首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Chloride fluxes in isolated dialyzed barnacle muscle fibers   总被引:2,自引:2,他引:0       下载免费PDF全文
Chloride outflux and influx has been studied in single isolated muscle fibers from the giant barnacle under constant internal composition by means of a dialysis perfusion technique. Membrane potential was continually recorded. The chloride outfluxes and influxes were 143 and 144 pmoles/cm2-sec (mean resting potential: 58 mv, temperature: 22°–24°C) with internal and external chloride concentrations of 30 and 541 mM, respectively. The chloride conductance calculated from tracer measurements using constant field assumptions is about fourfold greater than that calculated from published electrical data. Replacing 97% of the external chloride ions by propionate reduces the chloride efflux by 51%. Nitrate ions applied either to the internal or external surface of the membrane slows the chloride efflux. The external pH dependence of the chloride efflux follows the external pH dependence of the membrane conductance, in the range pH 3.9–4.7, increasing with decreasing pH. In the range pH 5–9, the chloride efflux increased with increasing pH, in a manner similar to that observed in frog muscle fibers. The titration curve for internal pH changes in the range 4.0–7.0 was quantitatively much different from that for external pH change, indicating significant asymmetry in the internal and external pH dependence of the chloride efflux.  相似文献   

2.
Sodium fluxes in internally dialyzed squid axons   总被引:17,自引:10,他引:7       下载免费PDF全文
The effects which alterations in the concentrations of internal sodium and high energy phosphate compounds had on the sodium influx and efflux of internally dialyzed squid axons were examined. Nine naturally occurring high energy phosphate compounds were ineffective in supporting significant sodium extrusion. These compounds were: AcP, PEP, G-3-P, ADP, AMP, GTP, CTP, PA, and UTP.1 the compound d-ATP supported 25–50% of the normal sodium extrusion, while ATP supported 80–100%. The relation between internal ATP and sodium efflux was nonlinear, rising most steeply in the range 1 to 10 µM and more gradually in the range 10 to 10,000 µM. There was no evidence of saturation of efflux even at internal ATP concentrations of 10,000 µM. The relation between internal sodium and sodium efflux was linear in the range 2 to 240 mM. The presence of external strophanthidin (10 µM) changed the sodium efflux to about 8–12 pmoles/cm2 sec regardless of the initial level of efflux; this changed level was not altered by subsequent dialysis with large concentrations of ATP. Sodium influx was reduced about 50 % by removal of either ATP or Na and about 70 % by removing both ATP and Na from inside the axon.  相似文献   

3.
Sodium movements in internally perfused giant axons from the squid Dosidicus gigas were studied with varying internal sodium concentrations and with fluoride as the internal anion. It was found that as the internal concentration of sodium was increased from 2 to 200 mM the resting sodium efflux increased from 0.09 to 34.0 pmoles/cm2sec and the average resting sodium influx increased from 42.9 to 64.5 pmoles/cm2sec but this last change was not statistically significant. When perfusing with a mixture of 500 mM K glutamate and 100 mM Na glutamate the resting efflux was 10 ± 3 pmoles/cm2sec and 41 ± 10 pmoles/cm2sec for sodium influx. Increasing the internal sodium concentration also increased both the extra influx and the extra efflux of sodium due to impulse propagation. At any given internal sodium concentration the net extra influx was about 5 pmoles/cm2impulse. This finding supports the notion that the inward current generated in a propagated action potential can be completely accounted for by movements of sodium.  相似文献   

4.
Choline permeability in cardiac muscle cells of the cat   总被引:2,自引:1,他引:1  
Permeability of the cardiac cell membrane to choline ions was estimated by measuring radioactive choline influx and efflux in cat ventricular muscle. Maximum values for choline influx in 3.5 and 137 mM choline were respectively 0.56 and 9 pmoles/cm2·sec. In 3.5 mM choline the intracellular choline concentration was raised more than five times above the extracellular concentration after 2 hr of incubation. In 137 mM choline, choline influx corresponded to the combined loss of intracellular Na and K ions. Paper chromatography of muscle extracts indicated that choline was not metabolized to any important degree. The accumulation of intracellular choline rules out the existence of an efficient active pumping mechanism. By measuring simultaneously choline and sucrose exchange, choline efflux was analyzed in an extracellular phase, followed by two intracellular phases: a rapid and a slow one. Efflux corresponding to the rapid phase was estimated at 16–45 pmoles/cm2·sec in 137 mM choline and at 1.3–3.5 pmoles/cm2·sec in 3.5 mM choline; efflux in 3.5 mM choline was proportional to the intracellular choline concentration. The absolute figures for unidirectional efflux were much larger than the net influx values. The data are compared to Na and Li exchange in heart cells. Possible mechanisms for explaining the choline behavior in heart muscle are discussed.  相似文献   

5.
"Low sodium" muscles were prepared which contained around 5 mmoles/kg fiber of intracellular sodium. "High sodium" muscles containing between 15 and 30 mmoles/kg fiber of intracellular sodium were also prepared. In low sodium muscles application of 10-5 M strophanthidin reduced potassium influx by about 5%. Potassium efflux was unaffected by strophanthidin under these conditions. In high sodium muscles, 10-5 M strophanthidin reduced potassium influx by 45% and increased potassium efflux by 70%, on the average. In low sodium muscles sodium efflux was reduced by 25% during application of 10-5 M strophanthidin while in high sodium muscles similarly treated, sodium efflux was reduced by about 60%. Low sodium muscles showed a large reduction in sodium efflux when sodium ions in the Ringer solution were replaced by lithium ions. The average reduction in sodium efflux was 4.5-fold. Of the amount of sodium efflux remaining in lithium. Ringer''s solution, 40% could be inhibited by application of 10-5 M strophanthidin. The total sodium efflux from low sodium muscles exposed to Ringer''s solution in which lithium had been substituted for sodium ions for a period of 1 hr can be fractionated as 78% Na-for-Na interchange, 10% strophanthidin-sensitive sodium pump, and 12% residual sodium efflux. It is concluded that large strophanthidin-sensitive components of sodium and potassium flux can be expected only at elevated sodium concentrations within the muscle cells.  相似文献   

6.
Cesium uptake by sodium-loaded frog sartorius muscles was inhibited 100% by 10-6 M ouabain and 10-6 M cymarin. The doses for 50% inhibition of cesium uptake by five cardiotonic aglycones were 1.5 x 10-6 M for strophanthidin, 2 x 10-7 M for telocinobufagin, 1.6 x 10-6 for digitoxigenin, 2.4 x 10-6 M for periplogenin, and 6.3 x 10-6 M for uzarigenin. Because of the limited solubility of sarmentogenin the maximum concentration studied was 2 x 10-6 M which inhibited cesium uptake about 36%. Inhibition of cesium uptake by cymarin was not reversed during a 3.5 hr incubation in fresh solution while the muscles treated with ouabain and strophanthidin recovered partly during this time. Cymarin was a more potent inhibitor of sodium efflux than strophanthidin and periplogenin was less potent. Increased cesium ion concentration in the external solution decreased the strophanthidin inhibition of cesium uptake but 25 mM cesium did not overcome the inhibition by 10-8-10-6 M strophanthidin. Increased potassium ion concentration in the external solution decreased but did not completely overcome inhibition of sodium efflux by strophanthidin. It is concluded that potassium or cesium ions do not compete with these drugs for a particular site on the ion transport complex. The same structural features of the drugs are necessary for inhibition of ion transport in frog muscle as are required for inhibition of ion transport in other tissues, inhibition of sodium-potassium-stimulated ATPases, and toxicity to animals.  相似文献   

7.
Sodium efflux from rings of frog stomach muscle was measured at 5° and 15°C in three different steady states. After incubation in normal, K-free, or ouabain (10-4 M) solutions, intracellular cations stabilized at markedly differing levels. At 5°C, inhibition of Na extrusion was shown in the rate coefficients for 22Na efflux, which were slightly smaller in K-free than in normal solutions, and much smaller in ouabain. Due to the intracellular Na concentration differences, total Na efflux was similar in K-free and ouabain solutions, and only ⅕ as large in normal solution. At 15°C, normal total Na flux was only 1/7;–1/10 inhibitors, and may be underestimated. The total flux differences may involve dependence of the Na pump and Na permeation on internal Na concentration. The Q 10 of the steady-state fluxes was 3.7 in ouabain, 2.8 in K-free solution, and 1.9 in normal solution. The high temperature dependence of influx as well as efflux suggests transport mechanisms other than simple diffusion. Sodium turnover in the cell water was 46–66 mM/hr in inhibitors at 15°C, and a high rate of Na extrusion in normal muscle is suggested. However, cell volume:surface ratio is only 1.6 µ and all estimates of Na flux were under 3 pmoles/cm2 per sec, indicating low Na permeability.  相似文献   

8.
Sartorius muscle cells from the frog were stored in a K-free Ringer solution at 3°C until their average sodium contents rose to around 23 mM/kg fiber (about 40 mM/liter fiber water). Such muscles, when placed in Ringer''s solution containing 60 mM LiCl and 50 mM NaCl at 20°C, extruded 9.8 mM/kg of sodium and gained an equivalent quantity of lithium in a 2 hr period. The presence of 10-5 M strophanthidin in the 60 mM LiCl/50 mM NaCl Ringer solution prevented the net extrusion of sodium from the muscles. Lithium ions were found to enter muscles with a lowered internal sodium concentration at a rate about half that for entry into sodium-enriched muscles. When sodium-enriched muscles labeled with radioactive sodium ions were transferred from Ringer''s solution to a sodium-free lithium-substituted Ringer solution, an increase in the rate of tracer sodium output was observed. When the lithium-substituted Ringer solution contained 10-5 M strophanthidin, a large decrease in the rate of tracer sodium output was observed upon transferring labeled sodium-enriched muscles from Ringer''s solution to the sodium-free medium. It is concluded that lithium ions have a direct stimulating action on the sodium pump in skeletal muscle cells and that a significantly large external sodium-dependent component of sodium efflux is present in muscles with an elevated sodium content. In the sodium-rich muscles, about 23% of the total sodium efflux was due to strophanthidin-insensitive Na-for-Na interchange, about 67% being due to strophanthidin-sensitive sodium pumping.  相似文献   

9.
An active electrical response in fibroblasts   总被引:9,自引:3,他引:6  
L cells have a resting potential of about -16 mv (internal negative) at 37°C in Dulbecco''s modified Eagle''s medium containing 10% fetal calf serum and a potassium concentration of 5.4 mM. Membrane resistivity is about 20,000 Ωcm2 when the surface filopodia described by others are taken into account. Mechanical and electrical stimuli can evoke an active response from mouse L cells, cells of the 3T3 line, and normal fibroblasts which we have termed hyperpolarizing activation or the H.A. response. This consists of a prolonged (3–5 sec) increase in the membrane permeability by a factor of 2–10 with a parallel increase in membrane potential to about -50 mv. The reversal potential for the H.A. response is -80 mv. The resting cells are depolarized to about -12 mv when the external medium contains 27 mM potassium, and the potential reached at the peak of the H.A. response is about -30 mv. The reversal potential for the H.A. response is about -40 mv in 27 mM external potassium. This effect of potassium ions on the reversal potential of the H.A. response leads us to conclude that the response represents an increase in membrane permeability, predominantly to potassium, by at least a factor of five. This increase must be greater than 20-fold if previous measurements of the ratio of potassium permeability to chloride permeability in L cells are valid for the preparation used in the present study.  相似文献   

10.
A fall in extracellular pH increased membrane conductance of the giant cell in the abdominal ganglion of Aplysia californica. Chloride conductance was trebled whereas potassium conductance was increased by 50%. Half the giant cells were hyperpolarized (2–8 mv) and half were depolarized (3–10 mv) by lowering the pH. The hyperpolarizing response always became a depolarizing response in half-chloride solutions. When internal chloride was increased electrophoretically, the hyperpolarization was either decreased or changed to depolarization. The depolarizing response was reduced or became a hyperpolarizing response after soaking the cell in 10.0 mM chloride, artificial seawater solution for 1 hr. Depolarization was unaffected when either external sodium, calcium, or magnesium was omitted. A glass micropipette having an organic liquid chloride ion exchanger in its tip was used to measure intracellular chloride activity in 14 giant cells; 7 had values of 27.7 ± 1.8 mM (SEM) and 7 others 40.7 ± 1.5 mM. Three of the first group were hyperpolarized when pH was lowered and three of the second group were depolarized. In all six cells, these changes of membrane potential were in the direction of the chloride equilibrium potential. Intracellular potassium activity was measured by means of a potassium ion exchanger microelectrode.  相似文献   

11.
Concentrative accumulation of choline by human erythrocytes   总被引:13,自引:2,他引:11  
Influx and efflux of choline in human erythrocytes were studied using 14C-choline. When incubated at 37°C with physiological concentrations of choline erythrocytes concentrate choline; the steady-state ratio is 2.08 ± 0.23 when the external choline is 2.5 µM and falls to 0.94 ± 0.13 as the external concentration is raised to 50 µM. During the steady state the influx of choline is consistent with a carrier system with an apparent Michaelis constant of 30 x 10-6 and a maximum flux of 1.1 µmoles per liter cells per min. For the influx into cells preequilibrated with a choline-free buffer the apparent Michaelis constant is about 6.5 x 10-6 M and the maximum flux is 0.22 µmole per liter cells per min. At intracellular concentrations below 50 µmole per liter cells the efflux in the steady state approximates first order kinetics; however, it is not flux through a leak because it is inhibited by hemicholinium. Influx and efflux show a pronounced exchange flux phenomenon. The ability to concentrate choline is lost when external sodium is replaced by lithium or potassium. However, the uphill movement of choline is probably not coupled directly to the Na+ electrochemical gradient.  相似文献   

12.
Characteristics of electrogenic sodium pumping in rat myometrium   总被引:9,自引:1,他引:8  
Sodium-rich myometrium, obtained from the uteri of pregnant rats, rapidly hyperpolarized when 4.6–120 mM potassium was added to the bathing medium at 37°C. Hyperpolarization was due to sodium pumping since the process was markedly temperature dependent, was abolished by ouabain, and required both intracellular sodium and extracellular potassium. The observed membrane potential exceeded the calculated potassium equilibrium potential during hyperpolarization providing evidence that sodium pumping was electrogenic. Hyperpolarization was reduced in the presence of chloride. The rate of sodium pumping may influence potassium permeability since potassium apparently did not short-circuit the pump during hyperpolarization.  相似文献   

13.
Unidirectional Na fluxes in isolated fibers from the frog''s semitendinosus muscle were measured in the presence of strophanthidin and increased external potassium ion concentrations. Strophanthidin at a concentration of 10-5 M inhibited about 80 per cent of the resting Na efflux without having any detectable effect on the resting Na influx. From this it is concluded that the major portion of the resting Na efflux is caused by active transport processes. External potassium concentrations from 2.5 to 7.5 mM had little effect on resting Na efflux. Above 7.5 mM and up to 15 mM external K, the Na efflux was markedly stimulated; with 15 mM K the Na influx was 250 to 300 per cent greater than normal. On the other hand, Na influx was unchanged with 15 mM K. The stimulated Na efflux with the higher concentrations was not appreciably reduced when choline or Li was substituted for external Na, but was completely inhibited by 10-5 M strophanthidin. From these findings it is concluded that the active transport of Na is stimulated by the higher concentrations of K. It is postulated that this effect on the Na "pump" is produced as a result of the depolarization of the muscle membranes and is related to the increased metabolism and heat production found under conditions of high external K.  相似文献   

14.
The internal potential of Neurospora appears to have two components, one (a) which is reduced by anoxia or abolished by respiratory inhibitors such as azide and 2,4-dinitrophenol, and (b) a fraction that remains in the presence of respiratory inhibitors and is sensitive to the external potassium concentration. Under standard conditions 1 mM azide or dinitrophenol diminishes internal potentials from near -200 mv to about -30 mv within 1 minute and at a maximal rate of 20 mv/second. The internal potential usually recovers within 10 minutes after the inhibitor has been removed. The effect of carbon monoxide on the internal potential is similar to that of azide or dinitrophenol, but can be reversed by visible light, specifically of the wavelengths (430 mµ and 590 mµ) known to decompose cytochrome-CO complexes in yeast. Respiration and internal potentials vary proportionally with azide concentration, but dinitrophenol at low (3 x 10-6 M) concentrations enhances oxygen consumption without affecting the internal potential. In the presence of 0.1 mM calcium, the fraction of the internal potential which persists during respiratory inhibition increases (becomes more negative) about 30 mv for each tenfold decrease of external potassium over the range 10 to 0.1 mM. The surface resistivity of Neurospora, normally about 5000 ohm.cm2, is unchanged by respiratory inhibitors during the period of rapid potential shift.  相似文献   

15.
Potassium fluxes in dialyzed squid axons   总被引:11,自引:6,他引:5       下载免费PDF全文
Measurements have been made of K influx in squid giant axons under internal solute control by dialysis. With [ATP]i = 1 µM, [Na]i = 0, K influx was 6 ± 0.6 pmole/cm2 sec; an increase to [ATP]i = 4 mM gave an influx of 8 ± 0.5 pmole/cm2 sec, while [ATP]i 4, [Na]i 80 gave a K influx of 19 ± 0.7 pmole/cm2 sec (all measurements at ∼16°C). Strophanthidin (10 µM) in seawater quantitatively abolished the ATP-dependent increase in K influx. The concentration dependence of ATP-dependent K influx on [ATP]i, [Na]i, and [K]o was measured; an [ATP]i of 30 µM gave a K influx about half that at physiological concentrations (2–3 mM). About 7 mM [Na]i yielded half the K influx found at 80 mM [Na]i. The ATP-dependent K influx responded linearly to [K]o from 1–20 mM and was independent of whether Na, Li, or choline was the principal cation of seawater. Substances tested as possible energy sources for the K pump were acetyl phosphate, phosphoarginine, PEP, and d-ATP. None was effective except d-ATP and this substance gave 70% of the maximal flux only when phosphoarginine or PEP was also present.  相似文献   

16.
The kinetic characteristics of the ouabain-sensitive (Na + K) transport system (pump) of high potassium (HK) and low potassium (LK) sheep red cells have been investigated. In sodium medium, the curve relating pump rate to external K is sigmoid with half maximal stimulation (K1/2) occurring at 3 mM for both cell types, the maximum pump rate in HK cells being about four times that in LK cells. In sodium-free media, both HK and LK pumps are adequately described by the Michaelis-Menten equation, but the K1/2 for HK cells is 0.6 ± 0.1 mM K, while that for LK is 0.2 ± 0.05 mM K. When the internal Na and K content of the cells was varied by the PCMBS method, it was found that the pump rate of HK cells showed a gradual increase from zero at very low internal Na to a maximum when internal K was reduced to nearly zero (100% Na). In LK cells, on the other hand, no pump activity was detected if Na constituted less than 70% of the total (Na + K) in the cell. Increasing Na from 70 to nearly 100% of the internal cation composition, however, resulted in an exponential increase in pump rate in these cells to about ⅙ the maximum rate observed in HK cells. While changes in internal composition altered the pump rate at saturating concentrations of external K, it had no effect on the apparent affinity of the pumps for external K. These results lead us to conclude that the individual pump sites in the HK and LK sheep red cell membranes must be different. Moreover, we believe that these data contribute significantly to defining the types of mechanism which can account for the kinetic characteristics of (Na + K) transport in sheep red cells and perhaps in other systems.  相似文献   

17.
Calcium compartments and fluxes were measured by kinetic analyses in kidney cell suspensions in a three-compartment closed system. The fast phase influx and compartment size increase linearly with the medium calcium and the half-time of exchange is only 1.3 min which suggests that the fast component is extracellular. The slow phase compartment rises linearly from 0.1 to 0.5 mmole calcium/kg cell water when the medium calcium is raised from 0.02 to 2.5 mM. The slow phase calcium influx exhibits the pattern of saturation kinetics with a V max of 0.065 µµmole cm-2 sec-1 and a Km of 0.3 mM indicating that it is a carrier-mediated transport process. PTH has no effect on the fast phase of calcium influx, but increases both calcium influx and the calcium pool size of the slow component. The maximum effect is obtained at medium calcium concentration of 1.3 mM. Below 0.3 mM extracellular calcium, the effects of the hormone cannot be demonstrated. PTH increases the V max of calcium influx from 0.065 to 0.128 µµmole cm-2 sec-1 while the Km rises from 0.3 to 1.15 mM. These findings suggest that PTH increases the translocation of the calcium-carrier complex across the membrane and not the carrier concentration or its binding affinity for calcium.  相似文献   

18.
The loss of Na22, K42, and Cl36 from single giant axons of the squid, Loligo pealii, following exposure to an artificial sea water containing these radioisotopes, occurs in two stages, an initial rapid one followed by an exponential decline. The time constants of the latter stage for the 3 ion species are, respectively, 290, 200, and 175 minutes. The outflux of sodium is depressed while that of potassium is accelerated in the absence of oxygen; the emergence of potassium is slowed by cocaine, while that of sodium is unaffected. One cm. ends of the axons take up about twice as much radiosodium as the central segment; this difference in activity is largely preserved during exposure to inactive solution. Such marked differences are not observed with radiopotassium. From the experimental data estimates are given of the influxes and outfluxes of the individual ions. The kinetics of outflux suggests a cortical layer of measureable thickness which contains the ions in different proportions from those in the medium and which governs the rate of emergence of these ions from the axon as though it contained very few but large (relative to ion dimensions) pores.  相似文献   

19.
Cation composition of frog smooth muscle cells was investigated. Fresh stomach muscle rings resembled skeletal muscle, but marked Na gain and K loss followed immersion. Mean Na (49.8–79.7 mM/kg tissue) and K (61.8–80.1 mM/kg tissue) varied between batches, but were stable for long periods in vitro. Exchange of 6–30 mM Na/kg tissue with 22Na was extremely slow and distinct. Extracellular water was estimated from sucrose-14C uptake. Calculated exchangeable intracellular Na was 9 mM/kg cell water, and varied little. Thus steady-state transmembrane cation gradients appeared to be steep. K-free solution had only slight effects. Ouabain (10-4 M) caused marked Na gain and reciprocal K loss; at 30°C, Na and K varied linearly with time over a wide range of contents, indicating constant net fluxes. Net fluxes decreased with temperature decrease. 22Na exchange in ouabain-treated tissue at 20–30°C was rapid and difficult to analyze. The best minimum estimates of unidirectional Na fluxes at 30°C were 10–12 times the constant net flux; constant pump efflux may explain these findings. The rapidity of Na exchange may not reflect very high permeability, but it does require a high rate of transport work.  相似文献   

20.
After a 20 min initial washout, the rate of loss of radioactively labeled sodium ions from sodium-enriched muscle cells is sensitive to the external sodium and potassium ion concentrations. In the absence of external potassium ions, the presence of external sodium ions increases the sodium efflux. In the presence of external potassium ions, the presence of external sodium ions decreases the sodium efflux. In the absence of external potassium ions about one-third of the Na+ efflux that depends upon the external sodium ion concentration can be abolished by 10-5 M glycoside. The glycoside-insensitive but external sodium-dependent Na+ efflux is uninfluenced by external potassium ions. In the absence of both external sodium and potassium ions the sodium efflux is relatively insensitive to the presence of 10-5 M glycoside. The maximal external sodium-dependent sodium efflux in the absence of external potassium ions is about 20% of the magnitude of the maximal potassium-dependent sodium efflux. The magnitude of the glycoside-sensitive sodium efflux in K-free Ringer solution is less than 10% of that observed when sodium efflux is maximally activated by potassium ions. The inhibition of the potassium-activated sodium efflux by external sodium ions is of the competitive type. Reducing the external sodium ion concentration displaces the plots of sodium extrusion rate vs. [K]o to the left and upwards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号