首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Erythrocyte sodium content, sodium transport (ouabain-sensitive efflux rate of sodium, and ouabain-sensitive efflux rate constant of sodium) 3H ouabain binding capacity and sodium-potassium-activated ouabain-sensitive adenosine triphosphatase (Na+-K+-ATPase) activity were measured in 18 lean subjects and 25 obese subjects. The mean erythrocyte sodium content, sodium transport and ouabain binding capacity of obese subjects were the same as in lean subjects. There was no relationship between obesity index (wt/ht2) and sodium transport. We conclude that erythrocyte sodium transport in most obese patients is normal.  相似文献   

2.
Kinetics of pump currents generated by the Na+,K+-ATPase   总被引:2,自引:0,他引:2  
Purified Na+,K+-ATPase from pig kidney was attached to black lipid membranes. Pump currents of the enzyme could be measured with a time resolution of approx. 1 ms by releasing ATP from caged ATP with a UV laser flash. Analysis of the transient currents shows that a slow non-electrogenic step is followed by an electrogenic transition with a rate constant of 100 s-1 (22 degrees C). The exponential components found in the transient currents are compared to transitions in the Albers-Post scheme.  相似文献   

3.
To evaluate the enzyme functional changes the Na+,K+-ATPase activity in membrane fraction of human colorectal adenocarcinoma at II and III cancer stages (according to TNM classification) of varying degrees of differentiation has been investigated. The decrease of the Na+,K+-ATPase activity in comparison with conditionally normal tissue of macroscopically unchanged mucosa was revealed in the tumor membrane preparations. Such changes of the Na+,K+-ATPase activity were higher at low differentiation grade and were less pronounced in moderately and highly differentiated adenocarcinomas. At the same time the changes in Na+,K+-ATPase activity have not been revealed between tumor membrane preparations at studied cancer stages when the degree of differentiation was not taken into account. It is supposed that Na+,K+-ATPase functional specificity occurs in colorectal adenocarcinomas and it is associated with tumor differentiation.  相似文献   

4.
Palytoxin (PTX) opens a pathway for ions to pass through Na,K-ATPase. We investigate here whether PTX also acts on nongastric H,K-ATPases. The following combinations of cRNA were expressed in Xenopus laevis oocytes: Bufo marinus bladder H,K-ATPase α2- and Na,K-ATPase β2-subunits; Bufo Na,K-ATPase α1- and Na,K-ATPase β2-subunits; and Bufo Na,K-ATPase β2-subunit alone. The response to PTX was measured after blocking endogenous Xenopus Na,K-ATPase with 10 μm ouabain. Functional expression was confirmed by measuring 86Rb uptake. PTX (5 nm) produced a large increase of membrane conductance in oocytes expressing Bufo Na,K-ATPase, but no significant increase occurred in oocytes expressing Bufo H,K-ATPase or in those injected with Bufo β2-subunit alone. Expression of the following combinations of cDNA was investigated in HeLa cells: rat colonic H,K-ATPase α1-subunit and Na,K-ATPase β1-subunit; rat Na,K-ATPase α2-subunit and Na,K-ATPase β2-subunit; and rat Na,K-ATPase β1- or Na,K-ATPase β2-subunit alone. Measurement of increases in 86Rb uptake confirmed that both rat Na,K and H,K pumps were functional in HeLa cells expressing rat colonic HKα1/NKβ1 and NKα2/NKβ2. Whole-cell patch-clamp measurements in HeLa cells expressing rat colonic HKα1/NKβ1 exposed to 100 nm PTX showed no significant increase of membrane current, and there was no membrane conductance increase in HeLa cells transfected with rat NKβ1- or rat NKβ2-subunit alone. However, in HeLa cells expressing rat NKα2/NKβ2, outward current was observed after pump activation by 20 mm K+ and a large membrane conductance increase occurred after 100 nm PTX. We conclude that nongastric H,K-ATPases are not sensitive to PTX when expressed in these cells, whereas PTX does act on Na,K-ATPase.  相似文献   

5.
The total fractions of gangliosides and cerebrosides isolated from the tissue of human brain were studied for their effect on the Na+, K+-ATPase activity of native erythrocytes and their membranes. It is shown that gangliosides depending on time of their preincubation with the enzyme preparation and concentration produce both the activating and inhibiting action and cerebrosides--only the inhibiting one. Gangliosides inhibit the transport ATPase activity noncompetitively with respect to ATP and Na+ and competitively--to K+, cerebrosides inhibit it noncompetitively with respect to all ATPase activators.  相似文献   

6.
Rat C6 glioma cells were cultured for 4 days in MEM medium supplemented with 10% bovine serum and Na+,K+-ATPase activity was determined in homogenates of harvested cells. Approximately 50% of enzyme activity was attained at 1.5 mM K+ and the maximum (2.76±0.13 mol Pi/h/mg protein) at 5 mM K+. The specific activity of Na+,K+-ATPase was not influenced by freezing the homogenates or cell suspensions before the enzyme assay. Ten minutes' exposure of glioma cells to 10–4 or 10–5 M noradrenaline (NA) remained without any effect on NA+,K+-ATPase activity. Neither did the presence of NA in the incubation medium, during the enzyme assay, influence the enzyme activity. The nonresponsiveness of Na+,K+-ATPase of C6 glioma cells to NA is consistent with the assumption that (+) form of the enzyme may be preferentially sensitive to noradrenaline. Na+,K+-ATPase was inhibited in a dose-dependent manner by vanadate and 50% inhibition was achieved at 2×10–7 M concentration. In spite of the fact that Na+,K+-ATPase of glioma cells was not responsive to NA, the latter could at least partially reverse vanadate-induced inhibition of the enzyme. Although the present results concern transformed glial cells, they suggest the possibility that inhibition of glial Na+,K+-ATPase may contribute to the previously reported inhibition by vanadate of Na+,K+-ATPase of the whole brain tissue.  相似文献   

7.
8.
Chronic hypertension is characterized by a persistent increase in vascular tone. Sodium-rich diets promote hypertension; however, the underlying molecular mechanisms are not fully understood. Variations in the sodium content of the diet, through hormonal mediators such as dopamine and angiotensin II, modulate renal tubule Na+,K+-ATPase activity. Stimulation of Na+,K+-ATPase activity increases sodium transport across the renal proximal tubule epithelia, promoting Na+ retention, whereas inhibited Na+,K+-ATPase activity decreases sodium transport, and thereby natriuresis. Diets rich in sodium also enhance the release of adrenal endogenous ouabain-like compounds (OLC), which inhibit Na+,K+-ATPase activity, resulting in increased intracellular Na+ and Ca2+ concentrations in vascular smooth muscle cells, thus increasing the vascular tone, with a corresponding increase in blood pressure. The mechanisms by which these homeostatic processes are integrated in response to salt intake are complex and not completely elucidated. However, recent scientific findings provide new insights that may offer additional avenues to further explore molecular mechanisms related to normal physiology and pathophysiology of various forms of hypertension (i.e. salt-induced). Consequently, new strategies for the development of improved therapeutics and medical management of hypertension are anticipated.  相似文献   

9.
Ouabain-inhibitable rubidium influxes, intracellular sodium content (Nai), and alpha 1-subunit abundance have been studied in human blood lymphocytes, stimulated by phytohemagglutinin (PHA) or by the phorbol 12,13-dibutyrate (PDBu), and calcium ionophore--ionomycin. It is shown that at early stages of PHA-induced activation, the Na/K pump expression (as determined by Wesrn blots of alpha 1 protein in membrane fractions of total cell lysates) does not change, and the increase in Rb influx is due to the increase in Nai and results from the enhanced transport activity of Na/K pumps present in plasma membrane. During the late stages of G0-->G1-->S transit (16-48 h), the increase in Rb influx occurs without changes in Nai, and monensin increases both Nai, and the Rb influx via the Na/K pump. To the end of the first day of mitogen activation, the alpha 1 protein content was found to increase by 5-7 times. A correlation was revealed between changes in ouabain-inhibitable Rb influxes, alpha 1 protein abundance, and the proliferation rate. It is concluded that blasttransformathion of normal human lymphocytes is accompanied by the increase in membrane-associated pool of alpha 1-subunit of Na+,K(+)-ATPase, and the enhanced activity of sodium pump during the G0-->G1-->S progression is provided by increased number of Na+,K(+)-ATPase pumps in plasma membrane.  相似文献   

10.
Leptin, secreted by adipose tissue, is involved in the pathogenesis of arterial hypertension, however, the mechanisms through which leptin increases blood pressure are incompletely elucidated. We investigated the effect of leptin, administered for different time periods, on renal Na(+),K(+)-ATPase activity in the rat. Leptin was infused under anesthesia into the abdominal aorta proximally to the renal arteries for 0.5-3 h. Leptin administered at doses of 1 and 10 microg/min per kg for 30 min decreased the Na(+),K(+)-ATPase activity in the renal medulla. This effect disappeared when the hormone was infused for > or =1 h. Leptin infused for 3 h increased the Na(+),K(+)-ATPase activity in the renal cortex and medulla. The stimulatory effect was abolished by a specific inhibitor of Janus kinases (JAKs), tyrphostin AG490, as well as by an NAD(P)H oxidase inhibitor, apocynin. Leptin increased urinary excretion of hydrogen peroxide (H(2)O(2)) between 2 and 3 h of infusion. The effect of leptin on renal Na(+),K(+)-ATPase and urinary H(2)O(2) was augmented by a superoxide dismutase mimetic, tempol, and was abolished by catalase. In addition, infusion of H(2)O(2) for 30 min increased the Na(+),K(+)-ATPase activity. Inhibitors of extracellular signal regulated kinases (ERKs), PD98059 or U0126, prevented Na(+),K(+)-ATPase stimulation by leptin and H(2)O(2). These data indicate that leptin, by acting directly within the kidney, has a delayed stimulatory effect on Na(+),K(+)-ATPase, mediated by JAKs, H(2)O(2) and ERKs. This mechanism may contribute to the abnormal renal Na(+) handling in diseases associated with chronic hyperleptinemia such as diabetes and obesity.  相似文献   

11.
12.
S Maeda  J Nakamae  R Inoki 《Life sciences》1988,42(4):461-468
The effect of various opioids on Na+, K+ -ATPase partially purified from rat heart was examined. Dynorphin-A (1-13), dynorphin-A (1-17) and ethylketocyclazocine (EKC), which are k-type opiate agonists, markedly inhibited the enzyme activity in a dose-dependent manner; IC50 values were 12 microM, 21 microM and 0.38 mM, respectively. Morphine (mu-type agonist), methionine- and leucine-enkephalin (delta-type agonist) at the concentration of 1 mM did not affect the enzyme activity. The effect of dynorphin-A (1-13) and EKC was not antagonized by naloxone. Dynorphin-A (1-13) mainly decreased Vmax value without the change of Km value in the activation of Na+, K+-ATPase by ATP, Na+ and K+. Dynorphin-A(1-13) inhibited the partial reactions of Na+, K+-ATPase at the different degree of the potency; the inhibition of K+-stimulated phosphatase was greater than that of Na+-dependent phosphorylation. The present study suggests that dynorphin-A and EKC have an effect on cardiovascular system which is mediated by the inhibition of Na+, K+-ATPase in the heart.  相似文献   

13.
A current state of researches on mechanisms of ion homeostasis regulation in the specific conditions of the uncontrolled malignant tumor growth (mainly in carcinomas) concerning the contribution of Na+,K+-ATPase, plasma membrane and sarco(endo)plasmic reticulum Ca2+-ATPases has been reviewed. Particular attention has been focused on the molecular and biochemical links providing the redistribution of the transporting ATPases isozyme pattern for the regulatory requirements of the cell signaling pathways at stable proliferation and viability in malignancy.  相似文献   

14.
Summary In the perfused rat liver administration of glucagon was shown to result in a transiently increased uptake of K+, indicating the possible involvement of the Na+, K+-ATPase. Direct measurement of the activity of Na+, K+-ATPase revealed a two-fold stimulation of the enzyme by glucagon. The effect of glucagon on the activity of the enzyme was immediate. Simultaneously with the increase in the activity of the Na+, K+-ATPase, the activity of Mg2+-ATPase decreased. In order to evaluate whether the activation of the Na+, K+-ATPase by glucagon is related to the metabolic effects of the hormone, experimental conditions known to interfere with the activity of the enzyme were employed and glucagon stimulation of Ca2+-efflux, mitochondrial metabolism and gluconeogenesis were measured. K+-free perfusate, high K+ perfusate or ouabain interfered to varying degrees with the glucagon stimulation of these responses. The combination of K+-free perfusate and ouabain almost completely abolished the glucagon stimulation of all three parameters. These results demonstrate the glucagon stimulation of Na+, K+-ATPase and raise the possibility that the activation of the enzyme by glucagon might be a necessary link for the manifestation of its metabolic effects.  相似文献   

15.
Experimental data on the ion electrogenic transport by Na+,K+-ATPase available in the literature are analyzed. Special attention is paid to the measurements of unsteady-state electric currents initiated by alternating voltage or rapid introduction of the substrate. In the final part, a physical model of the Na+,K+-ATPase functioning is discussed. According to this model, active transport is carried out by opening and closing of the access channels used for the sodium and potassium exchange between solutions on either side of the membrane. The model explains most of the experimental data, although some details (the channel size, rates of individual transport steps) need further refinement.  相似文献   

16.
Enzyme activity, representing the sites of K+-stimulated p-nitrophenylphosphatase, a component of the sodium, potassium-stimulated-adenosinetriphosphatase system, has been localized in the somatosensory cortex of the rat brain. The reaction product is most obviously associated with fibers that are thought to be axons and dendrites. Large dendrite-like fibers appear to arise in layer 5 of the cortex and arborize in layers 1 through 4. Smaller, reactive fibers are found throughout the cortical layers. Neuron cell bodies did not exhibit substantial enzymatic activity. It did not appear that glia contributed significantly to the activity in cerebral cortex.  相似文献   

17.
18.
Na+,K+-ATPase is an ubiquitous membrane enzyme that allows the extrusion of three sodium ions from the cell and two potassium ions from the extracellular fluid. Its activity is decreased in many tissues of streptozotocin-induced diabetic animals. This impairment could be at least partly responsible for the development of diabetic complications. Na+,K+-ATPase activity is decreased in the red blood cell membranes of type 1 diabetic individuals, irrespective of the degree of diabetic control. It is less impaired or even normal in those of type 2 diabetic patients. The authors have shown that in the red blood cells of type 2 diabetic patients, Na+,K+-ATPase activity was strongly related to blood C-peptide levels in non–insulin-treated patients (in whom C-peptide concentration reflects that of insulin) as well as in insulin-treated patients. Furthermore, a gene-environment relationship has been observed. The alpha-1 isoform of the enzyme predominant in red blood cells and nerve tissue is encoded by the ATP1A1 gene.Apolymorphism in the intron 1 of this gene is associated with lower enzyme activity in patients with C-peptide deficiency either with type 1 or type 2 diabetes, but not in normal individuals. There are several lines of evidence for a low C-peptide level being responsible for low Na+,K+-ATPase activity in the red blood cells. Short-term C-peptide infusion to type 1 diabetic patients restores normal Na+,K+-ATPase activity. Islet transplantation, which restores endogenous C-peptide secretion, enhances Na+,K+-ATPase activity proportionally to the rise in C-peptide. This C-peptide effect is not indirect. In fact, incubation of diabetic red blood cells with C-peptide at physiological concentration leads to an increase of Na+,K+-ATPase activity. In isolated proximal tubules of rats or in the medullary thick ascending limb of the kidney, C-peptide stimulates in a dose-dependent manner Na+,K+-ATPase activity. This impairment in Na+,K+-ATPase activity, mainly secondary to the lack of C-peptide, plays probably a role in the development of diabetic complications. Arguments have been developed showing that the diabetesinduced decrease in Na+,K+-ATPase activity compromises microvascular blood flow by two mechanisms: by affecting microvascular regulation and by decreasing red blood cell deformability, which leads to an increase in blood viscosity. C-peptide infusion restores red blood cell deformability and microvascular blood flow concomitantly with Na+,K+-ATPase activity. The defect in ATPase is strongly related to diabetic neuropathy. Patients with neuropathy have lower ATPase activity than those without. The diabetes-induced impairment in Na+,K+-ATPase activity is identical in red blood cells and neural tissue. Red blood cell ATPase activity is related to nerve conduction velocity in the peroneal and the tibial nerve of diabetic patients. C-peptide infusion to diabetic rats increases endoneural ATPase activity in rat. Because the defect in Na+,K+-ATPase activity is also probably involved in the development of diabetic nephropathy and cardiomyopathy, physiological C-peptide infusion could be beneficial for the prevention of diabetic complications.  相似文献   

19.
The effect of thyroid hormones (T4, T3 and reverse T3) on rat renal Na+,K+-ATPase activity was investigated by a cytochemical technique. T3 caused stimulation of Na+,K+-ATPase activity in the renal medulla but not in the renal cortex. There was a peak in enzyme activity after cultured renal segments had been exposed to T3 for 11 min and this time of maximal stimulation did not vary with the concentration of T3. A rectilinear response in Na+,K+-ATPase activity was observed over T3 concentration range 10 pmol l-1 to 100 nmol l-1; at higher T3 concentrations, Na+,K+-ATPase activity was inhibited. The enzyme response was totally blocked by specific T3 antiserum. Addition of T4 and reverse T3 (100 fmol l-1 -1 mmol l-1) failed to stimulate Na+,K+-ATPase activity in any part of the kidney. Plasma (neat and diluted 1:10) stimulated the enzyme in parallel with the dose response curve and the stimulatory effect was abolished by prior addition of specific T3 antiserum.  相似文献   

20.
In this paper we report the erythrocyte sodium concentration and Na+, K(+)-ATPase activity in 86 untreated hypertensives and their 77 first degree relatives and also in sex and age matched controls. There was significant increase in erythrocyte sodium both in the hypertensives and their first degree relatives (p < 0.01), whereas Na+, K(+)-ATPase activity was significantly reduced in the study group when compared with controls. The possibility of using these parameters as genetic markers is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号