首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accumulating evidences suggest that Herba epimedii has the potential benefits against osteoporosis. However, previous studies were focused on the crude extract, total flavonoids (TF) and icariin (ICA), and the detailed molecular mechanisms of action and structure–activity relationship (SAR) remain unclear. Herein we aimed to systematically investigate the effects of Herba epimedii flavonoids (HEF) on the activity of osteoclasts, and explore the potential SAR. Both ICA and baohuoside-1 (BS) significantly inhibited the proliferation of RAW 264.7 cells (IC50 25 μM and 67 μM, respectively). Treatment of ICA resulted in G2/M arrest and apoptosis in RAW 264.7 cells as early as 12 h. Besides, HEF remarkably suppressed vitamin D-induced differentiation of osteoclasts in rabbit bone marrow cells and the bone resorption of rabbit mature osteoclasts in vitro. It is notable that the inhibitory effect of 100 μM ICA and BS on osteoclast formation is almost 90%; and the inhibition rate on bone resorption is 50% and 80%, respectively. Besides, RANKL-induced osteoclast formation from RAW 264.7 cells and the expression of TRAP, CA II, CTSK and MMP-9 was significantly reduced by the treatment of 25 μM HEF and 17β-estradiol (ES), and the inhibitory strength increases in the order TF < ES < ICA < BS, which was blocked by ICI182780 suggesting that the regulation of osteoclast activity might be ER dependent. Furthermore, the free hydroxyl group at C-7 of BS played an important role in the SAR for anti-osteoclast action. To conclude, HEF could regulate the formation and activity of osteoclasts by inhibiting the proliferation and differentiation, inducing apoptosis and cell cycle arrest and suppressing bone resorption of osteoclasts. Changes in osteoclast activity are probably mediated predominantly by interaction with nuclear estrogen receptors and via mitochondrial pathway. HEF, especially BS, has great potential for the prevention and treatment of osteoporosis.  相似文献   

2.
3.
4.
5.
Osteosarcoma is usually associated with a disturbed bone metabolism. The aim of this work was to characterize the reciprocal interactions between MG63 osteosarcoma cells and osteoclasts, in a co-culture system. Co-cultures were characterized throughout 21 days for the osteoclastogenic response and the expression of osteoblastic markers. Monocultures of MG63 cells and peripheral blood mononuclear cell (PBMC) and co-cultures of PBMC + human bone marrow cells (hBMC) were also performed. Compared to PBMC cultures, co-cultures yielded significantly increased gene expression of osteoclast-related markers, tartarate-acid resistant phosphatase (TRAP) activity, TRAP-positive multinucleated cells, cells with actin rings and vitronectin receptors (VNR) and calcitonin receptors (CTR) and calcium phosphate resorbing ability. Results showed that the development of functional osteoclasts required a very low number of MG63 cells, suggesting a high osteoclastogenic-triggering capacity of this cell line. Subjacent mechanisms involved the pathways MEK and NF-kB, although with a lower relevance than that observed on PBMC monocultures or co-cultures of hBMC + PBMC; PGE2 production also had a contribution. Compared to MG63 cell monocultures, the co-culture expressed lower levels of COL1 and ALP, and higher levels of BMP-2, suggesting that PBMC also modulated the osteoblastic behavior. While M-CSF appeared to be involved in the osteoclastogenic response on the MG63 + PBMC co-cultures, RANKL does not seem to be a key player in the process. On the other hand, sphingosine-1-phosphate production might contribute to the modulation of the osteoblastic behavior. Results suggest that the reciprocal modulation between osteosarcoma and osteoclastic cells might contribute to the disturbed bone metabolism associated with bone tumors.  相似文献   

6.
Bone remodeling is regulated by secreted factors in the bone microenvironment. However, data regarding osteoclast-derived factors that influence osteoblast differentiation are lacking. Here, we show that HtrA1 is produced as a secreted protein during osteoclastogenesis, and negatively regulates osteoblast differentiation. Exogenous addition of recombinant HtrA1 attenuates osteoblast differentiation and BMP2-induced Smad1/5/8, ERK1/2 and p38 phosphorylation in pre-osteoblasts. Our studies imply a unique mode of crosstalk in which HtrA1 is produced by both osteoclasts and osteoblasts and negatively regulates osteoblast differentiation, suggesting that HtrA1 may mediate the fine tuning of paracrine and autocrine regulations during bone remodeling processes.  相似文献   

7.
8.
To clarify the mechanism of the stimulatory effect of statins on bone formation, we investigated the effect of simvastatin, a widely used statin, on osteoblastic and adipocytic differentiation in primary cultured mouse bone marrow stromal cells (BMSCs). Simvastatin treatment enhanced the expression level of mRNA for osteocalcin and protein for osteocalcin and osteopontin, and increased alkaline phosphatase activity significantly (p<0.05). After BMSCs were exposed to an adipocyte differentiation agonist, Oil Red O staining, fluorescence activated cell sorting, and decreased expression level of lipoprotein lipase mRNA showed that treatment with simvastatin significantly inhibits adipocytic differentiation compared to controls that did not receive simvastatin (p<0.05). Lastly, we found that simvastatin induces high expression of BMP(2) in BMSCs. These observations suggested that simvastatin acts on BMSCs to enhance osteoblastic differentiation and inhibits adipocytic differentiation; this effect is at least partially mediated by inducing BMP(2) expression in BMSCs.  相似文献   

9.
The small GTPase M-Ras is highly expressed in the central nervous system and plays essential roles in neuronal differentiation. However, its other cellular and physiological functions remain to be elucidated. Here, we clarify the novel functions of M-Ras in osteogenesis. M-Ras was prominently expressed in developing mouse bones particularly in osteoblasts and hypertrophic chondrocytes. Its expression was elevated in C3H/10T1/2 (10T1/2) mesenchymal cells and in MC3T3-E1 preosteoblasts during differentiation into osteoblasts. Treatment of C2C12 skeletal muscle myoblasts with bone morphogenetic protein-2 (BMP-2) to bring about transdifferentiation into osteoblasts also induced M-Ras mRNA and protein expression. Moreover, the BMP-2 treatment activated the M-Ras protein. Stable expression of the constitutively active M-Ras(G22V) in 10T1/2 cells facilitated osteoblast differentiation. M-Ras(G22V) also induced transdifferentiation of C2C12 cells into osteoblasts. In contrast, knockdown of endogenous M-Ras by RNAi interfered with osteoblast differentiation in 10T1/2 and MC3T3-E1 cells. Osteoblast differentiation in M-Ras(G22V)-expressing C2C12 cells was inhibited by treatment with inhibitors of p38 MAP kinase (MAPK) and c-Jun N-terminal kinase (JNK) but not by inhibitors of MAPK and ERK kinase (MEK) or phosphatidylinositol 3-kinase. These results imply that M-Ras, induced and activated by BMP-2 signaling, participates in the osteoblastic determination, differentiation, and transdifferentiation under p38 MAPK and JNK regulation.  相似文献   

10.
Fatigue loading causes a spatial distribution of osteocyte apoptosis co-localized with bone resorption spaces peaking around microdamage sites. Since osteocytes have been shown to regulate osteoclast formation and activity, we hypothesize that osteocyte apoptosis regulates osteoclastogenesis. In this study, we used serum-starvation to mimic reduced nutrient transport in microdamaged bone and induce apoptosis in MLO-Y4 osteocyte-like cells; conditioned medium was used to apply soluble factors released by apoptotic osteocytes (aOCY) to healthy non-apoptotic MLO-Y4 cells. Osteoclast precursor (RAW264.7 monocyte) migration and differentiation were assessed in the presence of conditioned media (CM) from: (A) aOCY, (B) osteocytes treated with apoptosis conditioned medium (i.e., healthy osteocytes in the presence of apoptosis cues; apoptosis CM-treated osteocytes (atOCY)), and (C) osteocytes treated with non-apoptosis conditioned medium (i.e., healthy osteocytes in the absence of apoptosis cues; non-apoptosis CM-treated osteocytes (natOCY)). Receptor activator for nuclear factor-κB ligand (RANKL), macrophage colony stimulating factor (M-CSF), vascular endothelial growth factor (VEGF) and osteoprotegerin (OPG) mRNA, and protein expression were measured. Our findings indicate that soluble factors released by aOCY and atOCY promoted osteoclast precursor migration (up to 64% and 24% increase, respectively) and osteoclast formation (up to 450% and 265% increase, respectively). Osteoclast size increased up to 233% in the presence of aOCY and atOCY CM. Recruitment, formation and size were unaltered by natOCY. RANKL mRNA and protein expression were upregulated only in aOCY, while M-CSF and VEGF increased in atOCY. Addition of RANKL-blocking antibody abolished aOCY-induced osteoclast precursor migration and osteoclast formation. VEGF and M-CSF blocking antibodies abolished atOCY-induced osteoclastogenesis. These findings suggest that aOCY directly and indirectly (through atOCY) initiate targeted bone resorption by regulating osteoclast precursor recruitment and differentiation.  相似文献   

11.
Due to some severe side effects or lack of efficacy of currently used synthetic drugs, such as bisphosphonates (BPs), the search for new therapeutic agents that can more effectively prevent and treat osteoporosis (OP) has been an increasingly important topic of research. In this study, the low-molecular weight hyaluronan (LMW-HA, 50 kDa) produced by enzymatic degradation of high-molecular weight hyaluronan (HMW-HA, 1922 kDa) from Streptococcus zooepidemicus was evaluated in vitro for its anti-osteoclastogenic potentials using RAW 264.7 murine macrophage cells. LMW-HA (25–200 μg/ml) dose-dependently inhibited the receptor activator of NF-κB ligand (RANKL)-induced tartrate-resistance acid phosphatase (TRAP) activity and the formation of multinucleated osteoclasts. Western blot analysis showed that LMW-HA reduced the RANKL-induced expression of tumor necrosis factor receptor-associated factor 6 (TRAF6), gelsolin and c-Src-proline-rich tyrosine kinase 2 suggesting that it could inhibit actin ring formation of osteoclast cells. In addition, LMW-HA inhibited the bone resorption activity of osteoclastic cells by dose-dependently attenuating the RANKL-induced expression of carbonic anhydrase II and integrin β3. RT-PCR analysis showed that LMW-HA dose-dependently decreased the expression of osteoclast-specific genes, such as matrix metalloproteinase 9 (MMP-9) and cathepsin K, suggesting that it has potential to inhibit the differentiation of osteoclastic cells. Taken collectively, these results suggested that LMW-HA (50 kDa) has significant anti-osteoporotic activity in vitro and may be used as a potent functional ingredient in health beneficial foods or as a therapeutic agent to prevent or treat OP.  相似文献   

12.
13.
Expression, signaling, and function of P2X7 receptors in bone   总被引:1,自引:0,他引:1  
Nucleotides released from cells in response to mechanical stimulation or injury may serve as paracrine regulators of bone cell function. Extracellular nucleotides bind to multiple subtypes of P2 receptors on osteoblasts (the cells responsible for bone formation) and osteoclasts (cells with the unique ability to resorb mineralized tissues). Both cell lineages express the P2X7 receptor subtype. The skeletal phenotype of mice with targeted disruption of P2rx7 points to interesting roles for this receptor in the regulation of bone formation and resorption, as well as the response of the skeleton to mechanical stimulation. This paper reviews recent work on the expression of P2X7 receptors in bone, their associated signal transduction mechanisms and roles in regulating bone formation and resorption. Areas for future research in this field are also discussed.  相似文献   

14.
Although previous studies have demonstrated that hydrogen sulfide (H2S) stimulated or inhibited osteoclastic differentiation, little is known about the effects of H2S on the differentiation of osteoblasts and osteoclasts. To determine the possible bioactivities of H2S on bone metabolism, we investigated the in vitro effects of H2S on cytotoxicity, osteoblastic, and osteoclastic differentiation as well as the underlying mechanism in lipopolysaccharide (LPS) and nicotine‐stimulated human periodontal ligament cells (hPDLCs). The H2S donor, NaHS, protected hPDLCs from nicotine and LPS‐induced cytotoxicity and recovered nicotine‐ and LPS‐downregulated osteoblastic differentiation, such as alkaline phosphatase (ALP) activity, mRNA expression of osteoblasts, including ALP, osteopontin (OPN), and osteocalcin (OCN), and mineralized nodule formation. Concomitantly, NaHS inhibited the differentiation of tartrate‐resistant acid phosphatase (TRAP)‐positive osteoclasts in mouse bone marrow cells and blocked nicotine‐ and LPS‐induced osteoclastogenesis regulatory molecules, such as RANKL, OPG, M‐CSF, MMP‐9, TRAP, and cathepsin K mRNA. NaHS blocked nicotine and LPS‐induced activation of p38, ERK, MKP‐1, PI3K, PKC, and PKC isoenzymes, and NF‐κB. The effects of H2S on nicotine‐ and LPS‐induced osteoblastic and osteoclastic differentiation were remarkably reversed by MKP‐1 enzyme inhibitor (vanadate) and expression inhibitor (triptolide). Taken together, we report for the first time that H2S inhibited cytotoxicity and osteoclastic differentiation and recovered osteoblastic differentiation in a nicotine‐ and periodontopathogen‐stimulated hPDLCs model, which has potential therapeutic value for treatment of periodontal and inflammatory bone diseases. J. Cell. Biochem. 114: 1183–1193, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Tetracycline antibiotics, including doxycycli\e (DOX), have been used to treat bone resorptive diseases, partially because of their activity to suppress osteoclastogenesis induced by receptor activator of nuclear factor kappa B ligand (RANKL). However, their precise inhibitory mechanism remains unclear. Therefore, the present study examined the effect of Dox on osteoclastogenesis signaling induced by RANKL, both in vitro and in vivo. Although Dox inhibited RANKL-induced osteoclastogenesis and down-modulated the mRNA expression of functional osteoclast markers, including tartrate-resistant acid phosphatase (TRAP) and cathepsin K, Dox neither affected RANKL-induced MAPKs phosphorylation nor NFATc1 gene expression in RAW264.7 murine monocytic cells. Gelatin zymography and Western blot analyses showed that Dox down-regulated the enzyme activity of RANKL-induced MMP-9, but without affecting its protein expression. Furthermore, MMP-9 enzyme inhibitor also attenuated both RANKL-induced osteoclastogenesis and up-regulation of TRAP and cathepsin K mRNA expression, indicating that MMP-9 enzyme action is engaged in the promotion of RANKL-induced osteoclastogenesis. Finally, Dox treatment abrogated RANKL-induced osteoclastogenesis and TRAP activity in mouse calvaria along with the suppression of MMP9 enzyme activity, again without affecting the expression of MMP9 protein. These findings suggested that Dox inhibits RANKL-induced osteoclastogenesis by its inhibitory effect on MMP-9 enzyme activity independent of the MAPK-NFATc1 signaling cascade.  相似文献   

16.
Flavonoids, a group of polyphenolic compounds abundant in plants, are known to prevent bone loss in ovariectomized (OVX) animal models. Inhibition of osteoclast differentiation and bone resorption is considered as an effective therapeutic approach in the treatment of postmenopausal bone loss. Luteolin, a plant flavonoid, has potent anti-inflammatory properties both in vivo and vitro. In this study, we found that luteolin markedly decreased the differentiation of both bone marrow mononuclear cells and Raw264.7 cells into osteoclasts. Luteolin also inhibited the bone resorptive activity of differentiated osteoclasts. We further investigated the effects of luteolin on ovariectomy-induced bone loss using micro-computed tomography, biomechanical tests and serum markers assay for bone remodeling. Oral administration of luteolin (5 and 20 mg/kg per day) to OVX mice caused significant increase in bone mineral density and bone mineral content of trabecular and cortical bones in the femur as compared to those of OVX controls, and prevented decreases of bone strength indexes induced by OVX surgery. Serum biochemical markers assays revealed that luteolin prevents OVX-induced increases in bone turnover. These data strongly suggest that luteolin has the potential for prevention of bone loss in postmenopausal osteoporosis by reducing both osteoclast differentiation and function.  相似文献   

17.
Bone regeneration is critically regulated by various molecules. To identify the new genes involved in bone regeneration, we performed microarray-based gene expression analysis using a mouse bone regeneration model. We identified a new member of the IGFBP superfamily, designated IGFBP-rP10, whose expression is up-regulated at the early phase of bone regeneration. IGFBP-rP10 consists of an IGFBP homologous domain followed by a Kazal-type protein inhibitor domain and an immunoglobulin G-like domain. A real-time-based RT-PCR analysis demonstrated that various tissues including bone expressed IGFBP-rP10 mRNA in various degrees, and confirmed an up-regulation at the early phase of bone regeneration. In situ hybridization revealed that osteoblastic cells expressed IGFPB-rP10 mRNA during bone regeneration. Bone morphogenetic protein-2 increased the expression level of IGFBP-rP10 mRNA in various cells including C3H10T1/2, MC3T3-E1, C2C12, and primary murine osteoblastic cells. The addition of recombinant mouse IGFBP-rP10 promoted the proliferation of these cells but failed to stimulate alkaline phosphatase activity. These results suggest that IGFBP-rP10 is involved in the proliferation of osteoblasts during bone formation and bone regeneration.  相似文献   

18.
PRIP (phospholipase C-related, but catalytically inactive protein) is a novel protein isolated in this laboratory. PRIP-deficient mice showed increased serum gonadotropins, but decreased gonadal steroid hormones. This imbalance was similar to that for the cause of bone disease, such as osteoporosis. In the present study, therefore, we analyzed mutant mice with special reference to the bone property. We first performed three-dimensional analysis of the femur of female mice. The bone mineral density and trabecular bone volume were higher in mutant mice. We further performed histomorphometrical assay of bone formation parameters: bone formation rate, mineral apposition rate, osteoid thickness, and osteoblast number were up-regulated in the mutant, indicating that increased bone mass is caused by the enhancement of bone formation ability. We then cultured primary cells isolated from calvaria prepared from both genotypes. In mutant mice, osteoblast differentiation, as assessed by alkaline phosphatase activity and the expression of osteoblast differentiation marker genes, was enhanced. Moreover, we analyzed the phosphorylation of Smad1/5/8 in response to bone morphogenetic protein, with longer phosphorylation in the mutant. These results indicate that PRIP is implicated in the negative regulation of bone formation.  相似文献   

19.
Anabolic hormones, mechanical loading, and the obese protein leptin play separate roles in maintaining bone mass. We have previously shown that leptin, as well as its receptor, are expressed by normal human osteoblasts. Consequently, we have investigated how leptin affects proliferation, differentiation, and apoptosis of human osteoblasts. Iliac crest osteoblasts, incubated with either leptin (100 ng/ml), calcitriol (1,25(OH)(2)D(3); 10(-9) M) or 1-84 human parathyroid hormone (PTH; 10(-8) M), were cultured for 35 consecutive days and assayed for expression of various differentiation-related marker genes (as estimated by RT-PCR), de novo collagen synthesis, proliferation, in vitro mineralization, and osteoclast signaling. The effects of leptin on protection against retinoic acid (RA; 10(-7) M) induced apoptosis, as well as transition into preosteocytes, were also tested. Leptin exposure enhanced cell proliferation and collagen synthesis over both control condition and PTH exposure. Leptin inhibited in vitro calcified nodule production after 1-2 weeks in culture, however, subsequent to 4-5 weeks, leptin significantly stimulated mineralization. The mineralization profile throughout the entire incubation period was almost undistinguishable from the one induced by PTH. In comparison, 1,25(OH)(2)D(3) generally reduced proliferation and collagen production rates, whereas mineralization was markedly enhanced. Leptin exposure (at 2 and 5 weeks) significantly enhanced the expression of TGFbeta, IGF-I, collagen-Ialpha, ALP, and osteocalcin mRNA. Leptin also protected against RA-induced apoptosis, as estimated by soluble DNA fractions and DNA laddering patterns subsequent to 10 days of culture. The expression profiles of Bax-alpha and Bcl-2 mRNAs indicated that leptin per se significantly protected against apoptosis throughout the entire incubation period. Furthermore, the osteoblast marker OSF-2 was diminished, whereas the CD44 osteocyte marker gene expression was stimulated, indicating a transition into preosteocytes. In terms of osteoclastic signaling, leptin significantly augmented the mRNA levels of both interleukin-6 (IL-6) and osteoprotegerin (OPG). In summary, continuous leptin exposure of iliac crest osteoblasts, promotes collagen synthesis, cell differentiation and in vitro mineralization, as well as cell survival and transition into preosteocytes. Leptin may also facilitate osteoblastic signaling to the osteoclast.  相似文献   

20.
Protein related to DAN and cerberus (PRDC) is a secreted protein characterized by a cysteine knot structure, which binds bone morphogenetic proteins (BMPs) and thereby inhibits their binding to BMP receptors. As an extracellular BMP antagonist, PRDC may play critical roles in osteogenesis; however, its expression and function in osteoblastic differentiation have not been determined. Here, we investigated whether PRDC is expressed in osteoblasts and whether it regulates osteogenesis in vitro. PRDC mRNA was found to be expressed in the pre-osteoblasts of embryonic day 18.5 (E18.5) mouse calvariae. PRDC mRNA expression was elevated by treatment with BMP-2 in osteoblastic cells isolated from E18.5 calvariae (pOB cells). Forced expression of PRDC using adenovirus did not affect cell numbers, whereas it suppressed exogenous BMP activity and endogenous levels of phosphorylated Smad1/5/8 protein. Furthermore, PRDC inhibited the expression of bone marker genes and bone-like mineralized matrix deposition in pOB cells. In contrast, the reduction of PRDC expression by siRNA elevated alkaline phosphatase activity, increased endogenous levels of phosphorylated Smad1/5/8 protein, and promoted bone-like mineralized matrix deposition in pOB cells. These results suggest that PRDC expression in osteoblasts suppresses differentiation and that reduction of PRDC expression promotes osteogenesis in vitro. PRDC is accordingly identified as a potential novel therapeutic target for the regulation of bone formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号