首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cardona ST  Valvano MA 《Plasmid》2005,54(3):2079-228
Infection of the respiratory tract caused by Burkholderia cepacia complex poses a serious risk for cystic fibrosis (CF) patients due to the high morbidity and mortality associated with the chronic infection and the lack of efficacious antimicrobial treatments. A detailed understanding of the pathogenicity of B. cepacia complex infections is hampered in part by the limited availability of genetic tools and the inherent resistance of these isolates to the most common antibiotics used for genetic selection. In this study, we report the construction of an expression vector which uses the rhamnose-regulated P(rhaB) promoter of Escherichia coli. The functionality of the vector was assessed by expressing the enhanced green fluorescent protein (eGFP) gene (e-gfp) and determining the levels of fluorescence emission. These experiments demonstrated that P(rhaB) is responsive to low concentrations of rhamnose and it can be effectively repressed with 0.2% glucose. We also demonstrate that the tight regulation of gene expression by P(rhaB) promoter allows us to extend the capabilities of this vector to the identification of essential genes.  相似文献   

2.
BACKGROUND: The delivery of a complete genomic DNA locus in vivo may prove advantageous for complementation gene therapy, especially when physiological regulation of gene expression is desirable. Hydrodynamic tail vein injection has been shown to be a highly efficient means of non-viral delivery of plasmid DNA to the liver. Here, we apply hydrodynamic tail vein injection to deliver and express large genomic DNA inserts > 100 kb in vivo. METHODS: Firstly, a size series (12-172 kb) of bacterial artificial chromosome (BAC) plasmids, carrying human genomic DNA inserts, episomal retention elements, and the enhanced green fluorescent protein (EGFP) reporter gene, was delivered to mice by hydrodynamic tail vein injection. Secondly, an episomal BAC vector carrying the whole genomic DNA locus of the human low-density lipoprotein receptor (LDLR) gene, and an expression cassette for the LacZ reporter gene, was delivered by the same method. RESULTS: We show that the efficiency of delivery is independent of vector size, when an equal number of plasmid molecules are used. We also show, by LacZ reporter gene analysis, that BAC delivery within the liver is widespread. Finally, BAC-end PCR, RT-PCR and immunohistochemistry demonstrate plasmid retention and long-term expression (4 months) of human LDLR in transfected hepatocytes. CONCLUSION: This is the first demonstration of somatic delivery and long-term expression of a genomic DNA transgene > 100 kb in vivo and shows that hydrodynamic tail vein injection can be used to deliver and express large genomic DNA transgenes in the liver.  相似文献   

3.
Alphavirus vectors are attractive as recombinant protein expression systems due to the high level of gene expression achieved. The combination of two mutations in the viral replicase, which render the replicase noncytopathic and temperature-sensitive, allowed the generation of a DNA-based vector (CytTs) that shows temperature inducible expression. This vector is of significant value for the production of toxic protein. However, like for other stable expression systems, tedious screening of individual cell clones are required in order to get a high producer cell clone. To circumvent this, we generated an episomally replicating vector by introducing an Epstein-Barr virus mini-replicon unit into CytTs. This novel vector allowed rapid generation of cell populations that showed tight regulation of expression and comparable expression levels to the ones achieved with high producer cell clones with CytTs. Moreover, protein production with selected cell populations could easily be scaled-up to a fermentation process.  相似文献   

4.
The recent completion of the human genome sequence allows genomics research to focus on understanding gene complexity, expression, and regulation. However, the routine-use genomic DNA expression systems required to investigate these phenomena are not well developed. Bacterial artificial chromosomes (BACs) and P1-based artificial chromosomes (PACs) have proved excellent tools for the human genome sequencing projects. We describe a system to rapidly and efficiently deliver and express BAC and PAC library clones in human and mouse cells by converting them into infectious amplicon vectors. We show packaging and intact delivery of genomic inserts of >100 kilobases with efficiencies of up to 100%. To demonstrate that genomic loci transferred in this way are functional, the complete human hypoxanthine phosphoribosyltransferase (HPRT) locus contained within a 115-kilobase BAC insert was shown to be expressed when delivered by infection into both a human HPRT-deficient fibroblast cell line and a mouse primary hepatocyte culture derived from Hprt-/- mice. Efficient gene delivery to primary cells is especially important, as these cells cannot be expanded using antibiotic selection. This work is the first demonstration of infectious delivery and expression of genomic DNA sequences of >100 kilobases, a technique that may prove useful for analyzing gene expression from the human genome.  相似文献   

5.
《Epigenetics》2013,8(7):601-611
L1 is an insertional mutagen that is capable of mediating permanent gene disruption in mammalian genomes. However, currently available L1 retrotransposition vectors exhibit low or unstable transgene expression when expressed in somatic cells and tissues. This restriction limits their potential utility in long-term screening procedures or somatic mutagenesis applications. In this study, we addressed this problem by developing a minicircle, nonviral L1 retrotransposition vector using a scaffold/matrix attachment region (S/MAR) in the vector backbone and evaluated its utility in human cell lines. The S/MAR-based L1 retrotransposition vector provides stable, elevated levels of L1 expression compared to the currently used EBNA1-based L1 vector. In addition, the S/MAR elements effectively mediate sustained levels of L1 retrotransposition in prolonged cell culturing without suffering from epigenetic silencing by DNA methylation or from vector integration problems even in the absence of selection pressure. These findings indicate that the simple inclusion of S/MAR in the vector backbone increased levels of L1 expression and retrotransposition that can be used as an effective tool to generate insertional mutagenesis in large-scale somatic mutagenesis applications in mammalian cells.

For the Erratum, click here. 

DOI: 10.4161/epi.6.7.16675

Danny Rangasamy

Volume 6, Issue 7

Page 951  相似文献   

6.
L1 is an insertional mutagen that is capable of mediating permanent gene disruption in mammalian genomes. However, currently available L1 retrotransposition vectors exhibit low or unstable transgene expression when expressed in somatic cells and tissues. This restriction limits their potential utility in long-term screening procedures or somatic mutagenesis applications. In this study, we addressed this problem by developing a minicircle, nonviral L1 retrotransposition vector using a scaffold/matrix attachment region (S/MAR) in the vector backbone and evaluated its utility in human cell lines. The S/MAR-based L1 retrotransposition vector provides stable, elevated levels of L1 expression compared to the currently used EBNA1-based L1 vector. In addition, the S/MAR elements effectively mediate sustained levels of L1 retrotransposition in prolonged cell culturing without suffering from epigenetic silencing by DNA methylation or from vector integration problems even in the absence of selection pressure. These findings indicate that the simple inclusion of S/MAR in the vector backbone increased levels of L1 expression and retrotransposition that can be used as an effective tool to generate insertional mutagenesis in large-scale somatic mutagenesis applications in mammalian cells.  相似文献   

7.
8.
Nonviral episomal vectors present attractive alternative vehicles for gene therapy applications. Previously, we have established a new type of nonviral episomal vector-mediated by the characteristic motifs of matrix attachment regions (MARs), which is driven by the cytomegalovirus (CMV) promoter. However, the CMV promoter is intrinsically susceptible to silencing, resulting in declined productivity during long-term culture. In this study, Chinese hamster ovary (CHO) cells and DNA methyltransferase-deficient (Dnmt3a-deficient) CHO cells were transfected with plasmid-mediated by MAR, or CHO cells were treated with the DNA methylation inhibitor 5-Aza-2′-deoxycytidine. Flow cytometry, plasmid rescue experiments, fluorescence in-situ hybridization (FISH), and bisulfite sequencing were performed to observe transgene expression, its state of existence, and the CpG methylation level of the CMV promoter. The results indicated that all DNA methylation inhibitor and methyltransferase deficient cells could increase transgene expression levels and stability in the presence or absence of selection pressure after a 60-generation culture. Plasmid rescue assay and FISH analysis showed that the vector still existed episomally after long-time culture. Moreover, a relatively lower CMV promoter methylation level was observed in Dnmt3a-deficient cell lines and CHO cells treated with 5-Aza-2′-deoxycytidine. In addition, Dnmt3a-deficient cells were superior to the DNA methylation inhibitor treatment regarding the transgene expression and long-term stability. Our study provides the first evidence that lower DNA methyltransferase can enhance expression level and stability of transgenes mediated by episomal vectors in transfected CHO cells.  相似文献   

9.
This is an erratum to:

An S/MAR-based L1 retrotransposition cassette mediates sustained levels of insertional mutagenesis without suffering from epigenetic silencing of DNA methylation

DOI: 10.4161/epi.5.7.12647

Danny Rangasamy

Volume 5, Issue 7

Pages 601 - 611  相似文献   

10.
Liu  Ling  Chen  Zhen  Tian  Xiwei  Chu  Ju 《Biotechnology letters》2022,44(5):755-766
Biotechnology Letters - The target sorB gene, related to sorbicillinoid production, and the free expression element, AMA1, were used to verify the methodological approach in Acremonium chrysogenum....  相似文献   

11.
12.
13.
14.

Background

The Bacillus subtilis genome (BGM) vector is a novel cloning system based on the natural competence that enables B. subtilis to import extracellular DNA fragments into the cell and incorporate the recombinogenic DNA into the genome vector by homologous recombination. The BGM vector system has several attractive properties, such as a megabase cloning capacity, stable propagation of cloned DNA inserts, and various modification strategies using RecA-mediated homologous recombination. However, the endogenous RecA activity may cause undesirable recombination, as has been observed in yeast artificial chromosome systems. In this study, we developed a novel BGM vector system of an inducible recA expression BGM vector (iREX), in which the expression of recA can be controlled by xylose in the medium.

Results

We constructed the iREX system by introducing the xylose-inducible recA expression cassette followed by the targeted deletion of the endogenous recA. Western blot analysis showed that the expression of recA was strictly controlled by xylose in the medium. In the absence of xylose, recA was not expressed in the iREX, and the RecA-mediated recombination reactions were greatly suppressed. By contrast, the addition of xylose successfully induced RecA expression, which enabled the iREX to exploit the same capacities of transformation and gene modifications observed with the conventional BGM vector. In addition, an evaluation of the stability of the cloned DNA insert demonstrated that the DNA fragments containing homologous sequences were more stably maintained in the iREX by suppressing undesirable homologous recombination.

Conclusions

We developed a novel BGM vector with inducible recA expression system, iREX, which enables us to manipulate large DNA fragments more stably than the conventional BGM vector by suppressing undesirable recombination. In addition, we demonstrate that the iREX can be applied to handling the DNA, which has several homologous sequences, such as multiple-reporter expression cassettes. Thus, the iREX expands the utility of the BGM vector as a platform for engineering large DNA fragments.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1425-4) contains supplementary material, which is available to authorized users.  相似文献   

15.
Summary The Trichoderma harzianum imidazoleglycerolphosphate dehydratase gene (igh) has been isolated by complementation of a Saccharomyces cerevisiae his3 mutant using a direct expression vector. This Escherichia coli-yeast shuttle vector was developed to allow efficient cloning and expression of cDNA libraries. The cDNA is 627 nucleotides long and codes for a protein of 209 amino acids with an apparent molecular mass of 22 466 daltons. The predicted protein sequence showed 63.6%, 58.7%, and 38.4% identity respectively to the corresponding enzymes from S. cerevisiae, Pichia pastoris and E. coli. Northern analysis showed that the expression of the igh gene in T. harzianum is not inhibited by external histidine and the level of igh mRNA was about threefold higher in cells starved of histidine.  相似文献   

16.
17.
18.
19.
RNA silencing is a powerful technology for molecular characterization of gene functions in plants. A commonly used approach to the induction of RNA silencing is through genetic transformation. A potent alternative is to use a modified viral vector for virus‐induced gene silencing (VIGS) to degrade RNA molecules sharing similar nucleotide sequence. Unfortunately, genomic studies in many allogamous woody perennials such as peach are severely hindered because they have a long juvenile period and are recalcitrant to genetic transformation. Here, we report the development of a viral vector derived from Prunus necrotic ringspot virus (PNRSV), a widespread fruit tree virus that is endemic in all Prunus fruit production countries and regions in the world. We show that the modified PNRSV vector, harbouring the sense‐orientated target gene sequence of 100‐200 bp in length in genomic RNA3, could efficiently trigger the silencing of a transgene or an endogenous gene in the model plant Nicotiana benthamiana. We further demonstrate that the PNRSV‐based vector could be manipulated to silence endogenous genes in peach such as eukaryotic translation initiation factor 4E isoform (eIF(iso)4E), a host factor of many potyviruses including Plum pox virus (PPV). Moreover, the eIF(iso)4E‐knocked down peach plants were resistant to PPV. This work opens a potential avenue for the control of virus diseases in perennial trees via viral vector‐mediated silencing of host factors, and the PNRSV vector may serve as a powerful molecular tool for functional genomic studies of Prunus fruit trees.  相似文献   

20.
Hereditary protein S deficiency from a mutation in the PROS1 gene causes a genetic predisposition to develop venous thromboembolic disorders in humans. Recently, the acknowledgment of the clinical significance of large copy number mutations in protein S deficiency has increased. In this study, the authors investigated the genomic architecture of PROS1 in order to understand the microscopic sequence environment leading to large intragenic copy number mutations in the gene. The study subjects were 3 unrelated male patients with hereditary protein S deficiency from a tandem duplication mutation involving exons 5–10 of PROS1. Breakpoint analyses revealed 10-bp microhomology sequences in the intervening sequence (IVS)-4 and IVS-10 at the duplication junction without additional sequence changes, suggesting a single replication-based event as the potential molecular mechanism of rearrangement and founder effect in the mutant alleles. Further analyses on nucleotide sequences flanking the microhomology sequence revealed the presence of a repeat element (LTR-ERV1) and quadruplex-forming G-rich sequences in IVS-4. The results from genotyping multi-allelic short tandem repeats supported founder effect in the identical mutations in the 3 unrelated patients. In conclusion, we identified unique genomic architectures in the intervening sequences of PROS1 that underlie a large intragenic tandem duplication mutation leading to inherited thrombophilia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号