共查询到20条相似文献,搜索用时 15 毫秒
1.
François M. M. Morel 《Journal of phycology》1987,23(2):137-150
Microscopic algae can grow rapidly in natural waters that are extremely low in essential macro and micro nutrients. Yet, their nutrient uptake systems exhibit only mediocre nutrient affinities, the saturation constants being often 10–1000 times the (estimated) ambient concentrations. The large difference which exists between the saturation constants for growth (Ku) and short term uptake (Kp) are due to the acclimation capabilities of the organisms. Over the acclimation range, Ku, to Kp the algae can maintain maximum growth rate by modulating both their internal nutrient quotas (Q) and their maximum short term nutrient uptake rates (Pmax) in response to variations in external nutrient concentrations. The commonly assumed hyperbolic relationships for steady growth and uptake (viz “chemostat theory”) are coherent with a hyperbolic expression for short term uptake including a variable maximum (Pmax). The ratio of the saturation constants for growth and uptake is then directly related to the extreme in quotas and maximum uptake rates: Kμ/Kρ= Qmin/Qmaxρmax/ρQmax. This result is applicable even when the exact hyperbolic laws are not. Published data on Fe, Mn, P and N limitation in algae are generally in accord with the theory and demonstrate a wider acclimation range for trace than for major nutrients. 相似文献
2.
Investigations were conducted into the effect of 3 marine bacteria, Vibrio anguillarum #19264, V. anguillarum #19109, and Escherichia coli, on the growth of 10 phytoplakters. A disc method on agar plates was used to evaluate growth responses. Growth enhancement of all algae in the presence of V. anguillarum #19264 occurred on an enriched agar medium; the other bacteria yielded variable responses. Evidence available is consistent with the hypothesis that growth enhancement of algae is related to the release of stimulating substances through bacterial hydrolysis of the agar. 相似文献
3.
Allelopathic effects of submerged macrophytes on the growth and photosynthesis of different unialgal cultures of planktonic cyanobacteria, a diatom, and a green alga were tested in coexistence experiments using dialysis cultures. The method applied allowed measurements under conditions similar to that in lakes but without nutrient and light limitation. Growth and photosynthesis were measured with a pulse amplitude modulated fluorometer as an increase of chl a fluorescence and activity of PSII, respectively. Eurasian water milfoil Myriophyllum spicatum L. and rigid hornwort Ceratophyllum demersum L. proved to inhibit the PSII activity and then growth of the investigated phytoplankton species, whereas sago pondweed Potamogeton pectinatus L. showed no effect. Growth inhibition was dependent on biomass of M. spicatum. Considerable differences between phytoplankton groups and among species of cyanobacteria were found regarding their response to M. spicatum. Members of the Oscillatoriales and Microcystis aeruginosa Kütz. emend. Elenkin were more sensitive than the cyanobacterium Aphanizomenon flos‐aquae Ralfs ex Born. et Flah., the diatom Stephanodiscus minutulus (Kütz) Cleve et Möller, and the green alga Scenedesmus armatus Chodat. A possible contribution of this result to changes in the phytoplankton succession of lakes after loss of macrophytes is discussed. 相似文献
4.
Marlon R. Lewis Roderick E. Warnock Brian Irwin Trevor Platt 《Journal of phycology》1985,21(2):310-315
The photosynthetic response, defined as the initial slope of the photosynthesis-irradiance curve, was determined spectrally (every 25 nm from 400 to 675 nm; 25 nm half-maximum bandpass) for natural phytoplankton populations from High Arctic, Grand Banks and Sargasso Sea waters, as well as for populations living in the lower margin of sea ice off Newfoundland, All spectra were similar in shape with a maximum at 425–450 nm, a broad shoulder to 550 nm, a valley from 600 to 650 nm and a rise at 675 nm. The error resulting from the use of spectrally averaged initial slope to predict photosynthesis under different optical and fluid dynamical conditions at sea is discussed. 相似文献
5.
6.
7.
Theoretical considerations predict that the cell N:P ratio at transition from nitrogen limitation to phosphorus limitation of phytoplankton growth (critical ratio, Rc) varies, as a function of population growth rate. This prediction is confirmed by experimental, data from the literature along with new experimental data for the marine, prymnesiophyte Pavlova lutheri (Droop) Green. Rc passes through a maximum at intermediate growth rates for the three phytoplankton species for which data, are available, but there is significant interspecific variability in its value. There is no theoretical or experimental evidence to support the idea that the ratio of subsistence N and P cell quotas is equal to Rc over the range of growth rates, or that the subsistence quota ratio equals the ratio of the N and P cell quotas minus a storage fraction. Examination of N:P composition ratios can be used to determine which nutrient is limiting, but cannot be used to determine relative growth rates or competitive advantage between species limited by the same nutrient. Growth rates are determined by environmental conditions and by the cell quota of the limiting nutrient, without reference to the cell quota of the non-limiting nutrient. 相似文献
8.
A comparative study of nitrate-limited growth and nitrate uptake was carried out in chemostat cultures of Ankistrodesmus falcatus (Corda) Ralfs., Asterionella formosa Hass., and Fragilaria crotonensis Kit. In each species growth rate (μ) was related to total cell nitrogen or cell quota (q) by the empirical Droop growth function. Nitrate uptake was a function of both external N concentration and q. The apparent maximum uptake rate (Vm') at a given μ was inversely related to q – q0, where q0 is the minimum quota. The apparent half-saturation constant for uptake, (Km') appears to show a slight inverse trend with μ, although statistical analysis shows that this trend is inconclusive. When q approaches q0, Vm' is several orders of magnitude greater than μq, the calculated steady-state uptake rate. As q increases, however, the difference between these two variables decreases sharply until q approaches qm, the cell quota for nitrogen-rich cells. At this point the difference between μq and Vm' disappears. This behavior is explained by the feedback regulation of N uptake. The inverse relationship between Vm' and q – q0 can be described by an empirical three-parameter equation. 相似文献
9.
10.
Over the course of one year the volatile organic biogenic substances (VOBS) found in the water of a eutrophied shallow lake were determined by gas chromatographic and mass spectrometric methods. The substances detected belonged to nor-carotenoids, terpenoids, unsaturated hydrocarbons, ketones, and aldehydes. The occurrence of particular VOBS correlated with the frequency with which certain phytoplankton species were recorded. The latter showed a well developed succession in that year. The following correspondences were found: β-cyclocitral and Microcystis; heptadec-cis 5-ene and Oscillatoria redekei; geosmin and argosmin and Aphanizomenon gracile; hepta-trans, cis 2,4-dienal, deca-trans, cis 2,4-dienal and Dinobryon; octa-trans, cis 1,3,5-triene and Asterionella formosa. Dictyopterenes and ectocarpene were only detected in high amounts in one sample obtained in August. The VOBS exhibited marked dynamics in the lake and usually were rapidly eliminated from the water body. 相似文献
11.
IN VITRO PROLIFERATION OF MOUSE LYMPHOBLASTOID CELL LINES: GROWTH MODULATION BY VARIOUS POPULATIONS OF ADHERENT CELLS 总被引:2,自引:0,他引:2
D. Zipori 《Cell proliferation》1980,13(3):287-298
The in vitro growth pattern of a number of mouse lymphoblastoid tumour cell lines was modified in the presence of adherent cell layers from various sources. The AVRij-1 and ST-4b cell lines exhibited a concentration—dependent growth pattern, i.e., they would only grow well when seeded at high starting cell concentrations. Better growth of these cells from low cell concentrations was observed in the presence of adherent cell layers from syngeneic or allogeneic bone marrow. Adherent cell layers derived from mouse spleen and pleural or peritoneal cavity could also promote the growth of the above tumour cells, but in a narrower range of cell concentrations and to a lower extent. Moreover, confluent adherent layers from the pleural and peritoneal cavities completely inhibited the growth of AVRij-1 and ST-4b cells, while adherent cell layers from the bone marrow did not inhibit growth at any cell concentration tested. The in vitro growth of concentration—independent cell lines was also affected by the presence of adherent cells from the bone marrow. Under syngeneic conditions, a slight increase in the growth of the ‘null’ or pre-B lymphoma cell line ABLS-8.1 was observed. On the other hand, the growth of tumour cells expressing more differentiated properties, such as the thymus T lymphoma tumour cell line ST-1.3 and the plasma cell tumour MPC-11.45.6.2.4, was inhibited in the presence of syngeneic bone marrow derived adherent cell layers. This inhibition was more pronounced under allogeneic conditions. Growth inhibition was also observed when concentration—independent cell lines were co-cultured with adherent cells from the pleural and peritoneal cavities. Thus, adherent cell layers from non-haemopoietic sources inhibited the growth of all cell lines tested. On the other hand, adherent cells from the bone marrow had a differential effect on growth of lymphoblastoid tumour cell lines. This depended on the in vitro growth properties of each tumour cell line and on some additional specific tumour cell properties. The latter could relate to the differentiation stage characterizing each tumour cell line. The culture method described here may serve as a model system for studies on interaction of leukaemic cell and the haemopoietic microenvironment. 相似文献
12.
The effect of iron enrichment on algal growth and photosynthesis was investigated using natural assemblages of Lake Erie phytoplankton and axenic cultures of Anabaena, Scenedesmus and Selenastrum. Cell yield and photosynthesis were frequently inhibited in the presence of unchelated iron over the range of 3.6 to 53.7 μM iron as FeCl3. In lake water and in a defined medium with low nutrient concentrations, the degree of inhibition by iron could be reduced by chelating the iron with EDTA or by enriching the cultures with phosphorus. Chemical analyses revealed that the EDTA efectively reduced the ability of the ferric iron to remove soluble phosphorus from the media. EDTA was also observed to reduce rather than enhance iron uptake by axenic cultures of A. flos-aquae. These data support the hypothesis that additions of EDTA to low-nutrient media may serve to stimulate algal growth in the presence of iron by preventing the iron from altering extracellular concentrations of soluble ions essential for algal metabolism. In medium with high nutrient concentrations, the soluble phosphorus concentration was not appreciably altered by either EDTA-chelated or unchelated iron enrichment (0.9 to 53.7 μM). Instead, the observed enhancement of cell yield by EDTA-chelated iron in nutrient-rich media appeared to be due to the direct effect of iron on intracellular metabolic processes. 相似文献
13.
Tiffany A. Moisan William M. Dunstan Ajcharaporn Udomkit George T. F. Wong 《Journal of phycology》1994,30(4):580-587
Several studies have suggested that phytoplankton play a role in the iodine cycle. Using a short-term incubation technique for determining the uptake of iodate by phytoplankton, cultures of Thalassiosira oceanica Hasle, Skeletonema costatum (Greville) Cleve, Emiliania huxleyi (Lohmann) Hay and Mohler, and Dunaliella tertiolecta Butcher were found to be capable of assimilating iodate at rates ranging from 0.003 to 0.24 nmol IO3?·μg chlorophyll a?1·h?1. The kinetics for the uptake of iodate can be modeled, and the similarity between the model and experimental results suggests that there is a steady state between iodate uptake and release of dissolved iodine from the cells, presumably in the form of iodide. Two experiments were conducted in the Sand Shoal Inlet of the Cobb Bay estuary (37°15′N, 75°50′W). The uptake of iodate was 0.26 and 0.08 nmol IO3?·μg chlorophyll a?1·h?1 during high and low tide, respectively. Using field estimates based on measured levels of iodate in the estuary, we estimate that phytoplankton can take up as much as 3% of the ambient pool of iodate on a daily basis and the entire pool in about 1 month. Thus, phytoplankton can be a significant component of the global iodine cycle by mediating changes in the speciation of iodine in the marine environment. 相似文献
14.
James J. McCarthy 《Journal of phycology》1972,8(3):216-222
Half-saturation constants for urea uptake by 4 clones of neritic diatoms capable of utilizing urea were determined from short-term uptake studies with 15N-labeled urea. K 8 values obtained were similar to those determined, earlier for ammonium, and since ammonium and urea concentrations are similar in the marine environment, it was concluded that these species are capable of utilizing ecologically significant concentrations of urea. Two of 3 species unable to grow on urea showed patterns of short-term uptake not unlike those of species capable of utilizing urea, which implies that, their assimilatory rather than uptake processes are defective with, regard to urea utilization. The third species initially took 15N (supplied as urea) into the cells but subsequently released it back into the medium. 相似文献
15.
By immunohistochemistry and immunofluorescence methods, we observed that the analog of proliferating cell nuclear antigen (PCNA) in Dunaliella tertiolecta Butcher (Chlorophyceae) was exclusively located in the nucleus. Among positively stained cells, PCNA abundance varied, being highest in S-phase cells, lower in others, and undetectable in early G1- or late M-phase cells. In exponentially growing and partially synchronized cultures, the percentage of PCNA-stained cells (% PCNA-stained cells) oscillated in the photocycle (12:12 h LD). It increased during the light period and reached a peak (75%) before the onset of the dark period when the culture was mainly (71%) in the S phase of the cell cycle. The DNA synthesis inhibitor, hydroxyurea, depressed PCNA abundance, whereas no effect was detected for the mitosis inhibitor colchicine. We conclude that PCNA in D. tertiolecta is associated with the S phase of the cell cycle where it is accumulated and functioning. PCNA was used to characterize the growth pattern of cultures grown in different media, temperatures, and growth stages. The time lag between the PCNA-stained phase and the M phase was very short in a continuous culture grown in reduced f/2 medium at 22°C and was considerably longer in the cultures grown in f/2 at 15°C. When an exponentially growing culture grew older, % PCNA-stained cells decreased. In a late stationary culture where there was no net growth, a small number of cells were still cycling through the PCNA-stained phase and cell division. In the continuous culture grown at 22°C, the duration of the PCNA-stained phase (Ts) was 13 h. Calculations with this Ts and % PCNA-stained cells yielded a growth rate of 0.77 d?1, which was close to that obtained by cell counts (0.69 d?1). Taken together, the results suggest that PCNA is a useful indicator of growth status and a promising cell cycle marker for estimation of species-specific growth rate. 相似文献
16.
The diel patterns of light-saturated and light-limited photosynthesis were measured for three diatom species in McMurdo Sound, Antarctica during the transition from late austral winter to summer. Maximum photosynthetic capacity occurred around mid-day during September, when there was a well defined light/dark cycle, and progressively shifted to about midnight by late october when irradiance was continuous. There was a concomitant shift in minimum photosynthetic capacity from midnight to midday. Rates of light-saturated and -limited photosynthesis covaried, and the magnitude of seasonal and diel changes in photosynthetic characteristics were similar. The linear relationship between light-saturated and -limited photosynthesis suggests that the shapes of the photosynthesis-irradiance curves remained relatively constant over the day and througout the season. The unique diel patterns of photosynthesis of these polar phytoplankton appear to be a response to the persistently low, yet continuous irradiance of the polar summer. 相似文献
17.
The production and utilization of vitamins by 2 or more, marine phytoplankters cultured in the same vessel were demonstrated. The release of toxic materials or vitamin inactivators wax also observed. The utilization of vitamins by those phytoplankters requiring them and the production of toxic materials were determined from increases and decreases in cell numbers of certain algae grown in mixed cultures. Vitamin utilization was most readily observed in mixed cultures where 2 phytoplankters were present. Dunaliella tertiolecta and Skeletonema costatum produced utilizable thiamine for Coccolithus huxleyi. C. huxleyi released utilizable vitamin B12 for Cyclotella nana. D. tertiolecta, Phaeodactylum tricornutum, and S. costatum produced utilizable biotin for Amphidinium carterae. The amount of utilizable vitamin and rate at which it was released depended on the phytoplankters present and conditions of incubation. In complex systems with more than 2 phytoplankters, beneficial effects to utilizers were often noted for short durations during the incubation period. At the end of the experiments the beneficial effects were usually not evident. P. tricornutum (nonvitamin requirer) was stimulated by a mixture of carryover B12 and thiamine when growing with A. carterae, indicating that in vitamin-free media it cannot synthesize vitamin(s) fast enough to allow for a maximum growth rate. The concentrations of vitamins in seawater samples may not be the amounts available to vitamin-requiring organisms. Among the factors affecting vitamin availability are the production of inhibitors and vitamin inactivators by various organisms in the ecosystem. 相似文献
18.
Using cultures of a number of different marine algae (diatoms Skeletonema costatum (Grev.) Cleve and Phaeodactylum tricornutum Bohlin, chrysophyte Isochrysis galbana Parke, green flagellate Dunaliella tertiolecta Butcher, dinoflagellate Gonyaulax tamarensis Lebour) the short-term, pattern of 14CO2 assimilation has been investigated. In all except D. tertiolecta the labelling of amino acids and intermediates of the tricarboxylic acid (Krebs) cycle was significantly heavier than that of sugar phosphates. Over periods of 30–120 s labelling in amino acids and Krebs cycle intermediates accounted for 41–95% of the 14C fixed (depending on the alga). Over shorter times (< 10 s) the pattern in the 2 diatoms showed significant labelling of C4 acids (and related com-pounds) and little labelling of sugar phosphates. The reverse wits seen with D. tertiolecta. Also, in the 2 diatoms and in G. tamarensis significant inhibition of photosynthesis by oxygen could only be achieved with 100% oxygen; atmospheric levels having little effect. Parallel measurements of 2 carboxylating enzymes showed that ribulose-1,5-diphosphate carboxylase (RuDPCase) was significantly greater than phospho (enol)pyruvate carboxylase (PEPCase) activity only in the green flagellate. It is suggested that photosynthesis in marine diatoms depends on an active PEPCase utilizing bicarbonate as a substrate and that a less active RuDPCase utilizes CO2. In D. tertiolecta the pattern more closely resembles that of a “Calvin (C3)” plant. The dinoflagellate and the chrysophyte appeared to show a mixed C3 and C4 photosynthesis. 相似文献
19.
Incubation of cultures of a high-temperature strain of chlorella at 10 C stopped growth and bleached all chlorophyll in the cells in 24 hr. Optimal conditions of light (3.0 mw/cm2), gas (1% CO2-in-air), and inorganic medium for maximal growth at 39 C were maintained in the transfer from 39 to 12, 10, or 5 C. The bleaching process at 10 C is characterized by a lag period for the first few hours followed by a linear decrease in chlorophyll content of cultures. The amounts of time required to bleach half of the chlorophyll initially present (effective half-times) at 10 C were 14 hr for chlorophyll a and 17 hr for chlorophyll b. Effective half-times of bleaching for total chlorophyll were 47 hr at 12 C and 6 hr at 5 C. Addition of glucose to inorganic medium delayed but did not prevent bleaching. Use of argon gas instead, of 1% CO2-in-air prevented cells from bleaching in both inorganic and glucose media, and indicated an oxygen requirement for bleaching. Incubation of 6 additional strains of Chlorella at 10 C resulted in responses ranging from bleaching to no growth to growth. 相似文献
20.
A literature review of data on nitrate uptake by phytoplankton suggests that nitrate levels above 20 μmol N·L?1 generally stimulated uptake rates in cultured unicellular algae and natural phytoplankton communities. This phenomenon indicates that phytoplankton cells acclimate to elevated nitrate levels by increasing their uptake capacity in a range of concentrations previously considered to be saturating. Cyanobacteria and flagellates were found to present a considerable capacity for acclimation, with low (0.1–2 μmol N·L?1) half‐saturation values (Ks) at low (5–20 μmol N·L?1) substrate levels and high (1–80 μmol N·L?1) Ks values at high (30–100 μmol N·L?1) substrate levels. However, some diatom genera (Rhizosolenia, Skeletonema, Thalassiosira) also appeared to possess a low affinity nitrate uptake system (Ks between 18 and 120 μmol N·L?1), which can help resolve the paradox of their presence in enriched seas. It follows that present models of nitrate uptake can severely underestimate the effects of high nitrate concentrations on phytoplankton dynamics and development. A more adequate approach would be to consider the possibility of multiphasic uptake involving several phase transitions as nitrate concentrations increased. Because it is a nonlinear phenomenon featuring strong thresholds, this effect appears to override that of other variables, such as irradiance, temperature, and cell size. Within the present context of eutrophication and for a range of concentrations that is becoming more and more ecologically relevant, equations are tentatively presented as a first approach to estimate Ks from ambient nitrate concentrations. 相似文献