首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolic control reactions have been studied in the intact toad bladder by means of fluorescence spectrophotometric measurement of reduced pyridine nucleotide and by measurement of respiration with the platinum electrode. substrates such as pyruvate and succinate lead to prompt increases in reduction level of pyridine nucleotide with only slight acceleration of respiration. major metabolic control is exerted by adp, which depletes the intact bladder of reduced pyridine nucleotide and accelerates respiration. respiratory control ratios, as for isolated mitochondria, depend upon the substrate being metabolized. a significant fraction of added adp appears to gain entry into the intact toad bladder and is converted to atp, anaerobiosis and amobarbital lead to increased levels of reduction of pyridine nucleotide. the spectroscopic and metabolic properties of the reduced pyridine nucleotide being studied identify it with that fraction of dpnh which is bound at one of the energy conservation sites linking phosphorylation reactions with electron transfer.  相似文献   

2.
A variety of biologically important pyridine nucleotides and precursors were examined for their capacities to serve as substrates for the synthesis of NAD by cell fractions derived from Haemophilus parasuis and H. pleuropneumoniae. Of the compounds tested, only NMN and nicotinamide riboside were converted to NAD. These reactions required ATP as co-substrate, and fractions from both organisms could also catalyze the ATP-dependent synthesis of NADP from NAD. In the absence of ATP, and depending on the pyridine compound under study, NAD, NMN, nicotinamide riboside, and also nicotinamide, were detected as products of catabolism. It is concluded that these haemophili possess either three-membered pyridine nucleotide cycles or two-membered cycles with synthetic branches originating with nicotinamide riboside. It is also possible that the pyridine nucleotide cycles of both organisms have nonrecycling branches resulting in the "waste" of usable pyridine compound in the form of nicotinamide.  相似文献   

3.
Improved bioluminescence analysis of pyridine nucleotides has been designed based on the fact that the luminescence intensity expresses the velocity of the light formation. The bacterial luciferase system is, in principle, composed of two reactions with two different velocities, one for energy supply by the oxidation of NAD(P)H and the other for the subsequent light generation. The rate setting can be arranged such that an emission maximum is produced 30 to 40 s after mixing the sample with the light-yielding solution, hence providing for a convenient analytical performance. The maximal intensity which is easily recorded, e.g., by a tracking volt-meter, is proportional to the concentration of the reduced nucleotide. Discriminative analysis of the various pyridine nucleotides is facilitated by selective destruction of the oxidized forms with alkali and the reduced forms with acid. Erroneous conversion of NAD(P)H to NAD(P)+ may be induced by haemoglobin in a tissue sample but this is prevented by the presence of 2 mM ascorbic acid at the instant of the acidification. Simultaneous coupling of the ongoing reduction of a pyridine nucleotide to the oxidation in the bacterial luciferase system generates a light-yielding cycle which offers important advantages. With NAD(P)+ as the analytic target compound, direct measurement replaces a preceding separate conversion to NAD(P)H. The four nucleotide forms become determinable in a sample by combining selective destruction of either the reduced or oxidized species with a nucleotide-specific reduction in the cycle. Discriminative analyses are furthermore facilitated by the enhanced emission which is due to the energy derived from the continuous specific reduction, whereas initial light signals from side reactions fade out. It is often possible to suppress disturbing analytical errors by the design of the light-yielding cycle. If the rate of the dehydrogenase reactions is kept low compared with the overall rate of the luciferase system, moderately impaired function of some of its components may only give rise to a slight and tolerable decrease in emission intensity. Kinetic evaluations and model experiments are presented and supplemented with applications to tissue samples.  相似文献   

4.
African trypanosomes are devoid of glutathione reductase activity, and instead contain a unique flavoprotein variant, trypanothione reductase, which acts on a cyclic derivative of glutathione, trypanothione. The high degree of sequence similarity between trypanothione reductase and glutathione reductase, as well as the obvious similarity in the reactions catalyzed, led us to investigate the pH dependence of the kinetic parameters, and the isotopic behavior of trypanothione reductase. The pH dependence of the kinetic parameters V, V/K for NADH, and V/K for oxidized trypanothione has been determined for trypanothione reductase from Trypanosoma congolense. Both V/K for NADH and the maximum velocity decrease as single groups exhibiting pK values of 8.87 +/- 0.09 and 9.45 +/- 0.07, respectively, are deprotonated. V/K for oxidized trypanothione, T(S)2, decreases as two groups exhibiting experimentally indistinguishable pK values of 8.74 +/- 0.03 are deprotonated. Variable magnitudes of the primary deuterium kinetic isotope effects on pyridine nucleotide oxidation are observed on V and V/K when different pyridine nucleotide substrates are used, and the magnitude of DV and D(V/K) is independent of the oxidized trypanothione concentration at pH 7.25. Solvent kinetic isotope effects, obtained with 2',3'-cNADPH as the variable substrate, were observed on V only, and plots of V versus mole fraction of D2O (i.e., proton inventory) were linear, and yielded values of 1.3-1.6 for D2OV. Solvent kinetic isotope effects obtained with alternate pyridine nucleotides as substrates were also observed on V, and the magnitude of D2OV decreases for each pyridine nucleotide as its maximal velocity relative to that of NADPH oxidation decreases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Evidence is presented for endogenous rhythmicity in energy transducing sequences of cellular metabolism which result in a circadian rhythm in adenylate "energy charge" and redox state (NADPH/NADP). From phase dependent photocontrol of enzymatic activity and pyridine nucleotide pool-size levels it is concluded that light - via photoreceptor(s) of photoperiodic control - modulates energy flow under conditions where overall energy transduction displays a circadian rhythm. The results are discussed in relation to temporal organization of development in general.  相似文献   

6.
The use of tuberculin for the therapy of tuberculosis was attempted more than 100 years ago and abandoned because of its adverse reactions. In this historical review we point out that some of the intensive efforts to avoid the reactions were based on the best scientific rationale available at that time. Balancing the dosage and intervals of tuberculin delivery with clinical and laboratory monitoring of patients achieved a limited success, with implications, toward current research in the field. The role of economical and social aspects at that time is also a lesson to be learned toward current approaches to tuberculosis control.  相似文献   

7.
8.
Akira Kusai  Tateo Yamanaka 《BBA》1973,292(3):621-633
A highly purified preparation of an NAD(P) reductase was obtained from Chlorobium thiosulfatophilum and some of its properties were studied. The enzyme possesses FAD as the prosthetic group, and reduces benzyl viologen, 2,6-dichloro-phenolindophenol and cytochromes c, including cytochrome c-555 (C. thiosulfato-philum), with NADPH or NADH as the electron donor. It reduces NADP+ or NAD+ photosynthetically with spinach chloroplasts in the presence of added spinach ferredoxin. It reduces the pyridine nucleotides with reduced benzyl viologen. The enzyme also shows a pyridine nucleotide transhydrogenase activity. In these reactions, the type of pyridine nucleotide (NADP or NAD) which functions more efficiently with the enzyme varies with the concentration of the nucleotide used; at concentrations lower than approx. 1.0 mM, NADPH (or NADP+) is better electron donor (or acceptor), while NADH (or NAD+) is a better electron donor (or acceptor) at concentrations higher than approx. 1.0 mM. Reduction of dyes or cytochromes c catalysed by the enzyme is strongly inhibited by NADP+, 2′-AMP and and atebrin.  相似文献   

9.
The mammalian NUDT13 protein possesses a sequence motif characteristic of the NADH pyrophosphohydrolase subfamily of Nudix hydrolases. Due to the persistent insolubility of the recombinant product expressed in Escherichia coli, active mouse Nudt13 was expressed in insect cells from a baculovirus vector as a histidine-tagged recombinant protein. In vitro, it efficiently hydrolysed NADH to NMNH and AMP and NADPH to NMNH and 2′,5′-ADP and had a marked preference for the reduced pyridine nucleotides. Much lower activity was obtained with other nucleotide substrates tested. K m and k cat values for NADH were 0.34 mM and 7 s?1 respectively. Expression of Nudt13 as an N-terminal fusion to green fluorescent protein revealed that it was targeted exclusively to mitochondria by the N-terminal targeting peptide, suggesting that Nudt13 may act to regulate the concentration of mitochondrial reduced pyridine nucleotide cofactors and the NAD(P)+/NAD(P)H ratio in this organelle and elsewhere. Future studies of the enzymology of pyridine nucleotide metabolism in relation to energy homeostasis, redox control, free radical production and cellular integrity should consider the possible regulatory role of Nudt13.  相似文献   

10.
A well‐written application for funding in support of basic biological or biomedical research or individual training fellowship requires that the author perform several functions well. They must (i) identify an important topic, (ii) provide a brief but persuasive introduction to highlight its significance, (iii) identify one or two key questions that if answered would impact the field, (iv) present a series of logical experiments and convince the reader that the approaches are feasible, doable within a certain period of time and have the potential to answer the questions posed, and (v) include citations that demonstrate both scholarship and an appropriate command of the relevant literature and techniques involved in the proposed research study. In addition, preparation of any compelling application requires formal scientific writing and editing skills that are invaluable in any career. These are also all key components in a doctoral dissertation and encompass many of the skills that we expect graduate students to master. Almost 20 years ago, we began a grant writing course as a mechanism to train students in these specific skills. Here, we describe the use of this course in training of our graduate students as well as our experiences and lessons learned.  相似文献   

11.
Zheng R  Blanchard JS 《Biochemistry》2003,42(38):11289-11296
Ketopantoate reductase (EC 1.1.1.169), an enzyme in the pantothenate biosynthetic pathway, catalyzes the NADPH-dependent reduction of alpha-ketopantoate to form D-(-)-pantoate. The enzyme exhibits high specificity for ketopantoate, with V and V/K for ketopantoate being 5- and 365-fold higher than those values for alpha-ketoisovalerate and 20- and 648-fold higher than those values for alpha-keto-beta-methyl-n-valerate, respectively. For pyridine nucleotides, V/K for beta-NADPH is 3-500-fold higher than that for other nucleotide substrates. The magnitude of the primary deuterium kinetic isotope effects on V and V/K varied substantially when different ketoacid and pyridine nucleotide substrates were used. The small primary deuterium kinetic isotope effects observed using NADPH and NHDPH suggest that the chemical step is not rate-limiting, while larger primary deuterium isotope effects were observed for poor ketoacid and pyridine nucleotide substrates, indicating that the chemical reaction has become partially or completely rate-limiting. The pH dependence of (D)V using ketopantoate was observed to vary from a value of 1.1 at low pH to a value of 2.5 at high pH, while the magnitude of (D)V/K(NADPH) and (D)V/K(KP) were pH-independent. The value of (D)V is large and pH-independent when alpha-keto-beta-methyl-n-valerate was used as the ketoacid substrate. Solvent kinetic isotope effects of 2.2 and 1.2 on V and V/K, respectively, were observed with alpha-keto-beta-methyl-n-valerate. Rapid reaction analysis of NADPH oxidation using ketopantoate showed no "burst" phase, suggesting that product-release steps are not rate-limiting and the cause of the small observed kinetic isotope effects with this substrate pair. Large primary deuterium isotope effects on V and V/K using 3-APADPH in steady-state experiments, equivalent to the isotope effect observed in single turnover studies, suggests that chemistry is rate-limiting for this poorer reductant. These results are discussed in terms of a kinetic and chemical mechanism for the enzyme.  相似文献   

12.
Sara Streichman  Y. Avi-Dor 《BBA》1970,216(2):262-269
The effect of 2-thenoyltrifluoroacetone on electron transport with and against the redox potential gradient, with succinate or ascorbate plus N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) as electron donor, was studied in rat liver mitochondria. It was found that 2-thenoyltrifluoroacetone inhibited succinate-linked intramitochondrial pyridine nucleotide reduction at low concentrations, which neither affected succinate oxidation in the controlled state nor interfered with intramitochondrial pyridine nucleotide reduction in the ascorbate plus TMPD case. The effect of 2-thenoyltrifluoroacetone on succinate-linked intramitochondrial pyridine nucleotide reduction is not attributable either to blocking of the overall rate of electron flow in the succinate dehydrogenase branch of the respiratory chain or to interference with energy transformation. Transition from the controlled to the active state enhanced the inhibitory effect of 2-thenoyltrifluoroacetone on succinate-linked respiration, and it became as sensitive to 2-thenoyltrifluoroacetone as the succinate-linked intramitochondrial pyridine nucleotide reduction. In the light of the above findings, the possibility is discussed that electrons from succinate enter the main branch of the respiratory chain by different routes, according to whether the flow is with or against the potential gradient.  相似文献   

13.
14.
Summary Sudden respiratory blockade has been used to study rapid changes of the resting membrane potential, of intracellular adenosine 5-triphosphate (ATP) levels, and of pyridine nucleotide reduction inNeurospora crassa. Membrane depolarization occurs with a first-order rate constant of 0.167 sec–1, following a lag period of about 4 sec, at 24°C (ambient temperature). This depolarization is several-fold too slow to be directly linked to electron transfer, as judged from the rate of pyridine nucleotide reduction, but has essentially the same rate constant as the decay of ATP. The latter process, however, shows no lag period after the respiratory inhibitor is introduced. Plots of membrane potential versus the intracellular ATP concentration yield saturation curves which are readily fitted by a Michaelis equation, to which is added a constant term representing the diffusion component of membrane potential. Parameters obtained from such fits indicate the maximal voltage which the pump can develop at high ATP levels to be 300 to 350 mV, with an apparentK 1/2 of 2.0mm. The data strongly suggest that an electrogenic ion pump in the plasma membrane ofNeurospora is fueled by ATP; comparison of the measured membrane potentials with the energy available from hydrolysis of ATP indicates that two ions could be pumped for each molecule of ATP split.  相似文献   

15.
Bright-field and dark-field illumination techniques for in vivo measurements of reduced pyridine nucleotide fluorescence were compared in 15 rats during periods of normocapnia, hypocapnia, hypercapnia, and anoxia. Parameters investigated included fluorescence, cortical reflectance, cortical blood flow, and electroencephalograms. In normal brain, with preserved autoregulation, reduced pyridine nucleotide fluorescence was constant through a wide range in Pa(CO2), cortical blood flow, and cerebral blood volume in animals studied using vertical illumination (bright-field) techniques. There was a marked increase in reduced pyridine nucleotide fluorescence at death from anoxia. Artifacts were reduced by monochromators for excitation, emission, and reflected light; low-intensity vertical excitation energy and high-sensitivity recording instrumentation; and a small avascular (123 μm) field. Potential sources of error include photodecomposition, hemoglobin interference from absorption and reflectance, and light scattering. Vertical excitation techniques using a small field appeared to give more reliable and reproducible results than circumferential techniques using a larger field of observation.  相似文献   

16.
The progressive effects of aerobic starvation on endogenous and ethanol-linked respiration and pyridine nucleotide reduction have been studied in the yeast Saccharomyces cerevisiae. Three distinct phases of pyridine nucleotide reduction were observed when ethanol was added to unstarved yeast: an initial phase of rapid reduction and accelerating respiration (A); a steady-state phase of reduction with maximal respiration (B); a final phase of rapid reduction at anaerobiosis (C).During the first 5 hr of aeration, the steady-state Phase B was replaced by a phase of slow pyridine nucleotide reduction, while Phases A and C were unaffected. During this period, both endogenous pyridine nucleotide reduction and endogenous respiration decreased sharply.Between 5 and 22 hr of aeration, the endogenous level of reduced pyridine nucleotide declined further, while endogenous respiration remained unchanged. Concurrently, the extent of the Phase A reduction doubled.The addition of ethanol to aerobic, unstarved yeast stimulated a rapid pyridine nucleotide reduction, with further reduction occurring at anaerobiosis. Under anaerobic conditions, the addition of ethanol to unstarved yeast caused little further reduction of pyridine nucleotide. Two hours of starvation decreased the extent of the endogenously supported anaerobic reduction and correspondingly increased the ethanol-induced reduction. These results suggest that, in unstarved yeast, reducing equivalents derived from ethanol under aerobic conditions and those derived from endogenous carbohydrate under anaerobic conditions have access to the same pool of pyridine nucleotide. With starvation, this pool becomes accessible to ethanol-derived (or ethanol-mobilized) reducing equivalents under anaerobic conditions.  相似文献   

17.
As part of a research program on nucleotide metabolism in potato tubers (Solanum tuberosum L.), profiles of pyridine (nicotinamide) metabolism were examined based on the in situ metabolic fate of radio-labelled precursors and the in vitro activities of enzymes. In potato tubers, [3H]quinolinic acid, which is an intermediate of de novo pyridine nucleotide synthesis, and [14C]nicotinamide, a catabolite of NAD, were utilised for pyridine nucleotide synthesis. The in situ tracer experiments and in vitro enzyme assays suggest the operation of multiple pyridine nucleotide cycles. In addition to the previously proposed cycle consisting of seven metabolites, we found a new cycle that includes newly discovered nicotinamide riboside deaminase which is also functional in potato tubers. This cycle bypasses nicotinamide and nicotinic acid; it is NAD → nicotinamide mononucleotide → nicotinamide riboside → nicotinic acid riboside → nicotinic acid mononucleotide → nicotinic acid adenine dinucleotide → NAD. Degradation of the pyridine ring was extremely low in potato tubers. Nicotinic acid glucoside is formed from nicotinic acid in potato tubers. Comparative studies of [carboxyl-14C]nicotinic acid metabolism indicate that nicotinic acid is converted to nicotinic acid glucoside in all organs of potato plants. Trigonelline synthesis from [carboxyl-14C]nicotinic acid was also found. Conversion was greater in green parts of plants, such as leaves and stem, than in underground parts of potato plants. Nicotinic acid utilised for the biosynthesis of these conjugates seems to be derived not only from the pyridine nucleotide cycle, but also from the de novo synthesis of nicotinic acid mononucleotide.  相似文献   

18.
Pejchal R  Sargeant R  Ludwig ML 《Biochemistry》2005,44(34):11447-11457
Methylenetetrahydrofolate reductases (MTHFRs; EC 1.7.99.5) catalyze the NAD(P)H-dependent reduction of 5,10-methylenetetrahydrofolate (CH(2)-H(4)folate) to 5-methyltetrahydrofolate (CH(3)-H(4)folate) using flavin adenine dinucleotide (FAD) as a cofactor. The initial X-ray structure of Escherichia coli MTHFR revealed that this 33-kDa polypeptide is a (betaalpha)(8) barrel that aggregates to form an unusual tetramer with only 2-fold symmetry. Structures of reduced enzyme complexed with NADH and of oxidized Glu28Gln enzyme complexed with CH(3)-H(4)folate have now been determined at resolutions of 1.95 and 1.85 A, respectively. The NADH complex reveals a rare mode of dinucleotide binding; NADH adopts a hairpin conformation and is sandwiched between a conserved phenylalanine, Phe223, and the isoalloxazine ring of FAD. The nicotinamide of the bound pyridine nucleotide is stacked against the si face of the flavin ring with C4 adjoining the N5 of FAD, implying that this structure models a complex that is competent for hydride transfer. In the complex with CH(3)-H(4)folate, the pterin ring is also stacked against FAD in an orientation that is favorable for hydride transfer. Thus, the binding sites for the two substrates overlap, as expected for many enzymes that catalyze ping-pong reactions, and several invariant residues interact with both folate and pyridine nucleotide substrates. Comparisons of liganded and substrate-free structures reveal multiple conformations for the loops beta2-alpha2 (L2), beta3-alpha3 (L3), and beta4-alpha4 (L4) and suggest that motions of these loops facilitate the ping-pong reaction. In particular, the L4 loop adopts a "closed" conformation that allows Asp120 to hydrogen bond to the pterin ring in the folate complex but must move to an "open" conformation to allow NADH to bind.  相似文献   

19.
医学研究生教育作为我国高等教育的重要组成部分,为国家培养了大批高素质医学人才。本文就我们医学研究生教育的实践,探讨医学研究生教育存在的问题。医学研究生教育应首先应加强医学专业知识的全面学习,做到博学而精深。同时,应注重科研素质和人文素质的培养。最后,医学研究生的教育国际化也是非常重要的一个问题。总之,医学院校研究生教育应更加注重创新性、科研素质、人文素质和国际视野的培养,培养具有国际竞争力的高素质专业医学人才。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号