首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 181 毫秒
1.
Suppression of tumor cell growth by p53 results from the activation of both apoptosis and cell cycle arrest functions that have been shown to be separable activities of p53. We report here that some mutants in the p53 hinge domain, a short linker between the DNA binding and tetramerization domains, differentially activated the promoters of p53 target genes and possessed an impaired apoptotic function. Our results indicate that the hinge domain may play an important role in differentially regulating p53 cell cycle arrest and apoptotic functions. However, the mechanisms by which p53 hinge domain mutants differentially activate its target genes, e.g. p21(WAF1/CIP1) and Bax, remain unknown. To investigate the possible mechanisms, recombinant p21(WAF1/CIP1) and Bax promoters were constructed, resulting in rearrangement of the existing p53 binding sites within a given promoter or actually swapping p53 binding sites between the two promoters. Our results suggest that multiple mechanisms of differential transactivation occur, depending on the molecular nature of the relevant hinge domain mutant, such as the possibility that dual separate DNA binding sites in the p21(WAF1/CIP1) promoter are responsible for the selective transactivation activity of p53 hinge domain mutant del300-327, which has a large deletion in the hinge domain. Lack of ideal p53 binding sites in the Bax promoter results in less potent activation than that seen with the p21(WAF1/CIP1) promoter when it is transactivated by hinge domain point mutant mutR306P or short deletion mutant del300-308 proteins. How the single mutation or the short deletion affect the conformation of p53 and consequently the transactivation of the Bax promoter will require further investigation of the relevant p53 protein: DNA-binding domain by NMR and x-ray crystallographic techniques.  相似文献   

2.
3.
4.
5.
6.
7.
8.
The nonhistone chromosomal protein high-mobility group 1 protein (HMG-1/HMGB1) can serve as an activator of p53 sequence-specific DNA binding (L. Jayaraman, N. C. Moorthy, K. G. Murthy, J. L. Manley, M. Bustin, and C. Prives, Genes Dev. 12:462-472, 1998). HMGB1 is capable of interacting with DNA in a non-sequence-specific manner and causes a significant bend in the DNA helix. Since p53 requires a significant bend in the target site, we examined whether DNA bending by HMGB1 may be involved in its enhancement of p53 sequence-specific binding. Accordingly, a 66-bp oligonucleonucleotide containing a p53 binding site was locked in a bent conformation by ligating its ends to form a microcircle. Indeed, p53 had a dramatically greater affinity for the microcircle than for the linear 66-bp DNA. Moreover, HMGB1 augmented binding to the linear DNA but not to the microcircle, suggesting that HMGB1 works by providing prebent DNA to p53. p53 contains a central core sequence-specific DNA binding region and a C-terminal region that recognizes various forms of DNA non-sequence specifically. The p53 C terminus has also been shown to serve as an autoinhibitor of core-DNA interactions. Remarkably, although the p53 C terminus inhibited p53 binding to the linear DNA, it was required for the increased affinity of p53 for the microcircle. Thus, depending on the DNA structure, the p53 C terminus can serve as a negative or a positive regulator of p53 binding to the same sequence and length of DNA. We propose that both DNA binding domains of p53 cooperate to recognize sequence and structure in genomic DNA and that HMGB1 can help to provide the optimal DNA structure for p53.  相似文献   

9.
10.
Generally, histone deacetylase (HDAC) inhibitor-induced p21(Waf1/Cip1) expression is thought to be p53 independent. Here we found that an inhibitor of HDAC, depsipeptide (FR901228), but not trichostatin A (TSA), induces p21(Waf1/Cip1) expression through both p53 and Sp1/Sp3 pathways in A549 cells (which retain wild-type p53). This is demonstrated by measuring relative luciferase activities of p21 promoter constructs with p53 or Sp1 binding site mutagenesis and was further confirmed by transfection of wild-type p53 into H1299 cells (p53 null). That p53 was acetylated after depsipeptide treatment was tested by sequential immunoprecipitation/Western immunoblot analysis with anti-acetylated lysines and anti-p53 antibodies. The acetylated p53 has a longer half-life due to a significant decrease in p53 ubiquitination. Further study using site-specific antiacetyllysine antibodies and transfection of mutated p53 vectors (K319/K320/K321R mutated and K373R/K382R mutations) into H1299 cells revealed that depsipeptide specifically induces p53 acetylation at K373/K382, but not at K320. As assayed by coimmunoprecipitation, the K373/K382 acetylation is accompanied by a recruitment of p300, but neither CREB-binding protein (CBP) nor p300/CBP-associated factor (PCAF), to the p53 C terminus. Furthermore, activity associated with the binding of the acetylated p53 at K373/K382 to the p21 promoter as well as p21(Waf1/Cip1) expression is significantly increased after depsipeptide treatment, as tested by chromatin immunoprecipitations and Western blotting, respectively. In addition, p53 acetylation at K373/K382 is confirmed to be required for recruitment of p300 to the p21 promoter, and the depsipeptide-induced p53 acetylation at K373/K382 is unlikely to be dependent on p53 phosphorylation at Ser15, Ser20, and Ser392 sites. Our data suggest that p53 acetylation at K373/K382 plays an important role in depsipeptide-induced p21(Waf1/Cip1) expression.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Kinetics of p53 binding to promoter sites in vivo   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

18.
19.
Mdm2 gene amplification occurs in benign and chemotherapy-responsive malignant tumors with wtp53 genes as well as in breast and epithelial cancers. Mdm2 amplification in benign tumors suggests that it is not sufficient for p53 inactivation in cancer, implying that other defects in the p53 pathway are required for malignancy. We investigated mechanisms of wtp53 protein inactivation in malignant conversion of epithelial cells by comparing clonally related initiated cells with their derivative cancerous cells that have mdm2 amplification. Deficiencies in p53 accumulation and activities in response to DNA damage were not due simply to Mdm2 destabilization of p53 protein, but to continued association of DNA-bound p53 with Mdm2 protein and lack of binding and acetylation by p300 protein. The aberrant interactions were not because of mdm2 amplification alone, because DNA-bound p53 protein from initiated cells failed to bind ectopically expressed Mdm2 or endogenous overexpressed Mdm2 from cancerous cells. Phosphorylations of endogenous p53 at Ser18, -23, or -37 were insufficient to dissociate Mdm2, because each was induced by UV in cancerous cells. Interestingly, phospho-mimic p53-T21E did dissociate the Mdm2 protein from DNA-bound p53 and recovered p300 binding and p21 induction in the cancerous cells. Thus wtp53 in malignant cells with mdm2 amplification can be inactivated by continued association of DNA-bound p53 protein with Mdm2 and failure of p300 binding and acetylation, coupled with a defect in p53 phosphorylation at Thr21. These findings suggest therapeutic strategies that address both p53/Mdm2 interaction and associated p53 protein defects in human tumors that have amplified mdm2 genes.  相似文献   

20.
The N terminus of p53 regulates its dissociation from DNA   总被引:2,自引:0,他引:2  
It is important to gain insight into p53 DNA binding and how it is regulated. By using electrophoretic mobility shift assays and DNase I footprinting, we show that a region within the N terminus of the protein controls the dissociation of p53 from a p53-binding site. When p53 is bound by a number of N-terminal-specific monoclonal antibodies, its rate of dissociation from DNA is reduced, and its ability to protect a cognate site from DNase I digestion is increased. Moreover, greatly reduced dissociation is observed with p53 protein lacking the N-terminal 96 amino acids. By contrast, deletion of the C terminus does not affect p53 dissociation from DNA or DNase I protection. p53 protein expressed in and purified from bacterial cells displays markedly more instability on its consensus DNA-binding site than does p53 produced in insect cells, suggesting that post-translational modifications may affect the stability of the protein. Our results provide evidence that the N terminus of p53 possesses an auto-inhibitory function that is mechanistically different from the inhibitory region at the C terminus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号