首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for single-chromosome microdissection and microcloning was established in forest plants using poplar (Populus tremula) as a model. By use of meristematic cell division in root tip and the wall degradation hypotonic method, well-spread poplar metaphase chromosome spreads showing low contamination were quickly prepared and fitted for chromosome microdissection. An individual chromosome 1 was microdissected from the metaphase spreads of poplar root-tip cells with a fine glass needle controlled by a micromanipulator. The dissected chromosome was amplified in vitro by theSau3A linker adaptor-mediated PCR technique, by which 200- to 3000-bp smear DNA fragments were obtained. Southern hybridization results showed that the PCR products from the single poplar chromosome were homogeneous with poplar genomic DNA, indicating that DNA from the single chromosome has been successfully amplified. Next, the second-round PCR products from the single chromosome 1 were cloned into T-easy vectors to generate a DNA library of the chromosome 1. About 3×105 recombinant clones were obtained. Evaluation based on 160 randomly selected clones showed that the sizes of the cloned inserts varied from 230–2200 bp, with an average of 800 bp. Therefore, this research suggests that microdissection and microcloning of single small chromosomes in forest plants is feasible.  相似文献   

2.
A novel alternative to microcloning for the production of region specific chromosomal DNA is described. In this method, 'microamplification', single bands are dissected from polytene chromosomes and digested with Sau3A. Oligonucleotide adaptors are ligated to these fragments to provide convenient priming sites for polymerase chain reaction amplification. In this way, as much as 1 microgram of DNA can be amplified from a single band. Probes made from PCR amplified DNA from two such dissections have been used to probe cloned DNA form a 100 kb chromosome walk. Whereas conventional microcloning has generated cloned EcoRI fragments corresponding to 3-4 kb of the walk, the PCR probes cover greater than 90% of this chromosomal region. Thus microamplification is significantly more effective than microcloning in providing probes for establishing chromosomal walks.  相似文献   

3.
Amplification of resistance gene analogs (RGAs) is both a useful method for acquiring DNA markers closely linked to disease resistance (R) genes and a potential approach for the rapid cloning of R genes in plants. However, the screening of target sequences from among the numerous amplified RGAs can be very laborious. The amplification of RGAs from specific chromosomes could greatly reduce the number of RGAs to be screened and, consequently, speed up the identification of target RGAs. We have developed two methods for amplifying RGAs from single chromosomes. Method 1 uses products of Sau3A linker adaptor-mediated PCR (LAM-PCR) from a single chromosome as the templates for RGA amplification, while Method 2 directly uses a single chromosomal DNA molecule as the template. Using a pair of degenerate primers designed on the basis of the conserved nucleotide-binding-site motifs in many R genes, RGAs were successfully amplified from single chromosomes of pomelo using both these methods. Sequencing and cluster analysis of RGA clones obtained from single chromosomes revealed the number, type and organization of R-gene clusters on the chromosomes. We suggest that Method 1 is suitable for analyzing chromosomes that are unidentifiable under a microscope, while Method 2 is more appropriate when chromosomes can be clearly identified.Communicated by P. Langridge  相似文献   

4.
Telomeric sequences derived from laser-microdissected polytene chromosomes   总被引:1,自引:0,他引:1  
Telomeric fragments from salivary gland squashes of Drosophila melanogaster Oregon R. were produced by a new microdissection technique, UV laser microbeam dissection. Microdissection, an essential step in microcloning procedures, is usually performed using micromanipulators and microneedles. Recently it has been shown that microdissection can be improved to very high precision if a laser coupled into a microscope is used. A laser microbeam, generated by an excimer pumped dye laser, allows chromosomes to be cut into slices of less than 0.5 m. Here it is shown, that single copy DNA probes prepared from Drosophila chromosomes by laser microdissection and microcloning relocalize to the chromosomal regions from which they are derived. The combination of laser technique and microcloning provides an advantageous approach for rapid genetic analysis with potential for the study of genetic diseases and genome mapping.  相似文献   

5.
6.
S D Brown  A J Greenfield 《Gene》1987,55(2-3):327-332
Experiments involving the use of microdissection and microcloning of mammalian chromosomes to obtain genomic clones from individual chromosome regions have demonstrated an aberrant clone recovery. The number average microclone size is well below the empirically observed number average size of genomic restriction fragments. A model is proposed that describes the distribution of microclone sizes by the use of two parameters: (1) the frequency of restriction-enzyme cleavage per bp and (2) the frequency of a second DNA event per bp. The model assumes that any DNA fragment subject to this second event is unclonable. The model shows good fit to the observed microclone size distribution from various experiments when the frequency of the second event is of the order of 0.01. The nature of the second event is unknown but it likely represents a hydrolytic event on the DNA caused by acid fixation of metaphase chromosomes prior to microdissection and microcloning.  相似文献   

7.
The B chromosome of Crepis capillaris was isolated from the standard chromosomes by microdissection, and the chromosomal DNA amplified using the degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR). The PCR product was cloned and a Bspecific library created and characterised. Southern and in situ hybridisation analyses of the DOP-PCR product from microdissected B chromosomes confirmed that the B chromosome is composed mainly of sequences also present in the A chromosomes but lacks the main repeated DNA families located in the A-chromosomal heterochromatin. From 100 clones analysed, 12% of the generated B-chromosomal library was shown to be composed of dispersed repeats located in both the A and B chromosomes. No B-specific repeated sequence was detected. One of the most abundant repeated DNAs within the library, the family B134, was further characterised. Repeating units show a sequence similarity range from 69% to 90% and are characterised by their richness in (CA)n repeats. In situ hybridisation revealed that members of this family are dispersed throughout the A and B chromosomes but are more concentrated in the pericentromeric heterochromatin of the B, indicating that the molecular organization of B heterochromatin is different from that of the A chromosomes. Compared with the A chromosomes, the Bs contain about 20,000 copies per micron more of the B134 sequence. This indicates that B134 was amplified on the B chromosome after its origin. The B134 sequences in the B chromosomes have also diverged from those on the A chromosomes. Although the DNA composition of A and B chromosomes is similar, Bs are evolving separately from A chromosomes at the molecular level.  相似文献   

8.
"Painting" of defined chromosomal regions provides a powerful tool for cytogenetic analyses. Here, we demonstrate that chromosomal in situ suppression (CISS)-hybridization of DNA libraries derived by microcloning laser-microdissected chromosomal regions can be applied to achieve this goal. As an example, we used unbanded metaphase spreads from a female patient carrying a balanced translocation. t(1;7)(1qter----1p36::7q11----7qter). Fragments from the long arms of 130 translocation chromosomes were microdissected. After microcloning, human inserts with an average size of about 3 kb were pooled from 400 recombinant bacteriophage DNA clones and used as a complex probe set in CISS-hybridization experiments. This resulted in painting of the translocation chromosome along the region 7q35 to 1p31. Painted chromosomal subregions in normal chromosomes 1 and 7 were consistent with this finding. This approach may be used to perform painting of any chromosome regions for which microlibraries can be established. Possible applications include the definition of marker chromosomes in clinical and tumor cytogenetics and studies of chromosomal evolution, as well as studies of nuclear chromosome topography in animal and plant species.  相似文献   

9.
Li L  Arumuganathan K  Gill KS  Song Y 《Hereditas》2004,141(1):55-60
Flow sorting maize chromosome 1 and construction of the first chromosome 1 DNA Lambda library are described. Maize metaphase chromosome suspensions were prepared from synchronized seedling root tip cells of the maize hybrid line Seneca 60 and stained with propidium iodide for flow karyotyping and sorting. The observed flow karyotype was very similar to the predicted flow karyotype constructed based on published values for the relative chromosome sizes of Seneca 60. The estimated size of chromosomes from the peak for the chromosome 1 matched the expected size of maize chromosome 1. The peak for the chromosome 1 was well resolved from other peaks on the flow karyotype. An average of 7 x 10(3) chromosomes of chromosome 1 could be produced from 10 root tips. About 0.6 million chromosomes of maize chromosome 1 were sorted and pooled based on the cytogram of fluorescent pulse area Vs fluorescent pulse width and stored at -20 degrees C in the freezer. DNA isolated from sorted chromosomes was good quality of more than 100 kb in size. Chromosome 1 DNA was partially digested with BamHI, dephosphorylated and ligated with arms of BamHI digested Lambda Dash vector. A total of 1.2 x 10(5) independent recombinants with the average insert size 12.6 kb was obtained. This library covered approximately 90% of maize chromosome 1. Hybridization of cloned fragments with labeled maize genomic DNA showed that the high, middle, or low copy number DNA sequences presented in the different phage clones. PCR (polymerase chain reaction) using chromosome-specific primers confirmed the specificity of this library. The individual chromosome library is useful in plant genome mapping and gene isolation.  相似文献   

10.
Recombinant lambda bacteriophage clone H3 containing a human DNA segment of 14.9 kb present in one or two copies per haploid genome was isolated. In situ hybridization to human metaphase chromosomes of the 3H-labeled cloned DNA resulted in highly significant labeling (53% of cells) of band p36 of chromosome 1, such that 22% of all chromosomal grains were located on this region. Hybridization was dependent upon the presence of dextran sulfate in the hybridization mixture and was not affected by repetitive DNA competitor. These results demonstrate localization of a single copy sequence on human metaphase chromosomes.  相似文献   

11.
Microdissection and microcloning of the long arm of human chromosome 7   总被引:4,自引:0,他引:4  
DNA-fragments from the region of the long arm of human chromosme 7 to which the CF-locus has been mapped recently were isolated by microdissection and microcloning. We developed a new fixation procedure resulting in inserts of 1.0–7.0 kb in length with a mean value of 2.9 kb. Regional mapping of three clones on 7q was carried out by the use of different hybrid cell lines containing fragments of human chromosome 7.  相似文献   

12.
A method of microcloning, which involves microsurgical excision of chromosome fragments, DNA amplification by means of a polymerase chain reaction (PCR), and ligation of amplified products with plasmids, was employed in studying Drosophila polytene chromosomes for the first time. Clones of the DNA library thus obtained contained inserts varying in size from 0.1 to 0.5 kb. DNA sequencing of five clones of the library showed that pericentromeric heterochromatin contained the 17.6 and 297 retrotransposons, the ninja retrotransposon characteristic of D. simulans, and two Drosophila repetitive elements, a8 and a12, the function of which remains unknown.  相似文献   

13.
In spite of the constant development concerning physical mapping of eukaryotic genomes, the mouse chromosome 19 remains poorly characterized. In order to improve the possibilities for studying this chromosome, we have constructed a chromosome-specific EcoRI DNA fragment library from mouse chromosomes 19 sorted by flow cytometry. The resulting library contains about 3 X 10(4) recombinant clones. The identified inserts range in size from about 0.2-10 kb, with a 4 kb average size and with no observable redundancy. The purity of the library has been analyzed by flow-blot. For that purpose, chromosomes from 2 cell lines, 1 with a normal karyotype and 1 with translocated chromosome 19, were sorted on nylon filters and hybridized with 9 clones of the library. Results show that 5 clones out of the 9 clearly originate from sorted chromosomes 19 and 3 and are likely to be derived from its DNA, thus indicating that the library of chromosome 19 is of high purity.  相似文献   

14.
R Zimmer  A Haberfeld  A M Gibbins 《Génome》1997,40(6):865-872
A simple method was used to adapt a standard light microscope for the collection of chicken Z chromosomes from mitotic-metaphase spreads. The DNA of the collected chromosomes was enzymatically amplified using a partially degenerate primer. The resulting sequences, within a size range of 200-800 bp, were cloned to produce a Z chromosome DNA library, using blunt-end ligation into a SmaI-digested pUC18 plasmid (the SureClone system; Pharmacia, U.S.A.). The microcloning experiments produced 1250 clones; the size range of the cloned inserts was 250-800 bp, with an average of 480 bp (176 clones examined). Using male chicken genomic DNA as a probe, 10 out of 17 randomly selected clones showed strong positive signals on Southern blots, confirming the origin of the inserts as chicken DNA. In addition, the Z-chromosome origin of a selected microclone was verified in a semiquantitative Southern blot hybridization that showed positive signals with intensities that were approximately twice as strong for male (ZZ) as for female (ZW) chicken genomic DNA when the clone was used as a probe. The value of these libraries in further analysis of the chicken Z chromosome is discussed.  相似文献   

15.
A simple and rapid procedure to isolate clones carrying sequences from a specific region of the polytene chromosome of Drosophila is demonstrated. The procedure involves microdissection of the region of interest, amplification of the DNA by PCR using a primer designed to prime the synthesis nonspecifically, labeling of the amplified DNA using the random primer method, and screening of a standard library with the probe to identify and isolate clones carrying sequences homologous to the dissected region. This procedure has the potential to replace the difficult procedure of microcloning, as well as facilitate chromosome walking.  相似文献   

16.
A partial genomic library from the Batumi L stock of Drosophila melanogaster was constructed using yeast artificial chromosomes as vectors. The DNA was restricted by Not1 and large fragments were inserted into the YAC5 vector. The size of cloned DNA varied from 90 to 500 kb. 48 random clones were characterized by in situ hybridization to the Batumi L polytene salivary gland chromosome. Single euchromatic sites of hybridization were detected for 27 clones; 11 clones revealed the main euchromatic hybridization site and several additional sites scattered along the chromosomes; 8 clones carried repeats which hybridized to chromocenter and other chromosomal sites; clones with 500 and 90 kb inserts originated from the Y chromosomes and nucleolus, respectively. The library is enriched by the repeated sequences related to the b-heterochromatin.  相似文献   

17.
Chromosome microtechnology: microdissection and microcloning.   总被引:3,自引:0,他引:3  
The physical microdissection of chromosomes and subsequent microcloning of dissected fragments is enabling the generation of very large numbers of cloned unique sequences from defined chromosomal regions. In addition to use in constructing region-specific libraries of the entire human genome and providing probes for mapping and sequencing purposes, such chromosome microtechnology should facilitate the search for disease-associated genes in defined chromosome regions.  相似文献   

18.
Cytogenetic and molecular tools play an increasingly important role in plant genome research. A number of interesting applications that involve chromosome painting, the relationship between specific chromosomes and specific linkage groups, the relationships between physical and genetic distances on linkage maps, and the isolation of genes of interest, have been the subjects of recently published research. The aim of this paper is to review the different techniques available for chromosome microdissection and microcloning, and their use for the study of plant genomes. The quality of chromosomal DNA obtained is considered, and some recent results from our laboratory are presented.  相似文献   

19.
EagI and NotI linking libraries were prepared in the lambda vector, EMBL5, from the mouse-human somatic cell hybrid 1W1LA4.9, which contains human chromosomes 11 and Xp as the only human component. Individual clones containing human DNA were isolated by their ability to hybridise with total human DNA and digested with SalI and EcoRI to identify the human insert size and single-copy fragments. The mean (± SD) insert sizes of the EagI and NotI clones were 18.3 ± 3.2 kb and 16.6 ± 3.6 kb, respectively. Regional localisation of 66 clones (52 EagI, 14 NotI) was achieved using a panel of 20 somatic cell hybrids that contained different overlapping deletions of chromosomes 11 or Xp. Thirty-nine clones (36 EagI, 3 NotI) were localised to chromosome 11; 17 of these were clustered in 11q13 and another nine were clustered in 11q14–q23.1. Twenty-seven clones (16 EagI, 11 NotI) were localised to Xp and 10 of these were clustered in Xp11. The 66 clones were assessed for seven different microsatellite repetitive sequences; restriction fragment length polymorphisms for five clones from 11q13 were also identified. These EagI and NotI clones, which supplement those previously mapped to chromosome 11 and Xp, should facilitate the generation of more detailed maps and the identification of genes that are associated with CpG-rich islands. Received: 27 December 1995 / Revised: 30 January 1996  相似文献   

20.
We have developed an argon laser chromosome microdissection technique in conjunction with a polymerase chain reaction (PCR) approach to directly amplify microdissected chromosomes. The single 22-mer primer used in PCR, although unique in sequence (5'-TAGATCTGA-TATCTGAATTCCC-3'), randomly primed and amplified any target DNA. These methods were applied to the distal half of the short arm of human chromosome 4 containing the Huntington disease (HD) locus. Forty-four percent of representative clones from this library identify single-copy DNA sequences. This calculation suggests that the resulting chromosome-specific DNA library contains approximately 600 nonoverlapping sequences with an average size 350 bp at an average spacing of 30 kbp along chromosome 4. This microdissection and PCR cloning procedure is a simple and general approach for constructing a chromosome region-specific DNA library from a single metaphase spread.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号