首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Association of RNA molecules forming a two-component B:LS trans-analog of antigenomic HDV ribozyme was studied. From previously synthesized trans-ribozymes the B:LS ribozyme differs by length and sequence of its RNA molecules (33 and 34 bp, respectively), topology of functional parts and the absence of very short reaction product. The ribozyme displays a biphasic kinetics of self-cleavage similar to that of cis-ribozyme. Our original kinetic scheme for the B:LS trans-ribozyme self-cleavage (www.cardio.ru\labgen\RZ_e.html)describes a possible cause of biphasic nature of the reaction curve, namely, variation of the rate-limiting stage in the series of successive conformational transformations which coincide with the ribozyme self-cleavage. Interactions between the molecules involved in the reaction, i.e., "multimerization" of entire ribozyme and its components can be regarded as another cause of the biphasic kinetics. B:LS trans-ribozyme is a convenient model for the investigation of this process, since the binding of LS and B allows the formation of complexes with 1B:2LS or 2B:1LS stoichiometry and complexes with the cleavage products. We examined the factors determining dissociation-association of the ribozyme components using a series of electrophoreses under nondenaturing conditions. The possibility of interaction between cis- and transribozyme components was confirmed experimentally. In the presence of LS excess over B the ribozyme can form multimeres. These findings suggest the involvement of intermolecular interactions in native cis-ribozyme self-cleavage.  相似文献   

2.
B:LS ribozyme, a trans-variant of naturally occurring HDV ribozyme, has been constructed. The ribozyme consists of a substrate-containing LS chain and a catalytic B chain and differs from previously constructed trans-ribozymes in the length and nucleotide sequence of its oligonucleotide chains (33 and 34 bp, respectively). The chains readily associate with each other at room temperature, at which the LS cleavage reaction is negligible, which makes it possible to investigate association of the intact chains. At the same time, the self-cleavage rate constant for the trans-ribozyme B:LS at 50°C is close to those for the previously studied permuted cis-ribozymes, especially the LSB variant. In addition, the dependence of trans-ribozyme on reaction conditions (Mg2+ concentration, pH, and temperature) resembled that of cis-ribozyme. Similar to other trans-ribozymes, B:LS ribozyme demonstrated the ability for multiple turnover of the B strand with an excess of the substrate LS chain. The kinetic model of the self-cleavage reaction for B:LS is presented at http://www.cardio.ru/labgen/RZ_r.html. Taken together, our results show that the novel trans-variant of HDV ribozyme can be used as a model for analyzing the process of HDV ribozyme self-cleavage.  相似文献   

3.
Hammerhead ribozymes are self-cleaving RNA molecules capable of regulating gene expression in living cells. Their cleavage performance is strongly influenced by intra-molecular loop–loop interactions, a feature not readily accessible through modern prediction algorithms. Ribozyme engineering and efficient implementation of ribozyme-based genetic switches requires detailed knowledge of individual self-cleavage performances. By rational design, we devised fluorescent aptamer-ribozyme RNA architectures that allow for the real-time measurement of ribozyme self-cleavage activity in vitro. The engineered nucleic acid molecules implement a split Spinach aptamer sequence that is made accessible for strand displacement upon ribozyme self-cleavage, thereby complementing the fluorescent Spinach aptamer. This fully RNA-based ribozyme performance assay correlates ribozyme cleavage activity with Spinach fluorescence to provide a rapid and straightforward technology for the validation of loop–loop interactions in hammerhead ribozymes.  相似文献   

4.
B : LS ribozyme, a trans-variant of naturally occurring HDV ribozyme, has been constructed. The ribozyme consists of a substrate-containing LS chain and an enzyme B chain and differs from previously constructed trans-ribozymes in the length and nucleotide sequence of its oligonucleotide chains (34 and 33 bp, respectively). The chains readily associate with each other at a room temperature while the LS cleavage reaction at this temperature is negligible slow, which allowed us to investigate the association of the intact chains. At the same time the self-cleavage rate constant for the trans-ribozyme B : LS at 50 degrees C is close to those for the previously studied permuted cis-ribozymes, especially LSB variant. In addition, the dependence on the reaction conditions (Mg2+ concentration, pH, temperature) of the trans-ribozyme was similar to that of cis-ribozyme. Similar to other trans-ribozymes, B : LS ribozyme demonstrates the ability for multiple use of the enzyme B-chain with an excess of the substrate LS chain. The kinetics model of self-cleavage reaction for B : LS is presented in http://www.cardio.ru/labgen/RZ_r.html. Taken together, our results show that the original trans-variant of HDV ribozyme can be used as a model for the investigation of self-cleavage process of HDV ribozymes.  相似文献   

5.
Hepatitis delta virus RNAs possess self-cleavage activities that produce 2′,3′-cyclic phosphate and 5′-hydroxyl termini (i.e. cis-acting delta ribozyme). Trans-acting delta ribozymes have been engineered by removing a junction from the cis version, thereby producing one molecule possessing the substrate sequence and the other the catalytic domain. According to the pseudoknot model, the secondary structure of the delta ribozyme includes a pseudoknot (i.e. P1.1 stem) formed by two base pairs from residues of the L3 loop and J1/4 junction. A collection of 48 P1.1 stem mutants was synthesized in order to provide an original characterization of both the importance and the structure of this pseudoknot in a trans-acting version of the ribozyme. Several structural differences were noted compared to the results reported for cis-acting ribozymes. For example, a combination of two stable Watson–Crick base pairs composing the essential P1.1 stem was demonstrated to be crucial for a significant level of activity, while the cis version required only one base pair. In addition, we present the first physical evidences revealing that the composition of the P1.1 stem affects the substrate specificity for ribozyme cleavage. Depending on the residues forming the J1/4 junction, non-productive ribozyme–substrate complexes can be observed. This phenomenon is proposed to be important for further development of a gene-inactivation system based on delta ribozyme.  相似文献   

6.
7.
The DSL ribozyme is a class of artificial ligase ribozymes with a highly modular architecture, which catalyzes template-directed RNA ligation on a helical substrate module that can be either covalently connected (cis-DSL) or physically separated (trans-DSL) from the catalytic module. Substrate recognition by the catalytic module is promoted by one or two sets of GNRA/receptor interactions acting as clamps in the cis or trans configurations, respectively. In this study, we have rationally designed and analyzed the catalytic and self-assembly properties of several trans-DSL ribozymes with different sets of natural and artificial GNRA-receptor clamps. Two variants newly designed in this study showed significantly enhanced catalytic properties with respect of the original trans-DSL construct. While this work allows dissection of the turnover and catalytic properties of the trans-DSL ribozyme, it also emphasizes the remarkable modularity of RNA tertiary structure for nano-construction of complex functions.  相似文献   

8.
Catalytic activity of four structural variants of the antigenomic delta ribozyme, two cis- and two trans-acting, has been compared in the presence of selected divalent metal ions that effectively support catalysis. The ribozymes differ in regions that are not directly involved in formation of the ribozyme active site: the region immediately preceding the catalytic cleavage site, the P4 stem and a stretch of the viral RNA sequence extending the minimal ribozyme sequence at its 3′-terminus. The variants show high cleavage activity in the presence of Mg2+, Ca2+ and Mn2+, lower with Co2+ and Sr2+ and some variants are also active with Cd2+ and Zn2+ ions. In the presence of a particular metal ion the ribozymes cleave, however with different initial rates, according to pseudo-first or higher order kinetics and to different final cleavage extents. On the other hand, relatively small differences are observed in the reactions induced by various metal ions. The cleavage of trans-acting ribozymes induced by Mg2+ is partially inhibited in the presence of Na+, spermidine and some other divalent metal ions. The inert Co(NH3)63+ complex is unable to support catalysis, as reported earlier for the genomic ribozyme. The results are discussed in terms of the influence of structural elements peripheral to the ribozyme active site on its cleavage rate and efficiency as well as the role of metal ions in the cleavage mechanism. Some implications concerning further studies and possible applications of delta ribozymes are also considered.  相似文献   

9.
10.
RNA double cleavage by a hairpin-derived twin ribozyme   总被引:4,自引:4,他引:0  
The hairpin ribozyme is a small catalytic RNA that catalyses reversible sequence-specific RNA hydrolysis in trans. It consists of two domains, which interact with each other by docking in an antiparallel fashion. There is a region between the two domains acting as a flexible hinge for interdomain interactions to occur. Hairpin ribozymes with reverse-joined domains have been constructed by dissecting the domains at the hinge and rejoining them in reverse order. We have used both the conventional and reverse-joined hairpin ribozymes for the design of a hairpin-derived twin ribozyme. We show that this twin ribozyme cleaves a suitable RNA substrate at two specific sites while maintaining the target specificity of the individual monoribozymes. For characterisation of the studied ribozymes we have evaluated a quantitative assay of sequence-specific ribozyme activity using fluorescently labelled RNA substrates in conjunction with an automated DNA sequencer. This assay was found to be applicable with hairpin and hairpin-derived ribozymes. The results demonstrate the potential of hairpin ribozymes for multi-target strategies of RNA cleavage and suggest the possibility for employing hairpin-derived twin ribozymes as powerful tools for RNA manipulation in vitro and in vivo.  相似文献   

11.
Hepatitis delta virus (HDV) replicates by a double rolling-circle mechanism that requires self-cleavage by closely related genomic and antigenomic versions of a ribozyme. We have previously shown that the uncleaved genomic ribozyme is subject to a variety of alternative (Alt) pairings. Sequence upstream of the ribozyme can regulate self-cleavage activity by formation of an Alt 1 ribozyme-containing structure that severely inhibits self-cleavage, or a P(-1) self-structure that permits rapid self-cleavage. Here, we test three other alternative pairings: Alt P1, Alt 2, and Alt 3. Alt P1 and Alt 3 contain primarily ribozyme-ribozyme interactions, while Alt 2 involves ribozyme-flanking sequence interaction. A number of single and double mutant ribozymes were prepared to increase or decrease the stability of the alternative pairings, and rates of self-cleavage were determined. Results of these experiments were consistent with the existence of the proposed alternative pairings and their ability to inhibit the overall rate of native ribozyme folding. Local misfolds are treated as internal equilibrium constants in a binding polynomial that modulates the intrinsic rate of cleavage. This model of equilibrium effects of misfolds should be general and apply to other ribozymes. All of the alternative pairings sequester a pseudoknot-forming strand. Folding of ribozymes containing Alt P1 and Alt 2 was accelerated by urea as long as the native ribozyme fold was sufficiently stable, while folding of mutants in which both of these alternative pairings had been removed were not stimulated by urea. This behavior suggests that the pseudoknots form by capture of an unfolded or appropriately rearranged alternative pairing by its complementary native strand. Fast-folding mutants were prepared by either weakening alternative pairings or by strengthening native pairings. A kinetic model was developed that accommodates these features and explains the position of the rate-limiting step for the G11C mutant. Implications of these results for structural and dynamic studies of the uncleaved HDV ribozyme are discussed.  相似文献   

12.
The group I intron ribozyme from Tetrahymena was recently reengineered into a trans-splicing variant that is able to remove 100-nt introns from pre-mRNA, analogous to the spliceosome. These spliceozymes were improved in this study by 10 rounds of evolution in Escherichia coli cells. One clone with increased activity in E. coli cells was analyzed in detail. Three of its 10 necessary mutations extended the substrate binding duplexes, which led to increased product formation and reduced cleavage at the 5′-splice site. One mutation in the conserved core of the spliceozyme led to a further reduction of cleavage at the 5′-splice site but an increase in cleavage side products at the 3′-splice site. The latter was partially reduced by six additional mutations. Together, the mutations increased product formation while reducing activity at the 5′-splice site and increasing activity at the 3′-splice site. These results show the adaptation of a ribozyme that evolved in nature for cis-splicing to trans-splicing, and they highlight the interdependent function of nucleotides within group I intron ribozymes. Implications for the possible use of spliceozymes as tools in research and therapy, and as a model for the evolution of the spliceosome, are discussed.  相似文献   

13.
The hepatitis delta virus (HDV) ribozyme is a member of the class of small, self-cleaving catalytic RNAs found in a wide range of genomes from HDV to human. Both pre- and post-catalysis (precursor and product) crystal structures of the cis-acting genomic HDV ribozyme have been determined. These structures, together with extensive solution probing, have suggested that a significant conformational change accompanies catalysis. A recent crystal structure of a trans-acting precursor, obtained at low pH and by molecular replacement from the previous product conformation, conforms to the product, raising the possibility that it represents an activated conformer past the conformational change. Here, using fluorescence resonance energy transfer (FRET), we discovered that cleavage of this ribozyme at physiological pH is accompanied by a structural lengthening in magnitude comparable to previous trans-acting HDV ribozymes. Conformational heterogeneity observed by FRET in solution appears to have been removed upon crystallization. Analysis of a total of 1.8 µsec of molecular dynamics (MD) simulations showed that the crystallographically unresolved cleavage site conformation is likely correctly modeled after the hammerhead ribozyme, but that crystal contacts and the removal of several 2′-oxygens near the scissile phosphate compromise catalytic in-line fitness. A cis-acting version of the ribozyme exhibits a more dynamic active site, while a G-1 residue upstream of the scissile phosphate favors poor fitness, allowing us to rationalize corresponding changes in catalytic activity. Based on these data, we propose that the available crystal structures of the HDV ribozyme represent intermediates on an overall rugged RNA folding free-energy landscape.  相似文献   

14.
A series of permuted variants of antigenomic HDV ribozyme and trans-acting variants were constructed. The catalytic activity study of the ribozymes has shown that all the variants were capable of self-cleaving with equally biphasic kinetics. Ribonuclease and Fe(II)-EDTA cleavage have provided evidence that all designed ribozymes fold according to the pseudoknot model and the conformations of the initial and cleaved ribozyme are different. A scheme of HDV ribozyme self-cleavage reaction was suggested. The role of hydrogen bonds in the reaction was evaluated by substitution of ribose in the ribozyme for deoxyribose. It was found that the 2'-OH group of U23 and C27 is critical for the reaction to occur; the 2'-OH group of U32 and U39 is important, while 2'-OH groups of other nucleotides of loop 3, stem 4 and stem 1 are unimportant for the cleavage activity.  相似文献   

15.
16.
Determination of quantitative thermodynamic and kinetic frameworks for ribozymes derived from the Azoarcus group I intron and comparisons to their well-studied analogs from the Tetrahymena group I intron reveal similarities and differences between these RNAs. The guanosine (G) substrate binds to the Azoarcus and Tetrahymena ribozymes with similar equilibrium binding constants and similar very slow association rate constants. These and additional literature observations support a model in which the free ribozyme is not conformationally competent to bind G and in which the probability of assuming the binding-competent state is determined by tertiary interactions of peripheral elements. As proposed previously, the slow binding of guanosine may play a role in the specificity of group I intron self-splicing, and slow binding may be used analogously in other biological processes. The internal equilibrium between ribozyme-bound substrates and products is similar for these ribozymes, but the Azoarcus ribozyme does not display the coupling in the binding of substrates that is observed with the Tetrahymena ribozyme, suggesting that local preorganization of the active site and rearrangements within the active site upon substrate binding are different for these ribozymes. Our results also confirm the much greater tertiary binding energy of the 5′-splice site analog with the Azoarcus ribozyme, binding energy that presumably compensates for the fewer base-pairing interactions to allow the 5′-exon intermediate in self splicing to remain bound subsequent to 5′-exon cleavage and prior to exon ligation. Most generally, these frameworks provide a foundation for design and interpretation of experiments investigating fundamental properties of these and other structured RNAs.  相似文献   

17.
Group I intron ribozymes can repair mutated mRNAs by replacing the 3′-terminal portion of the mRNA with their own 3′-exon. This trans-splicing reaction has the potential to treat genetic disorders and to selectively kill cancer cells or virus-infected cells. However, these ribozymes have not yet been used in therapy, partially due to a low in vivo trans-splicing efficiency. Previous strategies to improve the trans-splicing efficiencies focused on designing and testing individual ribozyme constructs. Here we describe a method that selects the most efficient ribozymes from millions of ribozyme variants. This method uses an in vivo rescue assay where the mRNA of an inactivated antibiotic resistance gene is repaired by trans-splicing group I intron ribozymes. Bacterial cells that express efficient trans-splicing ribozymes are able to grow on medium containing the antibiotic chloramphenicol. We randomized a 5′-terminal sequence of the Tetrahymena thermophila group I intron and screened a library with 9 × 106 ribozyme variants for the best trans-splicing activity. The resulting ribozymes showed increased trans-splicing efficiency and help the design of efficient trans-splicing ribozymes for different sequence contexts. This in vivo selection method can now be used to optimize any sequence in trans-splicing ribozymes.  相似文献   

18.
Kinetics of hairpin ribozyme cleavage in yeast.   总被引:3,自引:1,他引:2       下载免费PDF全文
Hairpin ribozymes catalyze a self-cleavage reaction that provides a simple model for quantitative analyses of intracellular mechanisms of RNA catalysis. Decay rates of chimeric mRNAs containing self-cleaving ribozymes give a direct measure of intracellular cleavage kinetics in yeast. Intracellular ribozyme-mediated cleavage occurs at similar rates and shows similar inhibition by ribozyme mutations as ribozyme-mediated reactions in vitro, but only when ribozymes are located in a favorable mRNA sequence context. The impact of cleavage on mRNA abundance is shown to depend directly on intrinsic mRNA stability. Surprisingly, cleavage products are no more labile than uncleaved mRNAs despite the loss of terminal cap structures or poly (A).  相似文献   

19.
 Hammerhead ribozymes provide valuable tools in the field of gene therapy due to their cleavage specificity and the broad range of RNA targets. A major prerequisite for the selection of suitable ribozymes for in vivo application is represented by in vitro determination of ribozyme cleavage kinetic constants. From the experimental cleavage data, kinetic constants are usually calculated under the assumption of rapid conversion of the substrate into the ribozyme-substrate complex. However, this condition is often not satisfied for ribozymes carrying additional RNA stretches, due to cloning strategies or necessary for ribozyme expression in the cell. To overcome this problem, we propose a mathematical model which is able to calculate ribozyme kinetic constants in the case of non-rapid conversion of substrate into ribozyme-substrate complex. In addition, our system gives the opportunity to evaluate the nature of the S conversion into ES through the determination of a model parameter. The validity of the proposed model is restricted to the hypothesis of a ribozyme excess over the substrate at the beginning of the cleavage reaction and to the absence of any mass exchange with the external environment. Received: 1 February 2001 / Revised version: 1 September 2001 / Published online: 23 August 2002  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号