首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The number of proteins secreted by the boar epididymis increased progressively from 1 mo of age to the adult period. The first specific secretory activity was revealed at 2 mo in the distal caput (hexosaminidase, clusterin, and lactoferrin) and in the corpus (train O/HE1). Train A and glutathione peroxidase specific to the proximal caput, and trains E and M specific to the corpus, appeared at 4 mo. At 5 mo, secretion of procathepsin L occurred in the middle caput and that of mannosidase and E-RABP in the distal caput. Approximately 48% of all the proteins secreted in the adult boar epididymis were dependent on the presence of androgens, either stimulated (33.6%) or repressed (14.4%); 47% were modulated by other factors, and 5% were unregulated. In the proximal caput, 50% of the specific secreted proteins were controlled essentially by factors emanating from the testis. In more distal regions, two proteins secreted in the corpus were regulated by factors from the anterior regions. The regionalization of the secretory activity of the epididymal epithelium resulted in a specific regulation for each protein, which was modulated according to the region of expression and influenced by either testicular or epididymal factors that remain to be identified.  相似文献   

3.
In previous studies we identified an epididymal gene that exhibits homology to the cystatin family of cysteine protease inhibitors. The expression of this gene, termed CRES (cystatin-related epididymal and spermatogenic), was shown to be highly restricted to the proximal caput epididymal epithelium with less expression in the testis and no expression in the 24 other tissues examined. In this report, studies were carried out to examine CRES gene expression in the testis as well as to characterize the CRES protein in the testis and epididymis. In situ hybridization experiments revealed that within the testis CRES gene expression is stage-specific during spermatogenesis and is exclusively expressed by the round spermatids of Stages VII-VIII and the early elongating spermatids of Stages IX and X. Immunohistochemical studies demonstrated that CRES protein was transiently expressed in both the testis and epididymis. Within the testis the protein was localized to the elongating spermatids, whereas within the epididymis CRES protein was exclusively synthesized by the proximal caput epithelium and then secreted into the lumen. Surprisingly, the secreted CRES protein had completely disappeared from the epididymal lumen by the distal caput epididymidis. Western blot analysis of testicular and epididymal proteins showed that the CRES antibody specifically recognized a predominant 19 kDa CRES protein and a less abundant 14 kDa form. These observations suggest that the CRES protein performs a specialized role during sperm development and maturation. © 1995 Wiley-Liss, Inc.  相似文献   

4.
A double-stranded ribonuclease (Bm-dsRNase) was separated from the digestive juice of the silkworm larvae, Bombyx mori. The full-length cDNA was produced and sequenced using a 20 mer primer designed from the N-terminal sequence of the Bm-dsRNase. The cDNA had an ORF encoding 51 kDa precursor protein which can be divided into three domains: a signal peptide, an N-terminal propeptide and a mature Bm-dsRNase. The precursor has an Arg-Ser cleavage site, which produces the 43 kDa mature protein by post-translational processing. The 43 kDa protein had conserved catalytic amino acid residues which are also found in the active site of the Serratia marcescens dsRNase. Expression of the precursor occurred in the middle and posterior midgut tissues, starting from Day 1 of the fifth instar larvae. The 43 kDa protein was produced in this tissue from Day 2, and coincidentally secreted into the lumen containing digestive juice. This was supported by the immunohistochemical observation that the mature proteins were localized in the apical side of midgut cells for extracellular secretion.  相似文献   

5.
The effect of the guanosine triphosphatase activating proteins (GAPs) on spermatogenesis has been studied for years, though no GAPs have been explored in epididymis, an essential organ for sperm maturation. In this study, a new GAP member, designated as MacGAP, was cloned in human epididymis. The MacGAP gene encodes a protein of 618 amino acids with a putative size of 70 kDa and harbors the conserved RhoGAP domain. The N-terminal and C-terminal peptides of MacGAP were expressed and their corresponding antisera were prepared. The antisera against N-terminal peptide could detect antigen as low as 0.3 ng, and its specificity was also confirmed. However, the antisera against C-terminal peptide failed to detect its antigen because of its low sensitivity. Immunohistochemistry showed that the MacGAP protein was dependent on epididymis and had a region-specific expression pattern, with high expression in the epithelial cells'basal section in the caput region. The results have created a foundation for further interpretation of the biological effects of GAPs in sperm maturation.  相似文献   

6.
SDS-PAGE analysis of luminal fluid from the ram testis and epididymis revealed a protein of about 105 kDa in the fluid in the caput epididymal region. The molecular mass of this fluid protein shifted from 105 kDa to 94 kDa in the distal caput epididymidis and remained at 94 kDa in the lower regions of the epididymis. The possible sperm origin of this protein was suggested by the decrease in intensity of a 105-kDa compound on the sperm plasma membrane extract and by its total disappearance from the fluid of animals with impaired sperm production caused by scrotal heating. The 94-kDa protein was purified from ram cauda epididymal fluid, and a rabbit polyclonal antiserum was obtained. This antiserum showed that membranes of testicular sperm and sperm from the initial caput were positive for the presence of an immunologically related antigen. The protein was immunolocalized mainly on the flagellar intermediate piece, whereas in some corpus and caudal sperm, only the apical ridge of the acrosomal vesicle was labeled. The purified protein was microsequenced: its N-terminal was not found in the sequence database, but its tryptic fragments matched the sequence of the angiotensin I-converting enzyme (ACE). Indeed, the purified 94-kDa protein exhibited a carboxypeptidase activity inhibited by specific blockers of ACE. All the soluble seminal plasma ACE activity in the ram was attributable to the 94-kDa epididymal fluid ACE. The polyclonal antiserum also showed that a soluble form of ACE appeared specifically in the caput epididymal fluid of the boar, stallion, and bull. This soluble form was responsible for all the ACE activity observed in the fluid from the distal caput to the cauda epididymidis in these species. Our results strongly suggest that the epididymal fluid ACE derives from the germinal form of ACE that is liberated from the testicular sperm in a specific epididymal area.  相似文献   

7.
Summary Antagglutinin, a specific protein synthesized by the boar epididymis, was localized by the biotin-streptavidin method in all the principal cells of the caput and corpus epididymidis as well as in the lumen of this organ. Intracellular staining, which was first detected in the initial segment, appeared stronger in the distal caput and in the corpus but diminished and disappeared in the caudal epididymal cells. In all the principal cells, a consistent reaction product was localized in the large Golgi complex. Only slight and diffuse immunoreactive material was detected in the cytoplasm, except in the middle caput where the heterogeneous reactive granules appeared to be intracellular sites of degradation of this protein. In the lumen, the intensity of reaction increased from the caput to the cauda. Antagglutinin appeared strongly associated with the luminal surfaces, especially around and between the stereocilia. However, the spermatozoa also exhibited a distinct pattern of immunostaining. The results are discussed in relation to protein secretion in the epididymis and to the role of antagglutinin in the gamete-interaction process.  相似文献   

8.
Summary Antagglutinin, a specific protein synthesized by the boar epididymis, was localized by an ultrastructural immunogold-labeling procedure in the principal cells of the three regions of the caput epididymidis, most notably at the sites of synthesis and secretion. The intensity of the reaction was variable in the three epididymal zones. Labeling was of low intensity in the proximal and middle caput, except in the granules of the latter. These granular storage sites did not correspond to typical secretory granules but appeared to be intracellular sites of degradation of this protein. In the distal caput, which was devoid of these granules, intense secretory activity for antagglutinin was detected. Few gold particles were localized in the RER profiles but labeling was detected in the Golgi zone, in numerous dense vesicles, in structures distributed between the Golgi zone and the apex of the cell, and in the epididymal lumen. This study has enabled us to visualize immunocytochemically antagglutinin along its intracellular secretory pathway, i.e. at the site of its synthesis, during its passage via the Golgi zone, and its intracellular transport to the lumen.  相似文献   

9.
10.
11.
Spermadhesins are the major proteins of boar seminal plasma and form a group of polypeptides probably involved in reproduction. In previous work, a member of the spermadhesin family from buck seminal plasma, called BSFP, was characterized by mass spectrometry and N-terminal sequencing. The present study aimed to clone and characterize the BSFP gene and investigate its expression along the genital tract using real-time polymerase chain reaction (PCR). The cDNAs of the seminal vesicle, testis, epididymis, bulbourethral gland, and ductus deferens were prepared from a buck. Following 3'- and 5'-end amplifications using seminal vesicle cDNA, we cloned and sequenced four highly similar (97-98%) nucleotide sequences encoding spermadhesins, which were named Bodhesin-1(Bdh-1), Bdh-2, Bdh-3, and Bdh-4. All deduced amino acid sequences contained the CUB domain signature and were 49-52% similar to boar AWN. Among the four Bdh amino acid sequences, Bdh-2 was the most similar to the BSFP N-terminal fragment. By using real-time PCR, it was verified specific amplifications for all Bdh in the seminal vesicle, testis, epididymis, and bulbourethral gland, with the exception of Bdh-2 in epididymis. The amplicons had a melting temperature and size of approximately 78 degrees C and 130 bp, respectively. Bdh expression was higher in the seminal vesicle when compared to the other tissues. The present work confirms that goat is the fifth mammalian species, after pig, cattle, horse, and sheep, in which spermadhesin molecules are found. To the best of our knowledge, this is the first report on buck spermadhesin genes using molecular cloning and expression profile.  相似文献   

12.
Fujimi TJ  Kariya Y  Tsuchiya T  Tamiya T 《Gene》2002,284(1-2):225-231
A protein disulfide isomerase (PDI) coding sequence was cloned from a cDNA library derived from carrot (Daucus carota L.) somatic embryos. The cDNA is 2060 bp in length and encodes for a protein of 581 amino acids and molecular weight of 64.4 kDa. Primary structure analysis of the deduced protein revealed two thioredoxin-like active sites and an endoplasmic reticulum-retention signal at its C-terminus, which is also found in PDIs in plants and animals. Although between the carrot protein and other plant PDIs there is only about 30% identity, the active site regions are almost identical. The corresponding mRNA was found in varying amounts, in all tissues investigated. A recombinant protein expressed from the carrot cDNA clone effectively catalyzed both glutathione-insulin transhydrogenation and the oxidative renaturation of denatured RNase A. These results suggest that the protein coded for by the carrot gene is a novel member of the PDI family in plants. We therefore designated this novel carrot gene PDIL1. The protein expressed by the PDIL1 cDNA sequence had a highly acidic stretch at its N-terminal region (no such domain exists in known plant PDIs), and was located far from known plant PDIs on a maximum likelihood tree. The PDIL1 gene, together with closely-related genes identified in Arabidopsis and tomato, was suggested to belong to a novel subfamily of PDIs.  相似文献   

13.
A specific 135-kDa protein was purified from porcine cauda epididymal fluid. Analysis of its N-terminal amino acid sequence revealed it to be a new protein. Stable clones of hybridomas that produced monoclonal antibodies against the purified 135-kDa protein were established. A clone, B-11, reacting both with epididymal fluid and with sperm plasma membranes was selected and used in this study. Immunoblotting analysis showed that B-11 reacted only with a 135-kDa protein among epididymal fluid proteins. In contrast, B-11 did not recognize a similar 135-kDa sperm protein but did strongly react with a 27-kDa protein among sperm membrane proteins, extracted by NP-40 in the presence of protease inhibitors. B-11 also reacted only with a 27-kDa protein fragment among trypsin digests of the 135-kDa epididymal protein. The 135-kDa protein was first detected, by ELISA or immunoblotting analysis, at the beginning of the corpus epididymis. Maximal levels were reached in the distal corpus and levels were slightly decreased in the cauda epididymis. On the other hand, the surface of caput sperm were found to contain small amounts of antigen(s), the concentration of which gradually increased during epididymal transit. In immunocytochemical studies, the antigen was detectable in the epithelial cells from the initial segment to the corpus of the epididymis but not in the caudal cells. In the lumen, the presence of the 135 kDa protein was apparent in the corpus (at a maximum in the middle and distal corpus) and to a lesser degree in the caudal lumen. The 27-kDa protein was distributed all over the equatorial region of the acrosome of less than 10% of caput epididymal sperm. As sperm passed through the corpus epididymis, the percentage of immunoreactive cells increased and the protein was restricted to specific domains of the sperm head. Thus, on the mature sperm, antigen was localized in a crescent-shaped area of the equatorial segment just behind the anterior part of the acrosome and on the apical rim of the sperm head. This is the first observation of a sperm surface antigen derived from an epididymal protein as a proteolytic fragment that interacts with specific regions of the sperm membrane during the process of spermatozoa maturation.  相似文献   

14.
15.
16.
We have previously identified a 34 kDa protein (P34H) on the human sperm surface covering the acrosome. Using the hamster, we have also described a sperm protein, P26h, which is acquired by spermatozoa during epididymal transit. Both P34H and P26h belong to the carbonyl reductase family. Using molecular tools derived from P34H, we searched in the hamster epididymis for another protein related to the human sperm protein. Cloning and sequencing of P31h cDNA revealed 100% homology with the kidney DCXR (Dicarbonyl/L-Xylulose reductase). Northern Blot experiments revealed a single mRNA that was more expressed in the caput than in the corpus and cauda segment of adult epididymides. In situ hybridization was performed on sexually mature hamsters showing that the mRNA was localized in the principal cells throughout the epididymis. Using an anti-P34H antibody we have identified a P34H related protein named P31h (for 31 kDa). This protein showed 2D-electrophoretic behavior different from P26h and was detectable all along the epididymis (caput, corpus, and cauda) by Western Blot analysis. Immunohistochemistry techniques showed that P31h was localized in the perinuclear region of the principal cells of the epididymal epithelium within the three sections, both in sexually mature and immature animals. Results are discussed with regards to the potential function of DCXR in the epididymis.  相似文献   

17.
The cDNA sequence for 24p3 protein in ICR mouse epididymal tissue was determined by PCR using primers designed according to the cDNA sequence derived from 24p3 protein in mouse uterine tissue. In the present study, 24p3 protein was immunolocalized in the epithelial cells and lumen of mouse epididymis. Both immunoblot analysis for protein and northern blot analysis for mRNA level showed a declining gradient of 24p3 expression from the caput to caudal region of the epididymis. The 24p3 protein was undetectable in the testis. These findings suggest that the 24p3 protein is a caput-initiated secretory protein in the mouse epididymis. A postnatal study revealed that 24p3 gene expression occurred in mice at the age of 14 days, before the completion of epididymal differentiation. This expression remained at a constant level until epididymal differentiation was completed. We also found that the secreted 24p3 protein interacted predominantly with the acrosome of caudal spermatozoa. Our findings suggest that the epididymal 24p3 protein is a caput-initiated and sperm-associated gene product and may be important in the reproductive system.  相似文献   

18.
A 23 kDa polypeptide has been identified on the flagellum of sperm obtained from the cauda epididymis of the golden hamster. A monospecific antiserum to the 23 kDa hamster polypeptide was prepared and used to study its distribution on sperm, in the epididymis, and in epididymal fluid. In the cauda, the polypeptide is found on the midpiece and endpiece of the sperm tail, in detergent extracts of sperm, and in epididymal luminal fluid-enriched fractions. It is not present on sperm or in luminal fluid-enriched fractions from the caput epididymis. Immunocytochemical staining of epididymal tissue has demonstrated the 23 kDa polypeptide in the Golgi region of the principal cells of the proximal cauda and on sperm in the tubules of this segment and in tubules distal to it. Antiserum to the 23 kDa golden hamster polypeptide cross-reacts with sperm from rats and Chinese hamsters, but not with sperm from rabbits, cattle, mice, and guinea pigs. The antigen is localized to the tail of sperm obtained from the cauda of the rat and from the distal caput of the Chinese hamster. Immunoblots of detergent extracts of sperm and luminal fluid-enriched fractions from these two species reveal a 26 dKa polypeptide that is immunologically related to the golden hamster polypeptide.  相似文献   

19.
An anti-Mos protein monoclonal antibody, 4A6, was used to investigate the distribution of the antigen in the epididymis, in which the c-mos gene is reportedly expressed. The 4A6-reactive antigen was found on the basement membrane and luminal surface of the epithelial cells in the caput epididymis of BALB/c male mice as well as in the proximal corpus epididymis, the cauda epididymis, and the vas deferens. The 4A6 antigen was also found on the luminal surface of the epithelial cells in the epididymis of male germ cell-deficient C57BL/6J-Wv/Wv mice. This confirmed that the 4A6 antigen does not derive entirely from the testicular c-Mos protein but is synthesized in the epididymis. Western blot analysis revealed that the molecular weight of the epididymal 4A6 antigen was 50 kDa, which is unusually high for the c-Mos protein. With its specific distribution in the epididymis, the protein should play a specific role in functions of the epididymis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号