首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microtubule (MT)-binding peptides have been detected in homogenates of bovine brain tissue utilizing a blot overlay assay. Blots were prepared by the electrophoretic transfer to nitrocellulose of proteins separated on polyacrylamide gels. These blots were incubated with taxol stabilized MTs or tubulin, rinsed, and then fixed by air drying. About 17 soluble MT-associated proteins (MAPs) were identified by immunodetection of bound tubulin, including MAP2, kinesin, and tau. The interaction of MTs with these peptides appears to be specific, since MT binding can be displaced by a fluorescent tubulin analog, is competitively inhibited by the addition of exogenous brain MAPs, is decreased by raising the salt concentration, and is diminished by sodium dodecyl sulfate (SDS) denaturation. Only one protein (150 kDa) appears to have an interaction with MTs that is stable in high salt. The specificity of the binding on blots is further illustrated by the interaction of MTs with the MT-binding domains of MAP2 (32-35 kDa fragments) and kinesin (64 kDa fragment). Specific MT-binding peptides or domains can thus be isolated and characterized with this method, which requires little protein and is suitable for use with proteins that are either soluble or insoluble under physiological conditions.  相似文献   

2.
金属结合蛋白基因及其在清除重金属污染中的应用   总被引:5,自引:0,他引:5  
焦芳婵  毛雪  李润植 《遗传》2002,24(1):82-86
一些微生物和植物由于对毒性金属具有独特的抗性机制,使得利用它们来清除日益严重的环境污染已发展成为一种十分有效的技术——生物修复。研究表明,不同的金属结合蛋白(如MT 和PC),在生物忍耐和降解过量重金属毒性机制中起重要作用。愈来愈多的MT 和PC基因被克隆,并已成功地应用于生物遗传转化,这些转基因生物在清除重金属污染方面已显示出潜在的应用价值。 Abstract:Heavy metal pollution has become a global environmental hazard.The use of microorganisms and plants for the decontamination of heavy metals is recognized as a low lost and high efficiency method for cleaning up metal contamination.It shows that various metal-binding proteins such as metallothioneins (MTs) or phytochelatines (PCs) play an important role in defense systems and detoxification to heavy metals in organisms.Many genes of MTs and PCs have been cloned and utilized successfully in genetically modified bacteria and plants for increasing remediation capacity.These transgenic organisms have been displayed a great potential in bioremediation and phytoremediation of heavy metals.  相似文献   

3.
《Proteomics》2017,17(22)
In this study we demonstrate the potential of sequential injection of samples in capillary electrophoresis–mass spectrometry for rapid and sensitive proteome characterization of human lymphoblastic T‐cells (line CCRF–CEM). Proteins were extracted, enzymatically digested, and the resulting peptides fractionated by RP–HPLC. Twenty fractions were thereafter analyzed by CE–MS within a single MS analysis. The CE–MS method was designed so that every 10 min a new fraction was injected into the CE system. Without any rinsing or equilibration steps we were able to generate a continuous stream of peptides feeding the mass analyzer. In 250 min, the total analysis time of a single sequential injection experiment, we were able to identify roughly 28 000 peptide sequences counting for 4800 proteins. These numbers could be increased to 62 000 peptides and more than 6100 proteins identified, when performing three experiments analyzing a total of 60 fractions, all within 12.5 h. We found that the electrophoretic mobility of peptides can be used to trace back peptides and assign them to the fraction they originate from.  相似文献   

4.
Human colorectal carcinoma (Caco-2) cells undergo in culture spontaneous enterocytic differentiation, characterized by polarization and appearance of the functional apical brush border membrane. To provide insights into the biology of differentiation, we have performed a comparative proteomic analysis of the plasma membranes from proliferating cells (PCs) and the apical membranes from differentiated cells (DCs). Proteins were resolved by SDS-PAGE, in-gel digested and analyzed by RP-LC and MS/MS. Alternatively, proteins were digested in solution, and tryptic peptides were labeled with isotopic tags and analyzed by 2-D LC followed by MS/MS. Among the 1125 proteins identified in both proteomes, 76 were found to be significantly increased in the membranes of DCs and 61 were increased in PCs. Majority of the proteins increased in the apical membranes were metabolic enzymes, proteins involved in the maintenance of cellular structure, transmembrane transporters, and proteins regulating vesicular transport. In contrast, majority of the proteins increased in the membranes of PCs were involved in gene expression, protein synthesis, and folding. Both groups contained many novel proteins with yet to be identified functions, which could provide potential new markers of the intestinal cells or of colorectal cancer.  相似文献   

5.
A new method was developed for generating peptide fragments for amino acid sequence analysis from polyacrylamide-gel separated proteins. This method involves in situ CNBr treatment of proteins in the polyacrylamide gel after their separation by electrophoresis. Pure CNBr peptides were recovered either by solvent extraction followed by microbore column reversed-phase HPLC or, alternatively, by a second electrophoretic separation step (SDS-PAGE) followed by electrotransfer of the peptides onto polyvinylidene difluoride (PVDF) membranes. These approaches yielded sequence data at subnanomole levels for a wide range of CNBr fragments recovered from gel-separated proteins.  相似文献   

6.
A method for quantitative proteomic analysis based on the selective isolation of multiply charged peptides (RH peptides) containing arginine and histidine residues is described. Two pools of proteins are digested in tandem with lysyl-endopeptidase and trypsin and the primary amino groups of proteolytic peptides are separately labeled with d3- and d0-acetic anhydride. This reaction has a dual purpose: (i) to allow the relative protein quantification in two different conditions and (ii) to restrict the positive charges of peptides to the presence of arginine and histidine. The N-acylated peptides are separated by cation-exchange chromatography into two groups, neutral and singly charged peptides (R+H1) are retained into the column and can be eluted in batch or further fractionated using a saline gradient before LC-MS/MS analysis. In silico analysis revealed that the selective isolation of RH peptides considerably simplifies the complex mixture of peptides (three RH peptides/protein) and at the same time they represent 84% of the whole proteomes. The selectivity, and recovery of the method were evaluated with model proteins and with a complex mixture of proteins extracted from Vibrio cholerae.  相似文献   

7.
Cd2+-binding proteins of peripheral blood lymphocytes and monocytes have not well been characterized so far, although they are expected to be a clue for understanding Cd2+ toxicity in those immune competent cells. We separated a family of Cd2+-binding proteins from Cd2+-exposed human peripheral blood lymphocytes by gel filtration chromatography, and characterized them by SDS-gel electrophoresis. The proteins showed electrophoretic behaviours closely similar to metallothioneins (MTs) of HeLa cells derived from human cervical carcinoma. The proteins were also found in Cd2+-exposed monocytes, and were inducible by Cd2+ in both lymphocytes and monocytes. Anti-MT serum specifically precipitated these proteins, which were thus identified as MTs. These results suggest that the two classes of the cells involved in the immune system possess a protective mechanism against Cd2+ through MTs. A variety of human lymphoid cell lines derived from both T and B cells were also found to have capacity to synthesize MTs in response to Cd2+.  相似文献   

8.
Phytochelatins (PCs) and metallothioneins (MTs) are the two major heavy metal chelating peptides in eukaryotes. We report here on the identification of a biosynthetically inactive pseudo-phytochelatin synthase enzyme (TtψPCS) in the ciliate Tetrahymena thermophila, the first of this kind (pseudo-PCS) to be described in eukaryotes. TtψPCS which resembles a true PCS at the N-terminal region, while it is most divergent in its Cys-poor C-terminal region, was found to be up-regulated under cadmium stress conditions. However, only glutathione (GSH) hydrolysis products, but not PCs, could be detected in extracts from Cd-treated cells. The latter feature is reminiscent of pseudo-PCS enzymes recently identified in cyanobacteria, which are also biosynthetically inactive, but capable to hydrolyze GSH.  相似文献   

9.
Intracellular vesicular trafficking is one of the important tools in maintaining polarity, adhesion, and shape of epithelial cells. Rab11, a subfamily of the Ypt/Rab gene family of ubiquitously expressed GTPases and a molecular marker of recycling endosomes, transports different components of plasma membrane. Here, we report that Rab11 affects tubulogenesis of Malpighian tubules (MTs). MTs are simple polarized epithelial tubular structures, considered as functional analogue of human kidney. Rab11 has pleiotropic effects on MTs development as down‐regulation of Rab11 in principal cells (PCs) of MTs from embryonic stages of development results in reduced endoreplication, clustering of cells, disorganized cytoskeleton, and disruption of polarity leading to shortening of MTs in third instar larvae. Rab11 is also required for proper localization of different transporters in PCs, essential for physiological activity of MTs. Collectively, our data suggest that Rab11 plays a key role in the process of tubulogenesis of MTs in Drosophila.  相似文献   

10.
The primary structure of metallothioneins (MT) of a mollusc, the oyster Crassostrea virginica, was determined by molecular cloning and mass spectrometry of purified proteins. The cloning strategy included PCR amplification of the responsible cDNAs from total cDNA using completely degenerate oligonucleotides (derived from the N-terminal amino acid sequence) and oligo(dT)20 as primers. Primer extension off mRNA was used as an independent determination of the nucleotide sequence represented by the degenerate PCR primers. The deduced amino acid sequence was consistent with characteristics of class I MT. Twenty-one cysteine residues, were arranged in nine Cys-X-Cys motifs, five as Cys-Lys-Cys. A single Cys-X-X-Cys motif was also observed. Two MTs that differ only in the presence or absence of an N-acetyl group exist in this organism. Masses of tryptic peptides of purified MTs corresponded with those of peptides predicted from tryptic cleavages of the deduced amino acid sequence. Allowing for known N-terminal modifications, 96% of the deduced sequence was confirmed by mass spectrometry. Comparison (FASTA algorithm) of the primary structure of the oyster MTs with those of other species indicated a higher similarity with vertebrate MTs than with those of other invertebrates.  相似文献   

11.
Metallothioneins (MTs) are noncatalytic peptides involved in storage of essential ions, detoxification of nonessential metals, and scavenging of oxyradicals. They exhibit an unusual primary sequence and unique 3D arrangement. Whereas vertebrate MTs are characterized by the well-known dumbbell shape, with a beta domain that binds three bivalent metal ions and an alpha domain that binds four ions, molluscan MT structure is still poorly understood. For this reason we compared two MTs from aquatic organisms that differ markedly in primary structure: MT 10 from the invertebrate Mytilus galloprovincialis and MT A from Oncorhyncus mykiss. Both proteins were overexpressed in Escherichia coli as glutathione S-transferase fusion proteins, and the MT moiety was recovered after protease cleavage. The MTs were analyzed by gel electrophoresis and tested for their differential reactivity with alkylating and reducing agents. Although they show an identical cadmium content and a similar metal-binding ability, spectropolarimetric analysis disclosed significant differences in the Cd7-MT secondary conformation. These structural differences reflect the thermal stability and metal transport of the two proteins. When metal transfer from Cd7-MT to 4-(2-pyridylazo)resorcinol was measured, the mussel MT was more reactive than the fish protein. This confirms that the differences in the primary sequence of MT 10 give rise to peculiar secondary conformation, which in turn reflects its reactivity and stability. The functional differences between the two MTs are due to specific structural properties and may be related to the different lifestyles of the two organisms.  相似文献   

12.
The study of changes in protein levels between samples derived from cells representing different biological conditions is a key to the understanding of cellular function. There are two main methods available that allow both for global scanning for significantly varying proteins and targeted profiling of proteins of interest. One method is based on 2-D gel electrophoresis and image analysis of labelled proteins. The other method is based on LC-MS/MS analysis of either unlabelled peptides or peptides derived from isotopically labelled proteins or peptides. In this study, the non-labelling approach was used involving a new software, DeCyder MS Differential Analysis Software (DeCyder MS) intended for automated detection and relative quantitation of unlabelled peptides in LC-MS/MS data.Total protein extracts of E. coli strains expressing varying levels of dihydrofolate reductase and integron integrase were digested with trypsin and analyzed using a nanoscale liquid chromatography system, Ettan MDLC, online connected to an LTQTM linear ion-trap mass spectrometer fitted with a nanospray interface. Acquired MS data were subjected to DeCyder MS analysis where 2-D representations of the peptide patterns from individual LC-MS/MS analyses were matched and compared.This approach to unlabelled quantitative analysis of the E. coli proteome resulted in relative protein abundances that were in good agreement with results obtained from traditional methods for measuring protein levels.  相似文献   

13.
植物对重金属耐性的分子生态机理   总被引:24,自引:0,他引:24       下载免费PDF全文
植物适应重金属元素胁迫的机制包括阻止和控制重金属的吸收、体内螯合解毒、体内区室化分隔以及代谢平衡等。近年来,随着分子生物学技术在生态学研究中的深入应用,控制这些过程的分子生态机理逐渐被揭示出来。菌根、根系分泌物以及细胞膜是控制重金属进入植物根系细胞的主要生理单元。外生菌根能显著提高寄主植物的重金属耐性,根系分泌物通过改变根际pH、改变金属物质的氧化还原状态和形成络合物等机理减少植物对重金属的吸收。目前,控制菌根和根系分泌物重金属抗性的分子生态机理还不清楚。但细胞膜跨膜转运器已得到深入研究,相关金属离子转运器被鉴定和分离,一些控制基因如铁锌控制运转相关蛋白(ZIP)类、自然抵抗相关巨噬细胞蛋白(Nramp)类、P1B-type ATPase类基因已被发现和克隆。金属硫蛋白(MTs)、植物螯合素(PCs)、有机酸及氨基酸等是植物体内主要的螯合物质,它们通过螯合作用固定金属离子,降低其生物毒性或改变其移动性。与MTs合成相关的MT-like基因已经被克隆,PCs合成必需的植物螯合素合酶(PCS), 即γ-Glu-Cys二肽转肽酶(γ-ECS) 的编码基因已经被克隆,控制麦根酸合成的氨基酸尼克烟酰胺(NA)在重金属耐性中的作用和分子机理也被揭示出来。ATP 结合转运器(ABC)和阳离子扩散促进器(CDF) 是植物体内两种主要膜转运器,通过它们和其它跨膜方式,重金属被分隔贮藏于液泡内。控制这些蛋白转运器合成的基因也已经被克隆,在植物中的表达证实其与重金属的体内运输和平衡有关。热休克蛋白(HSP)等蛋白类物质的产生是一种重要的体内平衡机制,其分子机理有待进一步研究。重金属耐性植物在这些环节产生了相关响应基因或功能蛋白质,分子克隆和转基因技术又使它们在污染治理上得到了初步的应用。  相似文献   

14.
Here we demonstrate the usefulness of peptide fractionation by SDS-free polyacrylamide gel electrophoresis and its applicability to proteomics studies. In the absence of SDS, the driving force for the electrophoretic migration toward the anode is supplied by negatively charged acidic amino acid residues and other residues as phosphate, sulfate and sialic acid, while the resulting mobility depends on both the charge and the molecular mass of the peptides. A straightforward method was achieved for SDS-PAGE of proteins, enzyme digestion, peptide transfer and fractionation by SDS-free PAGE, which was named dual-fractionation polyacrylamide gel electrophoresis (DF-PAGE). This method increases the number of identified proteins 2.5-fold with respect to the proteins identified after direct analysis, and more than 80% of assigned peptides were found in unique SDS-free gel slices. A vast majority of identified peptides (93%) have p I values below 7.0, and 7% have p I values between 7.0 and 7.35. Peptide digests that were derived from complex protein mixtures were in consequence simplified as peptides that are positively charged are not recovered in the present conditions. The analysis of a membrane protein extract from Neisseria meningitidis by this approach allowed the identification of 97 proteins, including low-abundance components.  相似文献   

15.
We report a new and facile extraction method of proteins and polypeptides in the range of 100 to 1 kDa previously separated by high-resolution SDS/polyacrylamide-gel electrophoresis. Proteins and polypeptides obtained by chemical or proteolytic cleavage of proteins can directly be applied to high-sensitivity N-terminal amino-acid sequence analysis by gas-phase sequencing. The Coomassie Blue-stained protein bands are eluted from the gel slices with 0.1 M sodium acetate buffer, pH 8.5, 0.1% SDS in high yield and directly applied to the filter disc of the gas-phase sequencer. The superior efficiency for the isolation of proteins and polypeptides from polyacrylamide gels for microsequencing has been documented by a quantitative comparison of the procedure described here and the favoured electroblot-transfer method using 14C-labeled marker proteins. This highly efficient isolation has been successfully reproduced and applied to the analysis of a variety of proteins and peptides with rather divergent physical properties, particularly to hydrophobic peptides isolated from SDS/polyacrylamide gels. The electrophoretic transfer onto activated glass filters. Immobilon membranes (polyvinylidene-difluoride membranes), siliconized or chemically activated glass fiber supports can be omitted. The method considerably simplifies and speeds up the isolation, and improves the sensitivity as compared to the electroblotting procedures due to the reproducibly high recoveries.  相似文献   

16.
A new technique is described that enables the direct determination of the complete or partial amino acid sequence of cytosolic proteins separated by gel electrophoresis and allows for the further observation of disease- or drug-induced posttranslational modifications. The procedure uses a two-phase extraction strategy (ethyl acetate/ammonium bicarbonate) for the efficient separation of proteins/peptides from an electrophoretic matrix and subsequent sequence analysis by matrix-assisted laser desorption ionization-quadrupole time-of-flight mass spectrometry. The method was tested using hepatocyte cytosolic proteins and compared to a complementary approach using direct solvent extraction from in-gel digests. Although the latter procedure identified the proteins, it did not enable complete amino acid sequence determination. In contrast, high sequence coverage was obtained using the peptide extraction procedure, without any apparent dependence on protein size. The technique minimized the chemically inconsistent modifications generated from in-gel digestion, thus aiding mass spectrometric interpretation and valid protein sequence identification.  相似文献   

17.
We developed a novel method to load and unload molecular cargos to and from microtubules (MTs) that move on kinesin-coated surfaces. Quantum dots (Qds) (molecular cargo) connected to 21-mer DNA can be selectively loaded on DNA-conjugated MTs through DNA hybridization. The average velocity of the Qd-loaded MTs (0.43 +/- 0.06 microm s(-1) at 25 degrees C) was comparable to that of control MTs. In addition, MTs conjugated with two types DNA sequences can achieve multiloading of Qds. To unload Qd molecular cargos from MTs, the DNA double helix connecting Qds to MTs were cleaved by an appropriate restriction enzyme. This biomolecular motors-based transport system should enable us to construct nanometer-scale devices such as nanobiosensor, nanofluidic system, or nanomachine.  相似文献   

18.
Microtubule (MT) protein preparations often contain components of the translation machinery, including ribosome proteins. To understand the biological meaning of it we studied the interaction of ribosomal protein RPL22e with the MT. We found that bacteria expressed purified RPL22e‐GFP‐6His did co‐sediment with brain tubulin MTs with 1.3 µM dissociation coefficient. Such a KD is comparable to some specific MT‐associated proteins. Distinct in vitro interaction of RPL22e‐GFP with MTs was also observed by TIRF microscopy. In real‐time assay, RPL22e‐GFP molecules stayed bound to MTs for several seconds, and 15% of them demonstrated random‐walk along MTs with diffusion coefficient 0.03 µ2/s. Deletion of basic areas of RPL22e did not have an impact on KD, and deletion of acidic tail slightly increased association with MTs. Interestingly, the deletion of acidic tail increased diffusion coefficient as well. The interaction of RPL22e with MTs is hardly noticeable in vivo in cultured cells, probably since a significant part of the protein is incorporated into the ribosomes. The mobility of ribosomal protein on the MTs probably prevents its interfering with MT‐dependent transport and could ameliorate its transport to the nucleus.  相似文献   

19.
γ‐Tubulin is critical for microtubule (MT) assembly and organization. In metazoa, this protein acts in multiprotein complexes called γ‐Tubulin Ring Complexes (γ‐TuRCs). While the subunits that constitute γ‐Tubulin Small Complexes (γ‐TuSCs), the core of the MT nucleation machinery, are essential, mutation of γ‐TuRC‐specific proteins in Drosophila causes sterility and morphological abnormalities via hitherto unidentified mechanisms. Here, we demonstrate a role of γ‐TuRCs in controlling spindle orientation independent of MT nucleation activity, both in cultured cells and in vivo, and examine a potential function for γ‐TuRCs on astral MTs. γ‐TuRCs locate along the length of astral MTs, and depletion of γ‐TuRC‐specific proteins increases MT dynamics and causes the plus‐end tracking protein EB1 to redistribute along MTs. Moreover, suppression of MT dynamics through drug treatment or EB1 down‐regulation rescues spindle orientation defects induced by γ‐TuRC depletion. Therefore, we propose a role for γ‐TuRCs in regulating spindle positioning by controlling the stability of astral MTs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号