首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apart from the common floral architecture in Brassicaceae, variation in flower morphology occurs in several genera within the family and is considered to affect speciation processes. We analysed genetic differentiation and flowering time variation of two floral variants of Capsella bursa-pastoris , the Spe variant and the wild-type, which occur sympatrically in a vineyard in southwest Germany. The Spe variant is characterized by an additional whorl of stamens instead of petals and was formerly classified as an independent taxon ' Capsella apetala ' Opiz. Amplified fragment length polymorphism and allozyme analysis revealed a substantial genetic differentiation of the two floral variants and a higher genetic variation within the wild-type subpopulation compared with the Spe subpopulation. The low genetic variation in the mutant provided evidence of a recent local origin or recent introduction. Flowering time analysis indicated that, within the analysed population, the Spe variant flowers significantly later than the wild-type ( P  < 0.001). We conclude that the evolution and persistence of Spe within a wild-type population is facilitated by high selfing rates and been enhanced by a shift in flowering phenology. Hence, our data provide substantial evidence that the Spe phenotype has established itself as an isolated entity within a wild-type population and may thus serve as a model for the analysis of the evolutionary significance of homeotic mutants in wild populations.  相似文献   

2.
Several lines of evidence suggest that homeotic changes played a considerable role during the evolution of flowers. This, however, is difficult to reconcile with the predominant evolutionary theory which rejects any drastic, saltational change of the phenotype as reasonable mode of evolution due to its assumed negative impact on the fitness of the affected organism. A better understanding of the evolutionary potential of homeotic transitions requires a study of the performance of respective mutant varieties in the wild. Here we introduce ``Stamenoid petals' (Spe), a variety of Capsella bursa-pastoris (shepherd's purse), as a suitable model to study the evolutionary potential of floral homeotic mutants. In the flowers of the Spe variety all petals are transformed into stamens, while all other floral organs are unaffected. In contrast to most other homeotic mutants the Spe variety occurs on several locations in relatively large and stable populations in the wild. Due to its close relationship to the model plant Arabidopsis thaliana, the Spe variety of C. bursa-pastoris can be rigorously studied, from the molecular genetic basis of the phenotype to its consequences on the fitness in wild habitats. Investigations on Spe may thus help to clarify whether homeotic transformations have the potential to contribute to macroevolution.  相似文献   

3.
Self-incompatibility (SI) has been well studied in the genera Brassica and Arabidopsis, which have become models for investigation into the SI system. To understand the evolution of the SI system in the Brassicaceae, comparative analyses of the S-locus in genera other than Brassica and Arabidopsis are necessary. We report the identification of six putative S-locus receptor kinase genes (SRK) in natural populations of Capsella grandiflora, an SI species from a genus which is closely related to Arabidopsis. These S-alleles display striking similarities to the Arabidopsis lyrata SRK alleles in sequence and structure. Our phylogenetic analysis supports the scenario of differing SI evolution along the two lineages (The Brassica lineage and Arabidopsis/Capsella lineage). Our results also argue that the ancestral S-locus lacked the SLG gene (S-locus glycoprotein) and that the diversification of S-alleles predates the separation of Arabidopsis and Capsella.  相似文献   

4.
荠菜LEAFY同源基因的克隆与进化分析   总被引:4,自引:0,他引:4  
LEAFY同源基因是高等植物花的分生组织分化的重要调节基因。根据已发表的LEAFY同源基因序列保守区设计引物,以荠菜(Capsellabursa-pastoris(L.)Medic.)基因组DNA序列为模板,克隆了一条长2866bp的LEAFY同源基因。序列分析表明,该基因含有3个外显子和2个内含子,外显子编码424个氨基酸组成的多肽。其单个外显子核苷酸序列与拟南芥(Arabidopsisthaliana)LEAFY基因同源性在90%以上,氨基酸序列同源性为86%,而与琴叶拟南芥(Ara-bidopsislyrata)的氨基酸序列同源性高达90%。不同植物物种的LEAFY同源氨基酸序列在C端高度保守,而N端则有较大程度的变异。3个外显子进化速率不同可能是由于所受选择压力不同所致。存在于荠菜CapLFY基因346位上的精氨酸突变可能是造成荠菜两种生态型花期不同的原因。  相似文献   

5.
Ito T  Meyerowitz EM 《The Plant cell》2000,12(9):1541-1551
An activation tagging screen in which the cauliflower mosaic virus 35S enhancer was inserted randomly into an Arabidopsis genome homozygous for the floral homeotic mutation apetala2-1 (ap2-1) resulted in a line (28-5) with extraordinarily wide, heart-shaped ovaries. The ovary of the 28-5 ap2-1 mutant shows an oval shape because of increased numbers of enlarged cells. When the ap2-1 mutation is crossed out of the genetic background, more elongated rather than wider fruits are obtained. Normally, Arabidopsis fruits will develop to a normal size only when the ovules are present and fertilized. In the 28-5 single mutant, the siliques keep growing despite failure of fertilization and can reach nearly normal size. When wild-type pollen was used to pollinate the mutant pistil, the pollinated 28-5 silique became >10% longer and 40% wider than a wild-type silique, although producing very few seeds. The enhancer insertion in line 28-5 acts by hyperactivating a cytochrome P450 gene, CYP78A9. The pistil of 28-5 ap2-1 mutant flowers shows a structure similar to that of Capsella bursa-pastoris, a distant mustard relative of Arabidopsis, suggesting that the processes regulated by the CYP78A9-encoded protein may be involved in evolutionary control of carpel shape.  相似文献   

6.
Homeotic changes played a considerable role during the evolution of flowers, but how floral homeotic mutants initially survive in nature has remained enigmatic. To better understand the evolutionary potential of floral homeotic mutants, we established as a model system Stamenoid petals (Spe), a natural variant of Capsella bursa-pastoris (Brassicaceae). In the flowers of Spe plants, petals are transformed into stamens, whereas all other floral organs are unaffected. In contrast with most other homeotic mutants, the Spe variant occurs in relatively stable populations in the wild. In order to determine how the profound change in floral architecture influences plant performance in the wild, we performed common garden experiments running over 3 years. Here, we show that Spe and wild-type plants attract the same assemblage of floral visitors: mainly hoverflies, wild bees and thrips. However, floral visitation is about twice as frequent in wild-type plants as in Spe plants. Nevertheless, the numbers of seeds per fruit were about the same in both variants. Wild-type plants produced more flowers, fruits and seeds per plant than Spe plants, whereas the germination capacity of Spe seeds was higher than that of the wild-type. Determination of volatile composition revealed monoterpenes and 3,4-dimethylbenzaldehyde, which were detected only in wild-type flowers, presumably because they are produced only by petals. Our data indicate that the similar fitness of Spe and wild-type C. bursa-pastoris in the field results from complex compensation between plant architecture and germination capacity. In contrast, flower structure and floral visitation are only of minor importance, possibly because C. bursa-pastoris is mainly self-pollinating.  相似文献   

7.
Evolution of genome size in Brassicaceae   总被引:25,自引:0,他引:25  
BACKGROUND AND AIMS: Brassicaceae, with nearly 340 genera and more than 3350 species, anchors the low range of angiosperm genome sizes. The relatively narrow range of DNA content (0.16 pg < 1C < 1.95 pg) was maintained in spite of extensive chromosomal change. The aim of this study was to erect a cytological and molecular phylogenetic framework for a selected subset of the Brassicacae, and use this as a template to examine genome size evolution in Brassicaceae. METHODS: DNA contents were determined by flow cytometry and chromosomes were counted for 34 species of the family Brassicaceae and for ten Arabidopsis thaliana ecotypes. The amplified and sequenced ITS region for 23 taxa (plus six other taxa with known ITS sequences) were aligned and used to infer evolutionary relationship by parsimony analysis. KEY RESULTS: DNA content in the species studied ranged over 8-fold (1C = 0.16-1.31 pg), and 4.4-fold (1C = 0.16-0.71 pg) excluding allotetraploid Brassica species. The 1C DNA contents of ten Arabidopsis thaliana ecotypes showed little variation, ranging from 0.16 pg to 0.17 pg. CONCLUSIONS: The tree roots at an ancestral genome size of approximately 1x = 0.2 pg. Arabidopsis thaliana (1C = 0.16 pg; approximately 157 Mbp) has the smallest genome size in Brassicaceae studied here and apparently represents an evolutionary decrease in genome size. Two other branches that represent probable evolutionary decreases in genome size terminate in Lepidium virginicum and Brassica rapa. Branches in the phylogenetic tree that represent probable evolutionary increases in genome size terminate in Arabidopsis halleri, A. lyrata, Arabis hirsuta, Capsella rubella, Caulanthus heterophyllus, Crucihimalaya, Lepidium sativum, Sisymbrium and Thlaspi arvense. Branches within one clade containing Brassica were identified that represent two ancient ploidy events (2x to 4x and 4x to 6x) that were predicted from published comparative mapping studies.  相似文献   

8.
Germ-line transformation of Arabidopsis lasiocarpa   总被引:5,自引:0,他引:5  
In planta transformation methods have opened up the possibility of transforming plant species for which no regeneration protocols currently exist. In this study, the suitability of the germ-line transformation method developed for Arabidopsis thaliana was examined for four taxa in the Brassicaceae that have not been previously transformed: Arabidopsis griffithiana, Arabidopsis lasiocarpa, Arabidopsis petraea and Capsella bursa-pastoris. Numerous transformants were obtained for A. lasiocarpa. Transformation of A. lasiocarpa was confirmed at the phenotypic and molecular levels for stably transformed lines and for backcrossed lines segregating the T-DNA insert. Parameters affecting transformation efficiency of A. lasiocarpa were also explored. As with A. thaliana, sucrose and surfactant in the inoculation medium are required for high levels of transformation, although the suitable concentrations of these are different for A. lasiocarpa. Other components present in earlier versions of the inoculation medium had little effect on transformation efficiency. Vacuum infiltration (rather than simple floral dipping) led to higher rates of transformation and did not seriously affect seed production in A. lasiocarpa. Identification of species susceptible to germ-line transformation will aid in determining the factors important for applying this technology to more recalcitrant species.  相似文献   

9.
The angiosperm family Brassicaceae contains both the research model Arabidopsis (Arabidopsis thaliana) and the agricultural genus Brassica. Comparative genomics in the Brassicaceae has largely focused on direct comparisons between Arabidopsis and the species of interest. However, the reduced genome size and chromosome number (n = 5) of Arabidopsis complicates comparisons. Arabidopsis shows extensive genome and chromosome reshuffling compared to its close relatives Arabidopsis lyrata and Capsella rubella, both with n = 8. To facilitate comparative genomics across the Brassicaceae we recently outlined a system of 24 conserved chromosomal blocks based on their positions in an ancestral karyotype of n = 8, rather than by their position in Arabidopsis. In this report we use this system as a tool to understand genome structure and evolution in Boechera stricta (n = 7). B. stricta is a diploid, sexual, and highly self-fertilizing species occurring in mostly montane regions of western North America. We have created an F(2) genetic map of B. stricta based on 192 individuals scored at 196 microsatellite and candidate gene loci. Single-nucleotide polymorphism genotyping of 94 of the loci was done simultaneously using an Illumina bead array. The total map length is 725.8 cM, with an average marker spacing of 3.9 cM. There are no gaps greater than 19.3 cM. The chromosomal reduction from n = 8 to n = 7 and other genomic changes in B. stricta likely involved a pericentric inversion, a chromosomal fusion, and two reciprocal translocations that are easily visualized using the genomic blocks. Our genetic map will facilitate the analysis of ecologically relevant quantitative variation in Boechera. Sequence data from this article can be found in the GenBank/EMBL data libraries under accession numbers DU 667459 to DU 708532.  相似文献   

10.
Ceplitis A  Su Y  Lascoux M 《Molecular ecology》2005,14(14):4221-4233
Besides showing an extraordinary degree of phenotypic variability, Capsella bursa-pastoris (Brassicaceae) is also one of the world's most common plant species and a serious weed in many countries. We have employed a coalescent-based Bayesian analysis of chloroplast microsatellite data to infer demographic and evolutionary parameters of this species. Two different demographic models applied to data from seven chloroplast microsatellite loci among 59 accessions show that the effective population size of C. bursa-pastoris is very small indicating a rapid expansion of the species, a result that is in accordance with fossil and historical data. Against this background, analysis of flowering time variation among accessions suggests that ecotypic differentiation in flowering time has occurred recently in the species' history. Finally, our results also indicate that mononucleotide repeat loci in the chloroplast genome can deteriorate in relatively short periods of evolutionary time.  相似文献   

11.
Understanding the genetic basis of natural variation is of primary interest for evolutionary studies of adaptation. In Capsella bursa-pastoris, a close relative of Arabidopsis (Arabidopsis thaliana), variation in flowering time is correlated with latitude, suggestive of an adaptation to photoperiod. To identify pathways regulating natural flowering time variation in C. bursa-pastoris, we have studied gene expression differences between two pairs of early- and late-flowering C. bursa-pastoris accessions and compared their response to vernalization. Using Arabidopsis microarrays, we found a large number of significant differences in gene expression between flowering ecotypes. The key flowering time gene FLOWERING LOCUS C (FLC) was not differentially expressed prior to vernalization. This result is in contrast to those in Arabidopsis, where most natural flowering time variation acts through FLC. However, the gibberellin and photoperiodic flowering pathways were significantly enriched for gene expression differences between early- and late-flowering C. bursa-pastoris. Gibberellin biosynthesis genes were down-regulated in late-flowering accessions, whereas circadian core genes in the photoperiodic pathway were differentially expressed between early- and late-flowering accessions. Detailed time-series experiments clearly demonstrated that the diurnal rhythm of CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) and TIMING OF CAB EXPRESSION1 (TOC1) expression differed between flowering ecotypes, both under constant light and long-day conditions. Differential expression of flowering time genes was biologically validated in an independent pair of flowering ecotypes, suggesting a shared genetic basis or parallel evolution of similar regulatory differences. We conclude that genes involved in regulation of the circadian clock, such as CCA1 and TOC1, are strong candidates for the evolution of adaptive flowering time variation in C. bursa-pastoris.  相似文献   

12.
The transition from outcrossing to predominant self-fertilization is one of the most common evolutionary transitions in flowering plants. This shift is often accompanied by a suite of changes in floral and reproductive characters termed the selfing syndrome. Here, we characterize the genetic architecture and evolutionary forces underlying evolution of the selfing syndrome in Capsella rubella following its recent divergence from the outcrossing ancestor C. grandiflora. We conduct genotyping by multiplexed shotgun sequencing and map floral and reproductive traits in a large (N= 550) F2 population. Our results suggest that in contrast to previous studies of the selfing syndrome, changes at a few loci, some with major effects, have shaped the evolution of the selfing syndrome in Capsella. The directionality of QTL effects, as well as population genetic patterns of polymorphism and divergence at 318 loci, is consistent with a history of directional selection on the selfing syndrome. Our study is an important step toward characterizing the genetic basis and evolutionary forces underlying the evolution of the selfing syndrome in a genetically accessible model system.  相似文献   

13.
Polyploidization, often accompanied by hybridization, has been of major importance in flowering plant evolution. Here we investigate the importance of these processes for the evolution of the tetraploid crucifer Capsella bursa-pastoris using DNA sequences from two chloroplast loci as well as from three nuclear low-copy genes. The near-absence of variation at the C. bursa-pastoris chloroplast markers suggests a single and recent origin of the tetraploid. However, despite supporting a single phylogeny, chloroplast data indicate that neither of the extant Capsella diploids is the maternal parent of the tetraploid. Combined with data from the three nuclear loci, our results do not lend support to previous hypotheses on the origin of C. bursa-pastoris as an allopolyploid between the diploids C. grandiflora and C. rubella or an autopolyploid of C. grandiflora. Nevertheless, for each locus, some of the C. bursa-pastoris accessions harbored C. rubella alleles, indicating that C. rubella contributed to the gene pool of C. bursa-pastoris, either through allopolyploid speciation or, more likely, through hybridization and introgression. To our knowledge, this study is the first of a wild, nonmodel plant genus that uses a combination of chloroplast and multiple low-copy nuclear loci for phylogenetic inference of polyploid evolution.  相似文献   

14.
The LEAFY (LFY) protein is a key regulator of flower development in angiosperms. Its gradually increased expression governs the sharp floral transition, and LFY subsequently controls the patterning of flower meristems by inducing the expression of floral homeotic genes. Despite a wealth of genetic data, how LFY functions at the molecular level is poorly understood. Here, we report crystal structures for the DNA-binding domain of Arabidopsis thaliana LFY bound to two target promoter elements. LFY adopts a novel seven-helix fold that binds DNA as a cooperative dimer, forming base-specific contacts in both the major and minor grooves. Cooperativity is mediated by two basic residues and plausibly accounts for LFY's effectiveness in triggering sharp developmental transitions. Our structure reveals an unexpected similarity between LFY and helix-turn-helix proteins, including homeodomain proteins known to regulate morphogenesis in higher eukaryotes. The appearance of flowering plants has been linked to the molecular evolution of LFY. Our study provides a unique framework to elucidate the molecular mechanisms underlying floral development and the evolutionary history of flowering plants.  相似文献   

15.
Pollination systems frequently reflect adaptations to particular groups of pollinators. Such systems are indicative of evolutionary specialization and have been important in angiosperm diversification. We studied the evolution of pollination systems in the large genus Ruellia. Phylogenetic analyses, morphological ordinations, ancestral state reconstructions, and a character mapping simulation were conducted to reveal key patterns in the direction and lability of floral characters associated with pollination. We found significant floral morphological differences among species that were generally associated with different groups of floral visitors. Floral evolution has been highly labile and also directional. Some specialized systems such as hawkmoth or bat pollination are likely evolutionary dead-ends. In contrast, specialized pollination by hummingbirds is clearly not a dead-end. We found evidence for multiple reverse transitions from presumed ancestral hummingbird pollination to more derived bee or insect pollination. These repeated origins of insect pollination from hummingbird-pollinated ancestors have not evolved without historical baggage. Flowers of insect-pollinated species derived from hummingbird-pollinated ancestors are morphologically more similar to hummingbird flowers than they are to other more distantly related insect-pollinated flowers. Finally, some pollinator switches were concomitant with changes in floral morphology that are associated with those pollinators. These observations are consistent with the hypothesis that some transitions have been adaptive in the evolution of Ruellia.  相似文献   

16.
The plant MADS-box regulatory gene family includes several loci that control different aspects of inflorescence and floral development. Orthologs to the Arabidopsis thaliana MADS-box floral meristem genes APETALA1 and CAULIFLOWER and the floral organ identity genes APETALA3 and PISTILLATA were isolated from the congeneric species Arabidopsis lyrata. Analysis of these loci between these two Arabidopsis species, as well as three other more distantly related taxa, reveal contrasting dynamics of molecular evolution between these paralogous floral regulatory genes. Among the four loci, the CAL locus evolves at a significantly faster rate, which may be associated with the evolution of genetic redundancy between CAL and AP1. Moreover, there are significant differences in the distribution of replacement and synonymous substitutions between the functional gene domains of different floral homeotic loci. These results indicate that divergence in developmental function among paralogous members of regulatory gene families is accompanied by changes in rate and pattern of sequence evolution among loci.  相似文献   

17.
Spontaneous homeotic transformations have been described in natural populations of both plants and animals, but little is known about the molecular-genetic mechanisms underlying these processes in plants. In the ABC model of floral organ identity in Arabidopsis thaliana, the B- and C-functions are necessary for stamen morphogenesis, and C alone is required for carpel identity. We provide ABC model-based molecular-genetic evidence that explains the unique inside-out homeotic floral organ arrangement of the monocotyledonous mycoheterotroph species Lacandonia schismatica (Triuridaceae) from Mexico. Whereas a quarter million flowering plant species bear central carpels surrounded by stamens, L. schismatica stamens occur in the center of the flower and are surrounded by carpels. The simplest explanation for this is that the B-function is displaced toward the flower center. Our analyses of the spatio-temporal pattern of B- and C-function gene expression are consistent with this hypothesis. The hypothesis is further supported by conservation between the B-function genes of L. schismatica and Arabidopsis, as the former are able to rescue stamens in Arabidopsis transgenic complementation lines, and Ls-AP3 and Ls-PI are able to interact with each other and with the corresponding Arabidopsis B-function proteins in yeast. Thus, relatively simple molecular modifications may underlie important morphological shifts in natural populations of extant plant taxa.  相似文献   

18.
Wang YQ  Melzer R  Theissen G 《Annals of botany》2011,107(9):1445-1452

Background and Aims

Homeotic transitions are usually dismissed by population geneticists as credible modes of evolution due to their assumed negative impact on fitness. However, several lines of evidence suggest that such changes in organ identity have played an important role during the origin and subsequent evolution of the angiosperm flower. Better understanding of the performance of wild populations of floral homeotic varieties should help to clarify the evolutionary potential of homeotic mutants. Wild populations of plants with changes in floral symmetry, or with reproductive organs replacing perianth organs or sepals replacing petals have already been documented. However, although double-flowered varieties are quite popular as ornamental and garden plants, they are rarely found in the wild and, if they are, usually occur only as rare mutant individuals, probably because of their low fitness relative to the wild-type. We therefore investigated a double-flowered variety of lesser periwinkle, Vinca minor flore pleno (fl. pl.), that is reported to have existed in the wild for at least 160 years. To assess the merits of this plant as a new model system for investigations on the evolutionary potential of double-flowered varieties we explored the morphological details and distribution of the mutant phenotype.

Methods

The floral morphology of the double-flowered variety and of a nearby population of wild-type plants was investigated by means of visual inspection and light microscopy of flowers, the latter involving dissected or sectioned floral organs.

Key Results

The double-flowered variety was found in several patches covering dozens of square metres in a forest within the city limits of Jena (Germany). It appears to produce fewer flowers than the wild-type, and its flowers are purple rather than blue. Most sepals in the first floral whorl resemble those in the wild-type, although occasionally one sepal is broadened and twisted. The structure of second-whorl petals is very similar to that of the wild-type, but their number per flower is more variable. The double-flowered character is due to partial or complete transformation of stamens in the third whorl into petaloid organs. Occasionally, ‘flowers within flowers’ also develop on elongated pedicels in the double-flowered variety.

Conclusions

The flowers of V. minor fl. pl. show meristic as well as homeotic changes, and occasionally other developmental abnormalities such as mis-shaped sepals or loss of floral determinacy. V. minor fl. pl. thus adds to a growing list of natural floral homeotic varieties that have established persistent populations in the wild. Our case study documents that even mutant varieties that have reproductive organs partially transformed into perianth organs can persist in the wild for centuries. This finding makes it at least conceivable that even double-flowered varieties have the potential to establish new evolutionary lineages, and hence may contribute to macroevolutionary transitions and cladogenesis.  相似文献   

19.
Guo YL  Zhao X  Lanz C  Weigel D 《Plant physiology》2011,157(2):937-946
The S locus, a single polymorphic locus, is responsible for self-incompatibility (SI) in the Brassicaceae family and many related plant families. Despite its importance, our knowledge of S-locus evolution is largely restricted to the causal genes encoding the S-locus receptor kinase (SRK) receptor and S-locus cysteine-rich protein (SCR) ligand of the SI system. Here, we present high-quality sequences of the genomic region of six S-locus haplotypes: Arabidopsis (Arabidopsis thaliana; one haplotype), Arabidopsis lyrata (four haplotypes), and Capsella rubella (one haplotype). We compared these with reference S-locus haplotypes of the self-compatible Arabidopsis and its SI congener A. lyrata. We subsequently reconstructed the likely genomic organization of the S locus in the most recent common ancestor of Arabidopsis and Capsella. As previously reported, the two SI-determining genes, SCR and SRK, showed a pattern of coevolution. In addition, consistent with previous studies, we found that duplication, gene conversion, and positive selection have been important factors in the evolution of these two genes and appear to contribute to the generation of new recognition specificities. Intriguingly, the inactive pseudo-S-locus haplotype in the self-compatible species C. rubella is likely to be an old S-locus haplotype that only very recently became fixed when C. rubella split off from its SI ancestor, Capsella grandiflora.  相似文献   

20.
Retention of nonfunctional traits over evolutionary time is puzzling, because the cost of trait production should drive loss. Indeed, several studies have found nonfunctional traits are rapidly eliminated by selection. However, theory suggests that complex genetic interactions and a lack of genetic variance can constrain evolution, including trait loss. In the mustard family Brassicaceae the conserved floral condition includes four long and two short stamens, but we show that short stamens in the highly self‐pollinating mustard Arabidopsis thaliana do not significantly increase selfed seed set, suggesting that the trait has lost most or all of its function after the transition to selfing. We find that short stamen loss is common in native populations. Loss is incomplete and decreases with increasing latitude, a cline unexplained by correlations with flowering time or ovule count (which also vary with latitude). Using recombinant inbred lines derived from a cross between plants at the latitudinal extremes of the native range, we found three QTLs affecting short stamen number, with epistasis among them constraining stamen loss. Constraints on stamen loss from both epistasis and low genetic variance may be augmented by high selfing rates, suggesting that these kinds of constraints may be common in inbred species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号