共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation and desensitization of the recombinant P2X1 receptor at nanomolar ATP concentrations 总被引:2,自引:0,他引:2
Activation and desensitization kinetics of the rat P2X1 receptor at nanomolar ATP concentrations were studied in Xenopus oocytes using two-electrode voltage-clamp recording. The solution exchange system used allowed complete and reproducible solution exchange in <0.5 s. Sustained exposure to 1-100 nM ATP led to a profound desensitization of P2X1 receptors. At steady-state, desensitization could be described by the Hill equation with a K1/2 value of 3.2 +/- 0.1 nM. Also, the ATP dependence of peak currents could be described by a Hill equation with an EC50 value of 0.7 microM. Accordingly, ATP dose-effect relationships of activation and desensitization practically do not overlap. Recovery from desensitization could be described by a monoexponential function with the time-constant tau = 11.6 +/-1.0 min. Current transients at 10-100 nM ATP, which elicited 0.1-8.5% of the maximum response, were compatible with a linear three-state model, C-O-D (closed-open-desensitized), with an ATP concentration-dependent activation rate and an ATP concentration-independent (constant) desensitization rate. In the range of 18-300 nM ATP, the total areas under the elicited current transients were equal, suggesting that P2X1 receptor desensitization occurs exclusively via the open conformation. Hence, our results are compatible with a model, according to which P2X1 receptor activation and desensitization follow the same reaction pathway, i.e., without significant C to D transition. We assume that the K1/2 of 3.2 nM for receptor desensitization reflects the nanomolar ATP affinity of the receptor found by others in agonist binding experiments. The high EC50 value of 0.7 microM for receptor activation is a consequence of fast desensitization combined with nonsteady-state conditions during recording of peak currents, which are the basis of the dose-response curve. Our results imply that nanomolar extracellular ATP concentrations can obscure P2X1 receptor responses by driving a significant fraction of the receptor pool into a long-lasting refractory closed state. 相似文献
2.
Carmen Villmann Jana Oertel Nima Melzer Cord-Michael Becker 《Journal of neurochemistry》2009,111(3):837-847
The human neurological disorder hyperekplexia is frequently caused by recessive and dominant mutations of the glycine receptor α1 subunit gene, GLRA1 . Dominant forms are mostly attributed to amino acid substitutions within the ion pore or adjacent loops, resulting in altered channel properties. Here, the biogenesis of glycine receptor α1 subunit mutants underlying recessive forms of hyperekplexia was analyzed following recombinant expression in HEK293 cells. The α1 mutant S231R resulted in a decrease of surface integrated protein, consistent with reduced maximal current values. Decreased maximal currents shown for the recessive α1 mutant I244N were associated with protein instability, rather than decreased surface integration. The recessive mutants R252H and R392H encode exchanges of arginine residues delineating the intracellular faces of transmembrane domains. After expression, the mutant R252H was virtually absent from the cell surface, consistent with non-functionality and the importance of the positive charge for membrane integration. Surface expression of R392H was highly reduced, resulting in residual chloride conductance. Independent of the site of the mutation within the α1 polypeptide, metabolic radiolabelling and pulse chase studies revealed a shorter half-life of the full-length α1 protein for all recessive mutants as compared to the wild-type. Treatment with the proteasome blocker, lactacystin, significantly increased the accumulation of α1 mutants in intracellular membranes. These observations indicated that the recessive α1 mutants are recognized by the endoplasmatic reticulum control system, and degraded via the proteasome pathway. Thus, the lack of glycinergic inhibition associated with recessive hyperekplexia may be attributed to sequestration of mutant subunits within the endoplasmatic reticulum quality control system. 相似文献
3.
Most ligand-gated channels exhibit desensitization, which is the progressive fading of ionic current in the prolonged presence of agonist. This process involves conformational changes that close the channel despite continued agonist binding. Despite the physiological and pathological importance of desensitization, little is known about the conformational changes that underlie this process in any Cys-loop ion channel receptor. Here we employed voltage clamp fluorometry to identify conformational changes that occur with a similar time course as the current desensitization rate in both slow- and fast-desensitizing α1 glycine receptor chloride channels. Voltage clamp fluorometry provides a direct indication of conformational changes that occur in the immediate vicinity of residues labeled with environmentally sensitive fluorophores. We compared the rates of current desensitization and fluorescence changes at nine labeled extracellular sites in both wild type slow-desensitizing and mutated (A248L) fast-desensitizing glycine receptors. As labels attached to three sites at the interface between the ligand binding domain and transmembrane domain reported fluorescence responses that changed in parallel with the current desensitization rate, we concluded that they experienced local conformational changes associated with desensitization. These labeled sites included A52C in loop 2, Q219C in the pre-M1 domain, and M227C in the M1 domain. Activation and desensitization were accompanied by physically distinct conformational changes at each labeled site. Because activation is mediated by a specific reorganization of molecular interactions at the extracellular-transmembrane domain interface, we propose that desensitization is mediated by a distinct set of conformational changes that prevents this reorganization from occurring, thereby favoring channel closure. 相似文献
4.
5.
M A Kjelsberg S Cotecchia J Ostrowski M G Caron R J Lefkowitz 《The Journal of biological chemistry》1992,267(3):1430-1433
Mutations in an intracellular region of the alpha 1B-adrenergic receptor constitutively activate the receptor, resulting in G protein coupling in the absence of agonist, as evidenced by elevated levels of polyphosphoinositide hydrolysis. Remarkably, all 19 possible amino acid substitutions at a single site in this region (alanine 293) confer constitutive activity. This set of mutated receptors exhibits a graded range of elevated biological activities, apparently representing a spectrum of receptor conformations which mimic the "active" state of the wild type receptor. In addition to their constitutive activities, these mutated receptors all demonstrate a higher affinity for agonists, another primary characteristic of the "active" conformation of G protein-coupled receptors. The fact that all possible mutations at this particular site result in increased activity suggests that this region may function to constrain the G protein coupling of the receptor, a constraint which is normally relieved by agonist occupancy. 相似文献
6.
7.
Binding site analysis of full-length alpha1a adrenergic receptor using homology modeling and molecular docking 总被引:1,自引:0,他引:1
Pedretti A Elena Silva M Villa L Vistoli G 《Biochemical and biophysical research communications》2004,319(2):493-500
The recent availability of crystal structure of bovine rhodopsin offers new opportunities in order to approach the construction of G protein coupled receptors. This study focuses the attention on the modeling of full-length alpha(1a) adrenergic receptor (alpha(1a)-AR) due to its biological role and significant implications in pharmacological treatment of benign prostate hyperplasia. This work could be considered made up by two main steps: (a) the construction of full structure of alpha(1a)-AR, through homology modeling methods; (b) the automated docking of an endogenous agonist, norepinephrine, and of an antagonist, WB-4101, using BioDock program. The obtained results highlight the key residues involved in binding sites of both agonists and antagonists, confirming the mutagenesis data and giving new suggestions for the rational design of selective ligands. 相似文献
8.
Signal-transducing mechanisms involved in activation of the platelet collagen receptor integrin alpha(2)beta(1) 总被引:7,自引:0,他引:7
Evidence was obtained about the mechanism responsible for platelet integrin alpha(2)beta activation by determining effects of various inhibitors on soluble collagen binding, a parameter to assess integrin alpha(2)beta(1) activation, in stimulated platelets. Agonists that can also activate platelet glycoprotein IIb/IIIa are able to activate integrin alpha(2)beta(1), but those operating via glycoprotein Ib cannot. Activation of alpha(2)beta(1) induced by low thrombin or collagen-related peptide concentrations was almost completely inhibited by apyrase, and the inhibitors wortmannin, 4-amino-5-(chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, bisindolylmaleimide I, and SQ29548 significantly inhibited it. Activation induced by high thrombin or collagen-related peptide concentrations was far less sensitive to these inhibitors. However, only wortmannin markedly inhibited ADP-induced integrin alpha(2)beta(1) activation, and this was not ADP concentration-dependent. These results suggest that at the low agonist concentrations, the released ADP would be a primary inducer of integrin alpha(2)beta(1) activation, while at the high agonist concentrations, there would be several pathways through which integrin alpha(2)beta(1) activation can be induced. Kinetic analyses revealed that ADP-induced platelets had about the same number of binding sites (B(max)) as thrombin-induced platelets, but their affinity (K(d)) for soluble collagen was 3.7-12.7-fold lower, suggesting that activated integrin alpha(2)beta(1) induced by ADP is different from that induced by thrombin. The data are consistent with an activation mechanism involving released ADP and in which there exists two different states of activated integrin alpha(2)beta(1); these activated forms of integrin alpha(2)beta(1) would have different conformations that determine their ligand affinity. 相似文献
9.
Glycine residues can introduce flexibility in proteins, give rise to turns and breaks in secondary structure and are key components of some nucleotide binding motifs. In the P2X receptor extracellular ATP binding domain, 11 glycine residues are completely conserved and an additional five are conserved in at least five of the seven family members. We have mutated individual conserved glycine residues and determined their effect on the ATP sensitivity and time-course of P2X1 receptors expressed in Xenopus oocytes. In the majority of cases, replacement by alanine had no or a less than 3-fold effect on ATP sensitivity and time-course of responses. G71A resulted in a 6-fold decrease in ATP potency and ATP (10 mM) failed to evoke functional responses from G96A, G250A and G301A mutant receptors. However, proline or cysteine could substitute for glycine at positions 96 and 301, giving receptors that were essentially normal. At glycine 250 substitution by serine gave functional responses to ATP with no effect on ATP sensitivity but a reduction in peak amplitude; in contrast, functional responses were not recorded when glycine 250 was replaced by the amino acids alanine, cysteine, aspartate, phenylalanine, isoleucine, lysine, proline or asparagine. These results suggest that glycine 250 plays an important role in determining the function of P2X receptors. 相似文献
10.
The divalent cation Zn2+ has been shown to regulate inhibitory neurotransmission in the mammalian CNS by affecting the activation of the strychnine-sensitive glycine receptor (GlyR). In spinal neurons and cells expressing recombinant GlyRs, low micromolar (<10 microM) concentrations of Zn2+ enhance glycine currents, whereas higher concentrations (>10 microM) have an inhibitory effect. Mutational studies have localized the Zn2+ binding sites mediating allosteric potentiation and inhibition of GlyRs in distinct regions of the N-terminal extracellular domain of the GlyR alpha-subunits. Here, we examined the Zn2+ sensitivity of different mutations within the agonist binding site of the homomeric alpha(1)-subunit GlyR upon heterologous expression in Xenopus oocytes. This revealed that six substitutions within the ligand-binding pocket result in a total loss of Zn2+ inhibition. Furthermore, substitution of the positively charged residues arginine 65 and arginine 131 by alanine (alpha(1)(R65A), alpha(1)(R131A), or of the aromatic residue phenylalanine 207 by histidine (alpha(1)(F207H)), converted the alpha(1) GlyR into a chloride channel that was activated by Zn2+ alone. Dose-response analysis of the alpha(1)(F207H) GlyR disclosed an EC(50) value of 1.2 microM for Zn2+ activation; concomitantly the apparent glycine affinity was 1000-fold reduced. Thus, single point mutations within the agonist-binding site of the alpha(1) subunit convert the inhibitory GlyR from a glycine-gated into a selectively Zn2+-activated chloride channel. This might be exploited for the design of metal-specific biosensors by modeling-assisted mutagenesis. 相似文献
11.
The glycine receptor enables the generation of inhibitory postsynaptic currents at synapses via neurotransmitter-dependent activation. These receptors belong to the ligand-gated ion channel gene superfamily, in which all members are comprised of five subunits, each of which possesses a signature 13-residue disulfide loop (Cys loop) in the extracellular domain. In this study, we used alanine-scanning mutagenesis of the residues between C138 and C152 of the Cys loop of the glycine receptor alpha1 subunit to identify residues critical for receptor activation and allosteric modulation. Mutation of L142, F145, or P146 to alanine produced decreases in the potency, maximal amplitude, and Hill coefficient for currents elicited by glycine and impaired receptor activation by the agonist taurine. These residues, along with D148, are positionally conserved in the family of LGIC subunits. Mutation at several other positions had little or no effect. The inhaled anesthetics halothane and isoflurane potentiate submaximal agonist responses at wild-type receptors, via an allosteric site. The mutations L142A, F145A, P146A, and D148A abolished positive modulation by these anesthetics, in some cases revealing a small inhibitory effect. A molecular model of the glycine receptor alpha1 subunit suggests that the Cys loop is positioned in a region of the receptor at the interface between the extracellular and transmembrane domains and that the critical functional residues identified here lie along the face of a predominantly hydrophobic surface. The present data implicate the Cys loop as an important functional moiety in the process of glycine receptor activation and allosteric regulation by anesthetics. 相似文献
12.
Desensitization of ligand-gated ion channels plays a critical role for the information transfer between neurons. The current view on γ-aminobutyric acid (GABA)(A) and glycine receptors includes significant rapid components of desensitization as well as cross-desensitization between the two receptor types. Here, we analyze the mechanism of apparent cross-desensitization between native GABA(A) and glycine receptors in rat central neurons and quantify to what extent the current decay in the presence of ligand is a result of desensitization versus changes in intracellular Cl(-) concentration ([Cl(-)](i)). We show that apparent cross-desensitization of currents evoked by GABA and by glycine is caused by changes in [Cl(-)](i). We also show that changes in [Cl(-)](i) are critical for the decay of current in the presence of either GABA or glycine, whereas changes in conductance often play a minor role only. Thus, the currents decayed significantly quicker than the conductances, which decayed with time constants of several seconds and in some cells did not decay below the value at peak current during 20-s agonist application. By taking the cytosolic volume into account and numerically computing the membrane currents and expected changes in [Cl(-)](i), we provide a theoretical framework for the observed effects. Modeling diffusional exchange of Cl(-) between cytosol and patch pipettes, we also show that considerable changes in [Cl(-)](i) may be expected and cause rapidly decaying current components in conventional whole cell or outside-out patch recordings. The findings imply that a reevaluation of the desensitization properties of GABA(A) and glycine receptors is needed. 相似文献
13.
Mazzaferro S Benallegue N Carbone A Gasparri F Vijayan R Biggin PC Moroni M Bermudez I 《The Journal of biological chemistry》2011,286(35):31043-31054
Nicotinic acetylcholine receptor (nAChR) α4 and β2 subunits assemble in two alternate stoichiometries to produce (α4β2)(2)α4 and (α4β2)(2)β2, which display different agonist sensitivities. Functionally relevant agonist binding sites are thought to be located at α4(+)/β2(-) subunit interfaces, but because these interfaces are present in both receptor isoforms, it is unlikely that they account for differences in agonist sensitivities. In contrast, incorporation of either α4 or β2 as auxiliary subunits produces isoform-specific α4(+)/α4(-) or β2(+)/β2(-) interfaces. Using fully concatenated (α4β2)(2)α4 nAChRs in conjunction with structural modeling, chimeric receptors, and functional mutagenesis, we have identified an additional site at the α4(+)/α4(-) interface that accounts for isoform-specific agonist sensitivity of the (α4β2)(2)α4 nAChR. The additional site resides in a region that also contains a potentiating Zn(2+) site but is engaged by agonists to contribute to receptor activation. By engineering α4 subunits to provide a free cysteine in loop C at the α4(+)α4(-) interface, we demonstrated that the acetylcholine responses of the mutated receptors are attenuated or enhanced, respectively, following treatment with the sulfhydryl reagent [2-(trimethylammonium)ethyl]methanethiosulfonate or aminoethyl methanethiosulfonate. The findings suggest that agonist occupation of the site at the α4(+)/(α4(-) interface leads to channel gating through a coupling mechanism involving loop C. Overall, we propose that the additional agonist site at the α4(+)/α4(-) interface, when occupied by agonist, contributes to receptor activation and that this additional contribution underlies the agonist sensitivity signature of (α4β2)(2)α4 nAChRs. 相似文献
14.
Liu Z Ramanoudjame G Liu D Fox RO Jayaraman V Kurnikova M Cascio M 《Biochemistry》2008,47(37):9803-9810
A novel truncated form (residues 1-214, with a randomized C-terminal tail) of the ligand-binding extracellular domain (ECD) of the human alpha1 glycine receptor (GlyR), with amino acids from the corresponding sequence of an acetylcholine binding protein (AChBP) substituted for two relatively hydrophobic membrane-proximal loops, was overexpressed using a baculovirus expression system. The mutant GlyR ECD, named GlyBP, was present in both soluble and membrane-associated fractions after cell lysis, though only the latter appeared to be in a native-like conformation capable of binding strychnine, a GlyR specific antagonist. The membrane-associated GlyBP was solubilized, and detergent/lipid/protein micelles were affinity purified. After detergent removal, GlyBP may be isolated in either aqueous or vesicular form. Binding assays and spectroscopic studies using circular dichroism and FRET are consistent with both forms adopting equivalent native-like conformations. Thus, GlyBP may be isolated as a soluble or membrane-associated assembly that serves as a structural and functional homologue of the ECD of GlyR. 相似文献
15.
Elster L Kristiansen U Pickering DS Olsen RW Schousboe A 《Neurochemistry international》2001,38(7):581-592
Two gamma-aminobutyric acid(A) (GABA(A)) receptor chimeras were designed in order to elucidate the structural requirements for GABA(A) receptor desensitization and assembly. The (alpha1/gamma2) and (gamma2/alpha1) chimeric subunits representing the extracellular N-terminal domain of alpha1 or gamma2 and the remainder of the gamma2 or alpha1 subunits, respectively, were expressed with beta2 and beta2gamma2 in Spodoptera frugiperda (Sf-9) cells using the baculovirus expression system. The (alpha1/gamma2)beta2 and (alpha1/gamma2)beta2gamma2 but not the (gamma2/alpha1)beta2 and (gamma2/alpha1)beta2gamma2 subunit combinations formed functional receptor complexes as shown by whole-cell patch-clamp recordings and [3H]muscimol and [3H]flunitrazepam binding. Moreover, the surface immunofluorescence staining of Sf-9 cells expressing the (alpha1/gamma2)-containing receptors was pronounced, as opposed to the staining of the (gamma2/alpha1)-containing receptors, which was only slightly higher than background. To explain this, the (alpha1/gamma2) and (gamma2/alpha1) chimeras may act like alpha1 and gamma2 subunits, respectively, indicating that the extracellular N-terminal segment is important for assembly. However, the (alpha1/gamma2) chimeric subunit had characteristics different from the alpha1 subunit, since the (alpha1/gamma2) chimera gave rise to no desensitization after GABA stimulation in whole-cell patch-clamp recordings, which was independent of whether the chimera was expressed in combination with beta2 or beta2gamma2. Surprisingly, the (alpha1/gamma2)(gamma2/alpha1)beta2 subunit combination did desensitize, indicating that the C-terminal segment of the alpha1 subunit may be important for desensitization. Moreover, desensitization was observed for the (alpha1/gamma2)beta2gamma2 receptor with respect to the direct activation by pentobarbital. This suggests differences in the mechanism of channel activation for pentobarbital and GABA. 相似文献
16.
We have characterized the maturation, co- and posttranslational modifications, and functional properties of the alpha(1B)-adrenergic receptor (AR) expressed in different mammalian cells transfected using conventional approaches or the Semliki Forest virus system. We found that the alpha(1B)-AR undergoes N-linked glycosylation as demonstrated by its sensitivity to endoglycosidases and by the effect of tunicamycin on receptor maturation. Pulse-chase labeling experiments in BHK-21 cells demonstrate that the alpha(1B)-AR is synthesized as a 70 kDa core glycosylated precursor that is converted to the 90 kDa mature form of the receptor with a half-time of approximately 2 h. N-Linked glycosylation of the alpha(1B)-AR occurs at four asparagines on the N-terminus of the receptor. Mutations of the N-linked glycosylation sites did not have a significant effect on receptor function or expression. Surprisingly, receptor mutants lacking N-linked glycosylation migrated as heterogeneous bands in SDS-PAGE. Our findings demonstrate that N-linked glycosylation and phosphorylation, but not palmitoylation or O-linked glycosylation, contribute to the structural heterogeneity of the alpha(1B)-AR as it is observed in SDS-PAGE. The modifications found are similar in the different mammalian expression systems explored. Our findings indicate that the Semliki Forest virus system can provide large amounts of functional and fully glycosylated alpha(1B)-AR protein suitable for biochemical and structural studies. The results of this study contribute to elucidate the basic steps involved in the processing of G protein-coupled receptors as well as to optimize strategies for their overexpression. 相似文献
17.
Moon MJ Kim HY Park S Kim DK Cho EB Park CR You DJ Hwang JI Kim K Choe H Seong JY 《The Journal of biological chemistry》2012,287(6):3873-3884
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) play important roles in insulin secretion through their receptors, GLP1R and GIPR. Although GLP-1 and GIP are attractive candidates for treatment of type 2 diabetes and obesity, little is known regarding the molecular interaction of these peptides with the heptahelical core domain of their receptors. These core domains are important not only for specific ligand binding but also for ligand-induced receptor activation. Here, using chimeric and point-mutated GLP1R/GIPR, we determined that evolutionarily conserved amino acid residues such as Ile(196) at transmembrane helix 2, Leu(232) and Met(233) at extracellular loop 1, and Asn(302) at extracellular loop 2 of GLP1R are responsible for interaction with ligand and receptor activation. Application of chimeric GLP-1/GIP peptides together with molecular modeling suggests that His(1) of GLP-1 interacts with Asn(302) of GLP1R and that Thr(7) of GLP-1 has close contact with a binding pocket formed by Ile(196), Leu(232), and Met(233) of GLP1R. This study may provide critical clues for the development of peptide and/or nonpeptide agonists acting at GLP1R. 相似文献
18.
19.
The large size of the serpin reactive site loop (RSL) suggests that the role of the RSL in protease inhibition is more complex than that of presenting the reactive site (P1 residue) to the protease. This study examines the effect on inhibition of relocating the reactive site (Leu-358) of the serpin alpha(1)-antichymotrypsin either one residue closer (P2) or further (P1') from the base of the RSL (Glu-342). alpha(1)-Antichymotrypsin variants were produced by mutation within the P4-P2' region; the sequence ITLLSA was changed to ITLSSA to relocate the reactive site to P2 (Leu-357) and to ITITLS to relocate it to P1' (Leu-359). Inhibition of the chymotrypsin-like proteases human chymase and chymotrypsin and the non-target protease human neutrophil elastase (HNE) were analyzed. The P2 variant inhibited chymase and chymotrypsin but not HNE. Relative to P1, interaction at P2 was characterized by greater complex stability, lower inhibition rate constants, and increased stoichiometry of inhibition values. In contrast, the P1' variant inhibited HNE (stoichiometry of inhibition = 4) but not chymase or chymotrypsin. However, inhibition of HNE was by interaction with Ile-357, the P2 residue. The P1' site was recognized by all proteases as a cleavage site. Covalent-complexes resistant to SDS-PAGE were observed in all inhibitory reactions, consistent with the trapping of the protease as a serpin-acyl protease complex. The complete loss in inhibitory activity associated with lengthening the Glu-342-reactive site distance by a single residue and the enhanced stability of complexes associated with shortening this distance by a single residue are compatible with the distorted-protease model of inhibition requiring full insertion of the RSL into the body of the serpin and translocation of the linked protease to the pole opposite from that of encounter. 相似文献
20.
Ferletta M Kikkawa Y Yu H Talts JF Durbeej M Sonnenberg A Timpl R Campbell KP Ekblom P Genersch E 《Molecular biology of the cell》2003,14(5):2088-2103
Laminin-integrin interactions can in some settings activate the extracellular signal-regulated kinases (ERKs) but the control mechanisms are poorly understood. Herein, we studied ERK activation in response to two laminins isoforms (-1 and -10/11) in two epithelial cell lines. Both cell lines expressed beta1-containing integrins and dystroglycan but lacked integrin alpha6beta4. Antibody perturbation assays showed that both cell lines bound to laminin-10/11 via the alpha3beta1and alpha6beta1 integrins. Although laminin-10/11 was a stronger adhesion complex than laminin-1 for both cell lines, both laminins activated ERK in only one of the two cell lines. The ERK activation was mediated by integrin alpha6beta1 and not by alpha3beta1 or dystroglycan. Instead, we found that dystroglycan-binding domains of both laminin-1 and -10/11 suppressed integrin alpha6beta1-mediated ERK activation. Moreover, the responding cell line expressed the two integrin alpha6 splice variants, alpha6A and alpha6B, whereas the nonresponding cell line expressed only alpha6B. Furthermore, ERK activation was seen in cells transfected with the integrin alpha6A subunit, but not in alpha6B-transfected cells. We conclude that laminin-1 and -10/11 share the ability to induce ERK activation, that this is regulated by integrin alpha6Abeta1, and suggest a novel role for dystroglycan-binding laminin domains as suppressors of this activation. 相似文献