首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The fluorescent chelate probe technique is employed to observe the accumulation and binding of Ca++ to isolated sarcoplasmic reticulum from skeletal and cardiac muscle. Chlorotetracycline serves as a fluorescent chelate probe which chelates to membrane bound Ca++ giving rise to an intensely fluorescence adduct. An increase in fluorescence of chlorotetracycline is caused by ATP induced Ca++ transport in both skeletal and cardiac muscle microsomes. The fluorescence spectra indicate that Ca++ lies on the membrane surface in a relatively polar environment.  相似文献   

4.
5.
Ca++-uptake and Mg++-Ca++-dependent ATPase activity of skeletal muscle sarcoplasmic reticulum vesicles were reciprocally affected by increasing the oxalate concentration from 0 to 4 mM. At 0-0.1 mM oxalate approximately 17% of the calcium was removed by the vesicles from the medium while the ATPase activity was maximal (approximately 0.66 mumoles Pi mg-1 protein min-1). Between 0.1 to 0.2 mM oxalate the ATPase activity was reduced to one-fifth but the uptake rose sharply and 100% of the 45Ca++ was removed from the medium. The uptake was maintained at this level at oxalate concentrations greater than 0.4 mM but the ATPase activity remained inhibited. The kinetics of Ca++-uptake and ATPase activity were also differentially affected by oxalate. In the presence of oxalate, ruthenium red had only a very slight inhibitory effect on the calcium uptake. Addition of 0.1 mM EGTA removed 80% of the Ca++ from preloaded vesicles within 10 min. The formation of insoluble Ca-oxalate salt on the surface of the vesicle is suggested by these results. Calculations based on the Ksp of the calcium oxalate salt are presented to show its formation and the possible speciation of a Ca-oxalate complex which may affect the Ca++-uptake and ATPase activity.  相似文献   

6.
Myocardial stunning (temporary post-ischaemic contractile dysfunction) may be caused by oxidative stress and/or impaired myocyte calcium homeostasis. Regional myocardial stunning was induced in open-chest pigs (segment shortening reduced to 68.3 ± 4.7% of baseline) by repetitive brief circumflex coronary occlusion (I/R). Reduced glutathione was depleted in stunned myocardium (1.34 ± 0.06 vs. 1.77 ± 0.11 nmol/mg, p = 0.02 vs. remote myocardium) indicating regional oxidant stress, but no regional differences were observed in protein-bound 3-nitrotyrosine or S-nitrosothiol content. Repetitive I/R did not affect myocardial quantities of the sarcolemmal sodium-calcium exchanger, L-type channel, SR calcium ATPase and phospholamban, or the kinetics of ligand binding to L-type channels and SR calcium release channels. However, initial rates of oxalate-supported 45Ca uptake by SR were impaired in stunned myocardium (41.3 ± 13.5 vs. 73.0 ± 15.6 nmol/min/mg protein, p = 0.03). The ability of SR calcium ATPase to sequester cytosolic calcium is impaired in stunned myocardium. This is a potential mechanism underlying contractile dysfunction.  相似文献   

7.
The ATP-supported uptake of strontium by the fragmented sarcoplasmic reticulum is monophasic and proceeds more rapidly than the fast uptake of calcium. Strontium uptake is not activated by Pi. The accumulation of strontium is nearly proportional to the external strontium concentration even in the millimolar range. Internal and external strontium quickly equilibrate. One mole of strontium is stored for every mole of ATP split by the Sr2+-activated ATPase. In the absence of oxalate most of the strontium is taken up with a transport ratio of one. On the opposite, the transport ratio of calcium decreases immediately, especially when ADP is not instantaneously phosphorylated to ATP. In this case, energy conversion is uncoupled more effectively by the simultaneous action of ADP and free internal calcium, resulting in the interruption of the fast uptake. After depletion of ATP most of the stored strontium is released and the remaining fraction appears to be not exchangeable. Strontium activates the slow uptake of calcium, but reduces the amplitude of the fast uptake. The calcium induced release of strontium, and vice versa, is partial and transient. The strontium activated ATPase does not transport calcium at low ionic calcium concentrations.  相似文献   

8.
Summary Ca2+-induced Ca2+ release at the terminal cisternae of skeletal sarcoplasmic reticulum was demonstrated using heavy sarcoplasmic reticulum vesicles. Ca2+ release was observed at 10 m Ca2+ in the presence of 1.25mm free Mg2+ and was sensitive to low concentrations of ruthenium red and was partially inhibited by valinomycin. These results suggest that the Ca2+-induced Ca2+ release is electrogenic and that an inside negative membrane potential created by the Ca2+ flux opens a second channel that releases Ca2+. Results in support of this formulation were obtained by applying a Cl gradient or K+ gradient to sarcoplasmic reticulum vesicles to initiate Ca2+ release. Based on experiments the following hypothesis for the excitation-contraction coupling of skeletal muscle was formulated. On excitation, small amounts of Ca2+ enter from the transverse tubule and interact with a Ca2+ receptor at the terminal cisternae and cause Ca2+ release (Ca2+-induced Ca2+ release). This Ca2+ flux generates an inside negative membrane potential which opens voltage-gated Ca2+ channels (membrane potential-dependent Ca2+ release) in amounts sufficient for contraction.  相似文献   

9.
Both oxalate-supported Ca2+ uptake and Ca2+-stimulated ATPase activity of the sarcoplasmic reticulum are sensitive to the pH of the assay medium. Ca2+ uptake is optimal at relatively acidic pH (6.2–6.6); whereas, Ca2+-stimulated ATPase activity is optimal at a more alkaline pH (7.4–8.0). Following the addition of ATP, Ca2+ uptake demonstrates a time-dependent resistance to the inhibition by an alkaline pH. Once the linear phase of Ca2+ uptake is reached, alkalinization thereafter does not alter the rate established at the acidic pH. A similar time-dependent resistance is observed to the inhibition of Ca2+ uptake by the cation ionophore, X537A. In contrast, acidification of the alkaline medium after Ca2+ uptake is initiated by ATP has no such resistance to change. Acidification results in a prompt acceleration of the rate of Ca2+ uptake identical to that observed under control conditions at the acidic pH. Ca2+-stimulated ATPase activity, however, increases with alkalinization and decreased with acidification, regardless of time, in a manner expected from the rates observed under conditions when the pH is constant from the time of ATP addition. The results suggest that there is a time-dependent, pH-sensitive factor of oxalate-supported Ca2+ uptake. This factor can be activated by acidification at any time after ATP addition and, thus, does not represent a destruction of membrane function. In contrast, Ca2+-stimulated ATPase activity demonstrates no time-dependent resistance to pH change.  相似文献   

10.
Sarcoplasmic reticulum fragments capable of accumulating calcium were isolated from rat skeletal muscle by differential and sucrose gradient centrifugation. The ability of these fragments to accumulate calcium was impaired by adding 2,2-bis-(p-chlorophenyl)-1,1,1-trichloroethane (DDT) to the assay medium at concentrations of 0.06 to 6 muM. DDT (6 muM) caused a sharp lag in calcium uptake, with an 82% reduction in reaction rate 30 sec after calcium was added and a 62% reduction after one min. Basal ATPase activity of the microsomal fraction was inhibited by DDT but the calcium-stimulated increment of ATP hydrolysis was not. The findings show that DDT hinders calcium uptake by sarcoplasmic reticulum, but by some means other than inhibition of the calcium-stimulated ATPase. An apparent antagonism between DDT and ouabain or oligomycin was indicated. We propose that the presence of the lipid-soluble DDT molecule within the membrane of the sarcoplasmic reticulum interferes with the normal rapid uptake of calcium ions required for muscle relaxation, and that this interference may contribute to loss of muscle control in organisms poisoned by DDT.  相似文献   

11.
Summary Ultrastructural aspects and cytochemical localisation of Ca-uptake in the fragmented sarcoplasmic reticulum (FSR) have been studied with positive and various negative staining techniques.Effect of fixation, staining and other preparative procedures for electron microscopy on the result of the cytochemical reaction have been investigated.Calcium outflow from loaded vesicles occurs in various degree depending on the method used so that no quantitative estimation of Ca-uptake appears possible by ultrastructural studies alone.Ultrastructure and proportion of calcium containing vesicles also vary considerably and no certain correlations can be made between their size and shape and localisation of Ca-uptake. Certain informations can be obtained only by comparison of results with different methods, taking into account also the limits of each method applied.  相似文献   

12.
A fluorescent chelate probe and a Millipore filtration technique have been used to study the effects of β-bungarotoxin (β-toxin) on passive and active Ca++ uptake and ATPase in fragmented sarcoplasmic reticulum (SR) of rabbit skeletal muscle. β-Toxin at 3 × 10?6 M did not affect ATPase activity. In the absence of ATP, β-Toxin increased the passive uptake of Ca++; in the presence of ATP, active Ca++ uptake was inhibited. The effect of β-toxin in SR can be detected at concentrations as low as 10?9 M. The results suggest that β-toxin induces Ca++ leakage in SR membranes.  相似文献   

13.
Calmodulin has been shown to stimulate the initial rates of Ca2+-uptake and Ca2+-ATPase in cardiac sarcoplasmic reticulum, when it is present in the reaction assay media for these activities. To determine whether the stimulatory effect of calmodulin is mediated directly through its interaction with the Ca2+-ATPase, or indirectly through phosphorylation of phospholamban by an endogenous protein kinase, two approaches were taken in the present study. In the first approach, the effects of calmodulin were studied on a Ca2+-ATPase preparation, isolated from cardiac sarcoplasmic reticulum, which was essentially free of phospholamban. The enzyme was preincubated with various concentrations of calmodulin at 0 degrees C and 37 degrees C, but there was no effect on the Ca2+-ATPase activity assayed over a wide range of [Ca2+] (0.1-10 microM). In the second approach, cardiac sarcoplasmic reticulum vesicles were prephosphorylated by an endogenous protein kinase in the presence of calmodulin. Phosphorylation occurred predominantly on phospholamban, an oligomeric proteolipid. The sarcoplasmic reticulum vesicles were washed prior to assaying for Ca2+ uptake and Ca2+-ATPase activity in order to remove the added calmodulin. Phosphorylation of phospholamban enhanced the initial rates of Ca2+-uptake and Ca2+-ATPase, and this stimulation was associated with an increase in the affinity of the Ca2+-pump for calcium. The EC50 values for calcium activation of Ca2+-uptake and Ca2+-ATPase were 0.96 +/- 0.03 microM and 0.96 +/- 0.1 microM calcium by control vesicles, respectively. Phosphorylation decreased these values to 0.64 +/- 0.12 microM calcium for Ca2+-uptake and 0.62 +/- 0.11 microM calcium for Ca2+-ATPase. The stimulatory effect was associated with increases in the apparent initial rates of formation and decomposition of the phosphorylated intermediate of the Ca2+-ATPase. These findings suggest that calmodulin regulates cardiac sarcoplasmic reticulum function by protein kinase-mediated phosphorylation of phospholamban.  相似文献   

14.
W Hasselbach  A Migala 《FEBS letters》1987,221(1):119-123
The occupancy of high-affinity ryanodine-binding sites of isolated heavy sarcoplasmic reticulum vesicles occurring in concentrated salt solutions affects ATP-dependent calcium accumulation and caffeine-induced calcium release. The initial suppression of calcium uptake is followed by a marked uptake activation resulting in a reduction of the final calcium level in the medium. Simultaneously, caffeine-induced calcium release is blocked. The dependence of inhibition of calcium uptake and caffeine-induced calcium release observed in assay media containing physiological concentrations of magnesium and ATP on the concentration of ryanodine corresponds to the drug's effectiveness in living muscles.  相似文献   

15.
Effects of endotoxin administration on the ATP-dependent Ca2+ uptake by canine cardiac sarcoplasmic reticulum (SR) were investigated. Results obtained 4 h after endotoxin administration show that ATP-dependent Ca2+ uptake by cardiac SR was decreased by 27–43% (p < 0.05). Kinetic analysis indicates that the Vmax values for Ca2+ and for ATP were significantly decreased while the S0.5 and the Hill coefficient values were not affected during endotoxin shock. Magnesium (1–5 mM) stimulated while vanadate (25–50 M) inhibited the ATP-dependent Ca2+ uptake, but the Mg2+-stimulated and the vanadate-inhibited activities remained significantly lower in the endotoxin-treated animals. Phosphorylation of SR by the exogenously added catalytic subunit of the cAMP-dependent protein kinase or by the addition of calmodulin stimulated the ATP-dependent Ca2+ uptake activities both in the control and endotoxin-injected dogs. However, the phosphorylation-stimulated activities remained significantly lower in the endotoxin-injected dogs. Dephosphorylation of SR decreased the ATP-dependent Ca2+ uptake, but the half-time required for the maximal dephosphorylation was reduced by 31% (p < 0.05) 4 h post-endotoxin. These data indicate that endotoxin administration impairs the ATP-dependent Ca2+ uptake in canine cardiac SR and the endotoxininduced impairment in the SR calcium transport is associated with a mechanism involving a defective phosphorylation and an accelerated dephosphorylation of SR membrane protein. Since ATP-dependent Ca2+ uptake by cardiac SR plays an important role in the regulation of the homeostatic levels of the contractile calcium, our findings may provide a biochemical explanation for myocardial dysfunction that occurs during endotoxin shock.  相似文献   

16.
Summary Oxalate-supported Ca accumulation by the sarcoplasmic reticulum (SR) of chemically skinned mammalian skeletal muscle fibers is activated by MgATP and Ca2+ and partially inhibited by caffeine. Inhibition by caffeine is greatest when Ca2+ exceeds 0.3 to 0.4 m, when free ATP exceeds 0.8 to 1mm, and when the inhibitor is present from the beginning of the loading period rather than when it is added after Ca oxalate has already begun to precipitate within the SR. Under the most favorable combination of these conditions, this effect of caffeine is maximal at 2.5 to 5mm and is half-maximal at approximately 0.5mm. For a given concentration of caffeine, inhibition decreases to one-half of its maximum value when free ATP is reduced to 0.2 to 0.3mm. Varying free Mg2+ (0.1 to 2mm) or MgATP (0.03 to 10mm) has no effect on inhibition. Average residual uptake rates in the presence of 5mm caffeine atpCa 6.4 range from 32 to 70% of the control rates in fibers from different animals. The extent of inhibition in whole-muscle homogenates is similar to that observed in skinned fibers, but further purification of SR membranes by differential centrifugation reduces their ability to respond to caffeine. In skinned fibers, caffeine does not alter the Ca2+ concentration dependence of Ca uptake (K 0.5, 0.5 to 0.8 m; Hilln, 1.5 to 2.1). Reductions in rate due to caffeine are accompanied by proportional reductions in maximum capacity of the fibers, and this configuration can be mimicked by treating fibers with the ionophore A23187. Caffeine induces a sustained release of Ca from fibers loaded with Ca oxalate. However, caffeine-induced Ca release is transient when fibers are loaded without oxalate. The effects of caffeine on rate and capacity of Ca uptake as well as the sustained and transient effects on uptake and release observed under different conditions can be accounted for by a single mode of action of caffeine: it increases Ca permeability in a limited population of SR membranes, and these membranes coexist with a population of caffeine-insensitive membranes within the same fiber.  相似文献   

17.
The pH indicator, bromothymol blue, was incorporated into sarcoplasmic reticulum vesicles which bind more than 90% of the total added dye. The sequestered dye does not respond to changes in external pH upon addition of acid to the medium, since the decrease of absorbance at 616 nm is very slow. The absorbance of sequestered dye at 616 nm increases suddenly after triggering the transport of Ca2+ by ATP at a rate much higher than that of Ca2+ uptake, and declines when Ca2+ has been accumulated. When the uptake of Ca2+ is followed in the presence of oxalate, the absorbance of the indicator declines after the first phase of Ca2+ uptake. The results suggest that a transient alkalinization occurs rapidly inside the vesicles and reflects the formation of a transmembrane proton gradient responsible for sustaining the Ca2+ transport.  相似文献   

18.
Summary Small amounts of dietary n-3 fatty acids can have dramatic physiological effects, including the reduction of plasma triglycerides and an elevation of cellular eicosapentanoic (EPA) and docosahexanoic acids (DHA) at the expense of arachidonic acid (AA). We investigated the effects of alterations in the fatty acid compositions of cardiac sarcoplasmic reticulum (CSR) produced by dietary manipulation on the calcium pump protein that is required for energy dependent calcium transport. CSR was isolated from rats fed menhaden oil, which is rich in n-3 fatty acids, and from control animals that were given corn oil. Relative to control membranes, those isolated from rats fed menhaden oil, had a lower content of saturated phospholipids, an increased DHA/AA ratio, and an increased ratio of n-3 to n-6 fatty acids. These changes were associated with a 30% decrease in oxalate-facilitated, ATP-dependent calcium uptake and concomitant decreased Ca-ATPase activity in the membranes from the animals fed menhaden oil. In contrast, there was no alteration in active pump sites as measured by phosphoenzyme formation. Thus, the CSR Ca-ATPase function can be altered by dietary interventions that change the composition, and possibly structure, of the phospholipid membranes thereby affecting enzyme turnover.  相似文献   

19.
Rates of calcium uptake by and calcium release from sarcoplasmic reticulum vesicles isolated from skeletal muscle of the crab seem to depend on membrane potential generated by potassium (K) and chloride (Cl) gradients. This does not appear to be due to an effect of the ions themselves since media of different ionic compositions leading to the same membrane potential, also lead to the same ATP hydrolysis and the same Ca uptake by SR vesicles. From a large positive intravesicular potential (conditions termed "normal" in this paper), membrane depolarization of passively Ca loaded vesicles, produced by changes in K and Cl concentrations in the media, resulted in: i) decrease in rate of calcium uptake; ii) decrease in calcium loading; iii) increase in rate of calcium release despite a decrease in the driving force for calcium ions. Moreover, the addition of caffeine (5 mmol/l) to the different polarization media resulted in a increase in calcium release.  相似文献   

20.
The anthraquinones, doxorubicin, mitoxantrone, daunorubicin and rubidazone are shown to be potent stimulators of Ca2+ release from skeletal muscle sarcoplasmic reticulum (SR) vesicles and to trigger transient contractions in chemically skinned psoas muscle fibers. These effects of anthraquinones are the direct consequence of their specific interaction with the [3H] ryanodine receptor complex, which constitutes the Ca2+ release channel from the triadic junction. In the presence of adenine nucleotides and physiological Mg2+ concentrations (approximately 1.0 mM), channel activation by doxorubicin and daunorubicin exhibits a sharp dependence on submicromolar Ca2+ which is accompanied by a selective, dose-dependent increase in the apparent affinity of the ryanodine binding sites for Ca2+, in a manner similar to that previously reported with caffeine. Unlike caffeine, however, anthraquinones increase [3H]ryanodine receptor occupancy to the level observed in the presence of adenine nucleotides. A strong interaction between the anthraquinone and the caffeine binding sites on the Ca2+ release channel is also observed when monitoring Ca2+ fluxes across the SR. Millimolar caffeine both inhibits anthraquinone-stimulated Ca2+ release, and reduces anthraquinone-stimulated [3H]ryanodine receptor occupancy, without changing the effective binding constant of the anthraquinone for its binding site. The degree of cooperativity for daunorubicin activation of Ca2+ release from SR also increases in the presence of caffeine. These results demonstrate that the mechanism by which anthraquinones stimulate Ca2+ release is caused by a direct interaction with the [3H]ryanodine receptor complex, and by sensitization of the Ca2+ activator site for Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号