is continuously available. I examined changes in chick resting metabolic rate (RMR) in response to short-term food deprivation in horned and tufted puffins (intermittent food provisioning) and crested and parakeet auklets (continuous food provisioning). RMR was based on measurements of chick oxygen consumption rates (Vo2) under thermoneutral conditions. RMR of postabsorptive chicks scaled allometrically with body mass, and regression slopes were statistically indistinguishable among species. Mass-independent RMR of the same individuals decreased significantly after 48 h of food deprivation. The decrease in the mass-independent RMR was greater in puffins (46.8% in horned and 47.4% in tufted puffins) than in auklets (29.4% in crested and 23.7% in parakeet auklets). To test whether the observed decrease in RMR was due to less energy being allocated to growth, I examined developmental responses of horned and tufted puffins to experimental variation in rates of food intake. I found retarded growth rates in body mass, skeletal elements, and feathers in chicks experiencing low rates of food intake. The retardation of growth processes extended the developmental period. My findings suggest that developmental plasticity in juvenile alcids might be related to temporal variability of prey in oceanic environments.  相似文献   

9.
Many aquatic and riparian plant species are characterized by the ability to reproduce both sexually and asexually. Yet, little is known about how spatial variation in sexual and asexual reproduction affects the genotypic diversity within populations of aquatic and riparian plants. We used six polymorphic microsatellites to examine the genetic diversity within and differentiation among 17 populations (606 individuals) of Sparganium emersum, in two Dutch-German rivers. Our study revealed a striking difference between rivers in the mode of reproduction (sexual vs. asexual) within S. emersum populations. The mode of reproduction was strongly related to locally reigning hydrodynamic conditions. Sexually reproducing populations exhibited a greater number of multilocus genotypes compared to asexual populations. The regional population structure suggested higher levels of gene flow among sexually reproducing populations compared to clonal populations. Gene flow was mainly mediated via hydrochoric dispersal of generative propagules (seeds), impeding genetic differentiation among populations even over river distances up to 50 km. Although evidence for hydrochoric dispersal of vegetative propagules (clonal plant fragments) was found, this mechanism appeared to be relatively less important. Bayesian-based assignment procedures revealed a number of immigrants, originating from outside our study area, suggesting intercatchment plant dispersal, possibly the result of waterfowl-mediated seed dispersal. This study demonstrates how variation in local environmental conditions in river systems, resulting in shifting balances of sexual vs. asexual reproduction within populations, will affect the genotypic diversity within populations. This study furthermore cautions against generalizations about dispersal of riparian plant species in river systems.  相似文献   

10.
Hoarding food is an important strategy of rodents in desert environments characterized by unpredictable and poor food resource availability. In the Monte Desert, Prosopis produces abundant food, unevenly in time and space, in the form of pods and seeds. Sigmodontine rodents (Graomys griseoflavus, Akodon molinae, Eligmodontia typus and Calomys musculinus) use Prosopis propagules extensively, and they could be predators or dispersers depending on how they handle and where they leave the propagules. The objectives of this study were: (1) to know what rodent species transported propagules; (2) to evaluate what hoarding pattern was used by species that transport propagules (larder and scatterhoarding); and (3) to analyse in which condition were propagules left by the rodent species, both at the food source and in caches. Our results showed that all four species transported propagules, with G. griseoflavus and E. typus being the species that carried more seeds. Our study supported the evidence that food caching is common among species and that many species both larderhoard and scatterhoard food. Graomys griseoflavus and A. molinae, the largest species, larderhoarded more than did the smaller E. typus. These results uphold the hypothesis that larger species will show greater propensity to larderhoard than smaller species. Considering the interaction between seed‐hoarding patterns and plants, E. typus was the species that could most improve germination because it scatterhoarded propagules and left seeds out of pods. In contrast, G. griseoflavus could have a negative impact on plant populations because this was the species that predated more seeds and larderhoarded a high percentage of them. The smallest C. musculinus was the species that transported propagules least, and left them as seeds inside pods or pod segments mainly at the food source, which makes seeds more vulnerable to predation.  相似文献   

11.
When prey are differentially affected by intra and interspecific competition, the cooccurrence of multiple prey species alters the per capita availability of food for a particular prey species which could alter how prey respond to the threat of predation, and hence the overall‐effect of predators. We conducted an experiment to examine the extent to which the nonconsumptive and overall effect of predatory water bugs on snail and tadpole traits (performance and morphology) depended on whether tadpoles and snails cooccurred. Tadpoles and snails differed in their relative susceptibility to intraspecific and interspecific competition, and predators affected both prey species via consumptive and nonconsumptive mechanisms. Furthermore, the overall effect of predators often depended on whether another prey species was present. The reasoning for why the overall effect of predators depended on whether prey species cooccurred, however, differed for each of the response variables. Predators affected snail body growth via nonconsumptive mechanisms, but the change in the overall effect of predators on snail body growth was attributable to how snails responded to competition in the absence of predators, rather than a change in how snails responded to the threat of predation. Predators did not affect tadpole body growth via nonconsumptive mechanisms, but the greater vulnerability of competitively superior prey (snails) to predators increased the strength of consumptive mechanisms (and hence the overall effect) through which predators affected tadpole growth. Predators affected tadpole morphology via nonconsumptive mechanisms, but the greater propensity for predators to kill competitively superior prey (snails) enhanced the ability of tadpoles to alter their morphology in response to the threat of predation by creating an environment where tadpoles had a higher per capita supply of food available to invest in the development of morphological defenses. Our work indicates that the mechanisms through which predators affect prey depends on the other members of the community.  相似文献   

12.
Case TJ 《Oecologia》1990,83(2):220-227
Summary The lizard genus Cnemidophorus (family Teiidae) contains sexual as well as parthenogenetic species. The theoretical two-fold fitness advantage of asexuality does not translate into any obvious distributional or numerical superiority of the parthenogenic species in the southwestern US and northern Mexico where their ranges overlap. I tested the prediction that the genetically diverse sexual species should have a higher between-individual niche width than a similar sympatric asexual species by studying the prey in stomach contents of sympatric and allopatric populations of C. tigris (sexual) and C. sonorae (asexual) in southern Arizona. The expectation proved true for niche breadths based on both prey length and prey taxa categories. The within-individual component of niche breadth was not different between species. Meaningful comparisons between species in sympatry and allopatry are confounded by the uncontrolled differences in the availability and diversity of food items between sites. Before the generality of these results can be assessed the study should be repeated in other areas where sexual and asexual species are syntopic and of similar body size.  相似文献   

13.
Uptake of nitrogen from prey and substrate and partitioning of prey-derived nitrogen were studied in the carnivorous plant species Pinguicula alpina, P. villosa, P. vulgaris and Drosera rotundifolia in a subarctic environment. Efficiency in nitrogen uptake from prey was evaluated by tracing 15N from 15N-enriched Drosophila flies fed to the plants. The in situ uptake efficiency differed somewhat between species and ranged from 29 to 41% of prey N. This efficiency was not affected by different feeding levels or plant reproductive status (flowering or non-flowering). A test of the amount of N absorbed from prey caught on flower stalks of Pinguicula villosa and P. vulgaris showed that both species took up little of what was available in prey (2.5% or less). The uptake efficiency found in greenhouse grown plants was higher than in plants in situ (40–50% vs. 30–40% respectively). This could probably best be explained by the absence of rain and a higher temperature in the greenhouse. The prey-derived 15N was traced to reproductive organs and winter buds. Non-flowering individuals allocated 58–97% of the N derived from prey to their winter buds. Flowering individuals allocated 17–43% of the N income from prey to reproduction, while 34–71% were allocated to buds. Root uptake of nitrogen was stimulated by increased prey capture. This increase in uptake of nitrogen from the substrate was larger than the potential direct uptake of nitrogen from captured prey.  相似文献   

14.
We analyzed DNA variation at the acidic chitinase (ChiA) locus of Arabis gemmifera and among its eight related species. Nucleotide diversity (pi) of the entire locus in A. gemmifera was 0.0032, which was one third that of A. thaliana. In A. gemmifera, an excess of unique polymorphisms yielded significantly negative results with the tests of Tajima and Fu and Li. The McDonald and Kreitman test revealed that the ratio of nucleotide replacement to synonymous changes in A. gemmifera was significantly greater than those between A. gemmifera and A. glabra, A. gemmifera and A. griffithiana, A. gemmifera and A. korshinskyi, A. gemmifera and A. wallichii, and A. gemmifera and A. himalaica. These results indicated that the neutrality assumption, the equilibrium population assumption, or both, could not be applied to the ChiA locus of A. gemmifera. The small size and relative isolation of local subpopulations of A. gemmifera could explain the excess of unique polymorphisms and the high proportion of replacement changes. The specific sampling scheme of this study, where one strain each was sampled from each local subpopulation might also have led to an excess of singletons. Interspecific comparison among Arabidopsis, Arabis and Cardaminopsis species showed that Ka was always lower than Ks, providing evidence against the adaptive evolution of ChiA. However, Ka/Ks was greater between closely related species than between more distant related species. ChiA had a higher level of replacement divergence and a lower level of synonymous divergence compared than did Adh. We suggest that both the mutation rate at the nucleotide level and the selective constraints at the protein level are lower in ChiA than in Adh.  相似文献   

15.
Most previous studies of food selection by fishes have been conducted on visually-feeding species in relatively unstructured environments. The food selection behaviour of Sillago analis (Whitley), feeding nocturnally in a complex seagrass/mangrove environment, was assessed. Crustacean prey were relatively accessible and displayed the highest electivity values. Annelids were usually buried at least 30 mm below the substrate surface and, like potential fish prey, were either not taken or showed consistently negative electivities. Although many mollusc species were accessible, only the siphon tips of the bivalve Glauconome virens (Linnaeus) were positively selected. Results from both field and laboratory indicated that S. analis is not a strongly size-selective predator. However, in contrast to the field study, the laboratory results showed that S. analis had a strong preference for annelids [ Marphysa sanguinea (Montague)] as well as crustaceans. The food selection patterns of S. analis could not be clearly described in terms of single parameters such as prey size, prey abundance or prey energy content, which have been used in the context of optimal foraging theory and are often described as strong determinants of food selection in visual predators. Instead, this nocturnally-feeding species takes a variety of the more vulnerable prey (i.e. those which are spatially accessible, weakly motile or thinly shelled) in an apparently opportunistic fashion.  相似文献   

16.
It is known that the microturbellarian Stenostomum sphagnetorum, a common ciliate predator, is very sensitive against different types of toxins produced by other ciliates for chemical defense, and consequently, it is not able to capture and ingests these ciliates. In particular, when the predator tries to attack one of these toxin-secreting ciliates, it is forced to regurgitate the captured prey in response to the toxin discharged from the ciliates. In this study it is shown that after repeated attacks by S. sphagnetorum against two species of toxic ciliates (Spirostomum ambiguum and Spirostomum teres), the predator acquires a behavior of prey selection that leads to the exclusion of these ciliates among the possible prey and to the distinction between edible and inedible (toxic) ciliates. This learned behavior, which is maintained for days, is lost only after the asexual reproduction of the microturbellarian. In addition, S. sphagnetorum learns to recognize and avoid specimens of S. ambiguum and S. teres artificially deprived of their toxins, strongly suggesting that the toxins are not exclusively associated in the prey recognition of the microturbellarian.  相似文献   

17.
《Journal of bryology》2013,35(4):639-675
Abstract

A combination of Principal Component and Cluster Analyses is used to test for recurring suites of life history variation among 357 species of the Funariales, Polytrichales, and Pottiales. About 85% of among-species covariation in life expectancy, spore size and number, and sexuality is summarized by three Principal Components. Cluster Analyses, using species scores on these three derived variables, identify six groups of species based on similar grades of covariation in life history traits. These groups also differ significantly in water relations, gametophyte size, modes of spore dispersal, and prevalence of asexual reproductive propagules, and apparently are ecologically coherent, at least with regard to spatio-temporal scales of habitat availability and heterogeneity.

A number of differences emerge in comparisons of Principal Component Analyses performed separately for each of seven families. In particular, the distribution of overall variance among successive components varies greatly, suggesting that the number of biologically independent axes of life history specialization differs among families. Likewise, differences in loadings of the life history variables on Principal Components indicate that their patterns of covariation change as a function of familial membership.

In the Pottiales, the likelihood of producing sporophytes decreases with increasing life expectancy, and also shows a negative association with the production of asexual propagules. The likelihood of producing asexual propagules is higher among dioicous species and those not known with gametangia than among monoicous species, and is also positively associated with life expectancy. Alternative historical and ecological explanations are offered to account for these patterns of association.

These results support the idea that recurring suites of life history traits occur among moss species, and the patterns of life history variation appear to be associated with particular sets of environmental circumstances. The influence of phylogenetic history on life history variation is also strong. Until explicitly phylogenetic approaches can be employed, the extent to which observed patterns are adaptive rather than historically contingent must remain unresolved.  相似文献   

18.
Recolonisation and succession in a multi-species tropical seagrass meadow was examined by creating gaps (50×50 cm) in the meadow and manipulating the supply of sexual and asexual propagules. Measurements of leaf shoot density and estimates of above-ground biomass were conducted monthly to measure recovery of gaps between September 1995 and November 1997. Measurements of the seeds stored in the sediment (seed bank) and horizontal rhizome growth of colonising species were also conducted to determine their role in the recovery process.Asexual colonisation through horizontal rhizome growth from the surrounding meadow was the main mechanism for colonisation of gaps created in the meadow. The seed bank played no role in recolonisation of cleared plots. Total shoot density and above-ground biomass (all species pooled) of cleared plots recovered asexually to the level of the undisturbed controls in 10 and 7 months, respectively. There was some sexual recruitment into cleared plots where asexual colonisation was prevented but seagrass abundance (shoot density and biomass) did not reach the level of unmanipulated controls. Seagrass species did not appear to form seed banks despite some species being capable of producing long-lived seeds.The species composition of cleared plots remained different to the undisturbed controls throughout the 26-month experiment. Syringodium isoetifolium was a rapid asexual coloniser of disturbed plots and remained at higher abundances than in the control treatments for the duration of the study. S. isoetifolium had the fastest horizontal rhizome growth of species asexually colonising cleared plots (6.9 mm day−1). Halophila ovalis was the most successful sexual coloniser but was displaced by asexually colonising species. H. ovalis was the only species observed to produce fruits during the study.Small disturbances in the meadow led to long-term (>2 years) changes in community composition. This study demonstrated that succession in tropical seagrass communities was not a deterministic process. Variations in recovery observed for different tropical seagrass communities highlighted the importance of understanding life history characteristics of species within individual communities to effectively predict their response to disturbance. A reproductive strategy involving clonal growth and production of long-lived, locally dispersed seeds is suggested which may provide an evolutionary advantage to plants growing in tropical environments subject to temporally unpredictable major disturbances such as cyclones.  相似文献   

19.
Notes on feeding of Chaetognatha in Guanabara Bay, Brazil   总被引:1,自引:0,他引:1  
A preliminary analysis, by means of the gut content, of thediet of Sagitta friderici and Sagitta enflata occurring in GuanabaraBay was carried out. The samples were collected at differenttimes over a 4day period in September 1995, during verticaltows with a conical net of 200 µm mesh size at a fixedstation (30 m depth). In total, 1000 individuals were examined.Copepoda were the numerically dominant group of prey of S.fridericiand S.enflata (67.2 and 74.6%, respectively); both species behaveas opportunistic carnivores, feeding mainly on the more abundantcopepod species throughout the water column. Adult individualsof S.fnderici and S.enflata (stages III and IV) seem to havefood requirements different from juveniles: adults fed on otheritems (chaetognaths, crus tacean larvae, hydromedusae and luciferidae),and the food containing ratio (FCR) was higher in indi vidualsof stage Ill. In general, only one prey per gut was registered.Chaetognaths may have chosen their prey in relation to theirsize, since the size of the prey was proportional to the sizeof their predators. Feeding intensity (NPC) was higher in individualscollected during the night periods.  相似文献   

20.
The Atlantic chub mackerel Scomber colias and the blue jack mackerel Trachurus picturatus are two abundant species in the Macaronesia region which includes the archipelago of Madeira, Portugal. Both are key species in the trophic web, being important prey for several local top predators, such as seabirds and marine mammals. Nonetheless, little is known about their feeding ecology in oceanic environments. In this study, the authors describe the seasonal variation in the diet of S. colias and T. picturatus in the oceanic region of Madeira throughout a year. Visual inspection of stomach contents revealed that S. colias fed on a broader range of prey groups than T. picturatus, but for both species, zooplankton (particularly calanoid copepods) and fish were the most important food items. The diet of S. colias included a higher proportion of fish, namely Atlantic saury Scomberesox saurus and S. colias, than that of T. picturatus, that included mostly the longspine snipefish Macroramphosus scolopax. T. picturatus consumed a higher proportion of decapods and other copepods. Seasonal variation was found in the diet of both species, with zooplanktonic species being more important in colder months (February to April) for S. colias and during warm months (May to October) for T. picturatus. Their diet in other seasons was dominated by fish. Although they consume similar prey, carbon and nitrogen stable isotope analysis of muscle of S. colias and T. picturatus showed little overlap in their diets, and T. picturatus showed higher δ15N and a narrower isotopic niche.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号