首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Activities of microorganisms residing in terrestrial deep subsurface sediments were examined in 46 sediment samples from three boreholes. Radiolabeled time course experiments assessing in situ microbial activities were initiated within 30 min of core recovery. [1‐C4] Acetate incorporation into lipids, [ methyl‐3H] thymidine incorporation into DNA, [2‐14C]acetate, and [U‐14C]glucose mineralization in addition to microbial enrichment and enumeration studies were examined in surface and subsurface sediments. Surface soils contained the greatest biomass and activities, followed by the shallow aquifer zones. Water‐saturated subsurface sands exhibited three to four orders of magnitude greater activity and culturable microorganisms than the dense clay zones, which had low permeability. Regardless of depth, sediments that contained more than 20% clays exhibited the lowest activities and culturable microorganisms.  相似文献   

2.
Carbon mineralization was examined in Lakehurst and Atsion sands collected from the New Jersey Pinelands and in Pahokee muck from the Everglades Agricultural Area. Objectives were (i) to estimate the carbon mineralization capacities of acidic, xeric Pinelands soils in the absence of exogenously supplied carbon substrate (nonamended carbon mineralization rate) and to compare these activities with those of agriculturally developed pahokee muck, and (ii) to measure the capacity for increased carbon mineralization in the soils after carbon amendment. In most cases, nonamended carbon mineralization rates were greater in samples of the acid- and moisture-stressed Pinelands soils than in Pahokee muck collected from a fallow (bare) field. Carbon amendment resulted in augmented catabolic activity in Pahokee muck samples, suggesting that the microbial community was carbon limited in this soil. With many of the substrates, no stimulation of the catabolic rate was detected after amendment of Pinelands soils. This was documented by the observation that amendment of Pahokee muck with an amino acid mixture, glucose, or acetate resulted in a 3.0-, 3.9-, or 10.5-fold stimulation of catabolic activity, respectively, for the added substrate. In contrast, amendment of the Pinelands soils resulted in increased amino acid and acetate catabolic rates in Lakehurst sand and increased acetate metabolism only in Atsion sand. Other activities were unchanged. The increased glucose respiration rates resulted from stimulation of existing microbial activity rather than from microbial proliferation since no change in the microbial growth rate, as estimated by the rate of incorporation of 14C-labeled acetate into cell membranes, occurred after glucose amendment of the soils. A stimulation of microbial growth rate was recorded with glucose-amended Lakehurst sand collected from the B horizon.  相似文献   

3.
Soil microcosms and enrichment cultures from subsurface sediments and groundwaters contaminated with trichloroethylene (TCE) were examined. Total lipids, [I‐‘4C]acetate incorporation into lipids, and [Me‐3H]thymidine incorporation into DNA were determined in these subsurface environments. In heavily TCE‐contam‐inated zones (greater than 500 mg/L) radioisotopes were not incorporated into lipids or DNA. Radioisotope incorporation occurred in sediments both above and below the TCE plume. Phospholipid fatty acids (PLFA) were not detected, i.e., less than 0.5 pmol/L in heavily contaminated groundwater samples. In less contaminated waters, extracted PLFA concentrations were greater than 100 pmollL and microbial isolates were readily obtained. Degradation of 30–100 mg/L TCE was observed when sediments were amended with a variety of energy sources. Microorganisms in these subsurface sediments have adapted to degrade TCE at concentrations greater than 50 mg/L.  相似文献   

4.
Sub‐seafloor sediments are populated by large numbers of microbial cells but not much is known about their metabolic activities, growth rates and carbon assimilation pathways. Here we introduce a new method enabling the sensitive detection of microbial lipid production and the distinction of auto‐ and heterotrophic carbon assimilation. Application of this approach to anoxic sediments from a Swedish fjord allowed to compare the activity of different functional groups, the growth and turnover times of the bacterial and archaeal communities. The assay involves dual stable isotope probing (SIP) with deuterated water (D2O) and 13CDIC (d issolved i norganic c arbon). Culture experiments confirmed that the D content in newly synthesized lipids is in equilibrium with the D content in labelled water, independent of whether the culture grew hetero‐ or autotrophically. The ratio of 13CDIC to D2O incorporation enables distinction between these two carbon pathways in studies of microbial cultures and in environmental communities. Furthermore, D2O‐SIP is sufficiently sensitive to detect the formation of few hundred cells per day in a gram of sediment. In anoxic sediments from a Swedish fjord, we found that > 99% of newly formed lipids were attributed to predominantly heterotrophic bacteria. The production rate of bacterial lipids was highest in the top 5 cm and decreased 60‐fold below this depth while the production rate of archaeal lipids was rather low throughout the top meter of seabed. The contrasting patterns in the rates of archaeal and bacterial lipid formation indicate that the factors controlling the presence of these two lipid groups must differ fundamentally.  相似文献   

5.
Abstract Microbiological, geochemical, and isotopic analyses of sediment and water samples from the unconsolidated Yegua formation in east-central Texas were used to assess microbial processes in the terrestrial subsurface. Previous geochemical studies suggested that sulfide oxidation at shallow depths may provide sulfate for sulfate-reducing bacteria (SRB) in deeper aquifer formations. The present study further examines this possibility, and provides a more detailed evaluation of the relationship between microbial activity, lithology, and the geochemical environment on meter-to-millimeter scales. Sediment of varied lithology (sands, silts, clays, lignite) was collected from two boreholes, to depths of 30 m. Our findings suggest that pyrite oxidation strongly influences the geochemical environment in shallow sediments (∼5 m), and produces acidic waters (pH 3.8) that are rich in sulfate (28 mM) and ferrous iron (0.3 mM). Sulfur and iron-oxidizing bacteria are readily detected in shallow sediments; they likely play an indirect role in pyrite oxidation. In consistent fashion, there is a relative paucity of pyrite in shallow sediments and a low 34S/32S-sulfate ratio (0.2‰) (reflecting contributions from 34S-depleted sulfides) in shallow regions. Pyrite oxidation likely provides a sulfate source for both oxic and anoxic aquifers in the region. A variety of assays and direct-imaging techniques of 35S-sulfide production in sediment cores indicates that sulfate reduction occurs in both the oxidizing and reducing portions of the sediment profile, with a high degree of spatial variability. Narrow zones of activity were detected in sands that were juxtaposed to clay or lignite-rich sediments. The fermentation of organic matter in the lignite-rich laminae provides small molecular weight organic acids to support sulfate reduction in neighboring sands. Consequently, sulfur cycling in shallow sediments, and sulfate transport represent important mechanisms for commensal interaction among subsurface microorganisms by providing electron donors for chemoautotrophic bacteria and electron acceptors for SRB. The activity of SRB is linked to the availability of suitable electron donors from spatially distinct zones. Received: 10 November 1997; Accepted: 10 February 1998  相似文献   

6.

Many microbial species are capable of solubilising insoluble forms of phosphate and are used in agriculture to improve plant growth. In this study, we apply the use of known phosphate solubilising microbes (PSM) to the release of rare-earth elements (REE) from the rare-earth phosphate mineral, monazite. Two sources of monazite were used, a weathered monazite and mineral sand monazite, both from Western Australia. When incubated with PSM, the REE were preferentially released into the leachate. Penicillum sp. released a total concentration of 12.32 mg L−1 rare-earth elements (Ce, La, Nd, and Pr) from the weathered monazite after 192 h with little release of thorium and iron into solution. However, cultivation on the mineral sands monazite resulted in the preferential release of Fe and Th. Analysis of the leachate detected the production of numerous low-molecular weight organic acids. Gluconic acid was produced by all microorganisms; however, other organic acids produced differed between microbes and the monazite source provided. Abiotic leaching with equivalent combinations of organic acids resulted in the lower release of REE implying that other microbial processes are playing a role in solubilisation of the monazite ore. This study demonstrates that microbial solubilisation of monazite is promising; however, the extent of the reaction is highly dependent on the monazite matrix structure and elemental composition.

  相似文献   

7.
Profound biogeochemical responses of anoxic sediments to the fluctuation of dissolved oxygen (DO) concentration in overlaying water are often observed, despite oxygen having a limited permeability in sediments. This contradiction is indicative of previously unrecognized mechanism that bridges the oxic and anoxic sediment layers. Using sediments from an urban river suffering from long-term polycyclic aromatic hydrocarbons (PAHs) contamination, we analyzed the physicochemical and microbial responses to artificially elevated DO (eDO) in the overlying water over 9 weeks of incubation. Significant changes in key environmental parameters and microbial diversity were detected over the 0–6 cm sediment depth, along with accelerated degradation of PAHs, despite that eDO only increased the porewater DO in the millimeter subfacial layer. The dynamics of physicochemical and microbial properties coincided well with significantly increased presence of centimeter-long sulfide-oxidizing cable bacteria filaments under eDO, and were predominantly driven by cable bacteria metabolic activities. Phylogenetic ecological network analyses further revealed that eDO reinforced cable bacteria associated interspecific interactions with functional microorganisms such as sulfate reducers, PAHs degraders, and electroactive microbes, suggesting enhanced microbial syntrophy taking advantage of cable bacteria metabolism for the regeneration of SO42− and long-distance electron transfer. Together, our results suggest cable bacteria may mediate the impacts of eDO in anaerobic sediments by altering sediment physiochemical properties and by reinforcing community interactions. Our findings highlight the ecological importance of cable bacteria in sediments.Subject terms: Freshwater ecology, Water microbiology, Community ecology  相似文献   

8.
Two methods of measuring microbial activity were used to study the effects of toxicants on natural microbial communities. The methods were compared for suitability for toxicity testing, sensitivity, and adaptability to field applications. This study included measurements of the incorporation of 14C-labeled acetate into microbial lipids and microbial glucosidase activity. Activities were measured per unit biomass, determined as lipid phosphate. The effects of various organic and inorganic toxicants on various natural microbial communities were studied. Both methods were useful in detecting toxicity, and their comparative sensitivities varied with the system studied. In one system, the methods showed approximately the same sensitivities in testing the effects of metals, but the acetate incorporation method was more sensitive in detecting the toxicity of organic compounds. The incorporation method was used to study the effects of a point source of pollution on the microbiota of a receiving stream. Toxic doses were found to be two orders of magnitude higher in sediments than in water taken from the same site, indicating chelation or adsorption of the toxicant by the sediment. The microbiota taken from below a point source outfall was 2 to 100 times more resistant to the toxicants tested than was that taken from above the outfall. Downstream filtrates in most cases had an inhibitory effect on the natural microbiota taken from above the pollution source. The microbial methods were compared with commonly used bioassay methods, using higher organisms, and were found to be similar in ability to detect comparative toxicities of compounds, but were less sensitive than methods which use standard media because of the influences of environmental factors.  相似文献   

9.
Microbial growth rates in subsurface sediment from three sites were measured using incorporation of tritiated thymidine into DNA. Sampling sites included Lula, Oklahoma, Traverse City, Michigan, and Summit Lake, Wisconsin. Application of the thymidine method to subsurface sediments required (1) thymidine concentrations greater than 125 nM, (2) incubation periods of less than 4 hours, (3) addition of SDS and EDTA for optimum macromolecular extraction, and (4) DNA purification, in order to accurately measure the rate of thymidine incorporation into DNA. Macromolecule extraction recoveries, as well as the percentage of tritium label incorporated into the DNA fraction, were variable and largely dependent upon sediment composition. In general, sandy sediments yielded higher extraction recoveries and demonstrated a larger percentage of label incorporated into DNA than sediments that contained a high silt-clay component. Reported results also indicate that the acid-base hydrolysis procedure routinely used for macromolecular fractionation in water samples may not be routinely applicable to the modified sediment procedure where addition of SDS and EDTA are required for macromolecule extraction. Growth rates exhibited by subsurface communities are relatively slow, ranging from 5.1 to 10.2×105 cells g–1 day–1. These rates are 2–1,000-fold lower than growth rates measured in surface sediments. These data lend support to the supposition that subsurface microbial communities are nutritionally stressed.  相似文献   

10.
The detrital food web is a major nexus of energy flow in nearly all aquatic ecosystems. Energy enters this nexus by microbial assimilation of detrital carbon. To link microbiological variables with ecosystem process, it is necessary to understand the regulatory hierarchy that controls the distribution of microbial biomass and activity. Toward that goal, we investigated variability in microbial abundance and activities within the tidal freshwater estuary of the Hudson River. Surface sediments were collected from four contrasting sites: a mid-channel shoal, two types of wetlands, and a tributary confluence. These samples, collected in June to August 1992, were sorted into two to four size fractions, depending on the particle size distribution at each site. Each fraction was analyzed for bacterial biomass (by acridine orange direct counting), bacterial production (by 3H-thymidine incorporation into DNA), fungal biomass (by ergosterol extraction), fungal production (by biomass accrual), and the potential activities of seven extracellular enzymes involved in the degradation of detrital structural molecules. Decomposition rates for particulate organic carbon (POC) were estimated from a statistical model relating mass loss rates to endocellulase activity. Within samples, bacterial biomass and productivity were negatively correlated with particle size: Standing stocks and rates in the <63-m class were roughly twofold greater than in the >4-mm class. Conversely, fungal biomass was positively correlated with particle size, with standing stocks in the largest size class more than 1OX greater than in the smallest. Extracellular enzyme activities also differed significantly among size classes, with high carbohydrase activities associated with the largest particles, while oxidative activities predominated in the smallest size classes. Among sites, the mid-channel sediments had the lowest POC standing stock (2% of sediment dry mass) and longest turnover time (approximately 1.7 years), with bacterial productivity approximately equal to fungal (56 vs. 46 g C per gram POC per day, respectively). In the Typha wetland, POC standing stock was high (10%); turnover time was about 0.3 years; and 90% of the microbial productivity was fungal (670 vs. 84 g C per gram POC per day). The other two sites, a Trapa wetland and a tributary confluence, showed intermediate values for microbial productivity and POC turnover. Differences among sites were described by regression models that related the distribution of microbial biomass (r 2 = 0.98) and productivity (r 2 = 0.81) to particle size and carbon quality. These factors also determined POC decomposition rates. Net microbial production efficiency (production rate/decomposition rate) averaged 10.6%, suggesting that the sediments were exporting large quantities of unassimilated dissolved organic carbon into the water column. Our results suggest that studies of carbon processing in large systems, like the Hudson River estuary, can be facilitated by regression models that relate microbial dynamics to more readily measured parameters. Correspondence to: R.L. Sinsabaugh  相似文献   

11.
Book reviews   总被引:12,自引:1,他引:11  
Kang  Hojeong  Freeman  Chris  Lee  Dowon  Mitsch  William J. 《Hydrobiologia》1998,368(1-3):231-235
Wetlands have been widely applied for water quality amelioration. Enzymatic analysis was applied in a study of decomposition in constructed wetlands. We hypothesise that soil enzyme activities would be lower in wetland sediment than adjacent upland and that the lower soil enzyme activities are partly responsible for the water quality amelioration. Four soil enzyme activities (β-glucosidase, β-N-acetylglucosaminidase, phosphatase, and arylsulfatase) and microbial activity (electron transport system activity) were measured across a transect from a upland soil to a wetland sediment in two constructed wetland sites in the USA. Along with the activities, hydrochemistry was determined in inflow and outflow of the wetlands. In both wetlands, the enzyme activities in the sediments were significantly lower than the adjacent upland soils. For hydrochemistry, significant decreases were observed in phosphate and nitrate concentrations in outflow water compared to inflow water. However, there were no significant changes in other anions (F-, Cl-, SO 4 2- . For dissolved organic carbon, it seems that the wetlands would be a source rather than a sink. The results suggest that the enzymatic approach represents a valuable method to assess decomposition processes in wetland sediments, and that characteristically low enzyme activities in the sediments may be important in the water quality amelioration function. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Abstract Signature lipids from the phospholipid esterlinked fatty acids (PELFA) of cell membranes were used to describe benthic microbial communities of 4 Antarctic sediments. Metabolic activities of the communities were determined by incorporation of [3H]thymidine into bacterial DNA and sodium [14C]acetate into membrane lipids. Biomass measurements from extractable phospholipid fatty acids per g dry wt. ranged between 6 to 76 nmol, or when converted to number of bacteria, 3.7 × 108 to 4.5 × 109 cells per g dry wt. The West Sound site at New Harbor contained the lowest biomass, while Cape Evans on the East Sound contained the greatest. A marked difference was also noted between sites in their sediment microbial community structure. The East Sound sites at Cape Armitage and Cape Evans contained a greater abundance of diatom marker lipids, whilst both sides of the Sound contained approximately the same relative amounts of bacterial groups distinguished using PELFA. Activity of sediment microorganisms measured by radiolabel incorporation under ambient conditions followed the trends of the biomass measurements. The East Sound sites were more active by an average of 45–73% for [3H]thymidine and possibly also for sodium [14C]acetate.  相似文献   

13.
Seasonal and spatial distributions of extracellular enzymatic activities and microbial incorporations of dissolved organic substrates were followed in sediments of the brackish water Kiel Bight (Baltic Sea, Federal Republic of Germany). Enzymatic hydrolysis of polymeric organic compounds was determined by means of fluorogenic substrates (4-methylumbelliferyl-beta-d-glucoside, l-leucine-4-methylcoumarinyl-7-amide hydrochloride); incorporation of dissolved organic substrates into microbial biomass was measured by using tritiated substances (acetate, leucine, and thymidine). Based on a recently developed core injection technique, substrates were injected in microliter portions into undisturbed sediment cores. Enzymatic and incorporation activities underwent strong seasonal variations related to the enrichment of organic material in the sediment surface following sedimentation events. The input of the phytoplankton bloom during autumn caused stimulation of both enzymatic hydrolysis of polymeric organic compounds and microbial incorporation of dissolved organic substrates. Following input by spring phytoplankton bloom, mainly incorporation activities were stimulated. In late spring the development of the benthic fauna obviously greatly influenced microbial activities. During summer individual periods of high microbial activities were observed which might be traced back to short-term sedimentation events. The high microbial incorporation of leucine and thymidine during winter demonstrated that the nutrient supply rather than temperature is the dominating factor determining microbial production. Stimulation of microbial activities arose from the sediment surface and spread out relatively quickly into deeper horizons. Generally, the sediments were characterized by distinct patterns of interrelationships between the individual parameters of microbial activities measured.  相似文献   

14.
Methanogenesis and microbial lipid synthesis in anoxic salt marsh sediments   总被引:1,自引:0,他引:1  
In anoxic salt marsh sediments of Sapelo Island, GA, USA, the vertical distribution of CH4 production was measured in the upper 20 cm of surface sediments in ten locations. In one section of high marsh sediments, the concentration and oxidation of acetate in sediment porewaters and the rate and amount of14C acetate and14CO2 incorporation into cellular lipids of the microbial population were investigated. CH4 production rates ranged from <1 to 493 nM CH4 gram sediment−1 day−1 from intact subcores incubated under nitrogen. Replacement with H2 stimulated the rate of methane release up to nine fold relative to N2 incubations. Rates of lipid synthesis from CO2 averaged 39.2 ×10−2nanomoles lipid carbon cm3 sediment−1 hr−1, suggesting that CO2 may be an important carbon precursor for microbial membrane synthesis in marsh sediments under anoxic conditions. Qualitative measurements of lipid synthesis rates from acetate were found to average 8.7 × 10−2 nanomoles. Phospholipids were the dominant lipids synthesized by both substrates in sediment cores, accounting for an average of 76.6% of all lipid radioactivity. Small amounts of ether lipids indicative of methanogenic bacteria were observed in cores incubated for 7 days, with similar rates of synthesis for both CO2 and acetate. The low rate of ether lipid synthesis suggests that either methanogen lipid biosynthesis is very slow or that methanogens represent a small component of total microbial lipid synthesis in anoxic sediments. present address: The University of Maryland,, Chesapeake Biological Laboratory, Box 38, Solomons, MD 20688, USA  相似文献   

15.
Vera Istvánovics 《Hydrobiologia》1993,253(1-3):193-201
In order to estimate microbial P content and biological P uptake in sediments, the tungstate precipitation method of Orrett & Karl (1987) was used in sediment extracts. This method allows a simple and rapid separation of organic and inorganic 32P radioactivity. Either inorganic 32P (as carrierfree H3 32PO4) or organic 32P (as 32P-labelled algal material) was added to surface sediment suspensions of shallow Lake Balaton. Inorganic 32P was rapidly transformed into organic 32P, and this process was completely inhibited by formaline. P content of living benthic microorganisms was estimated from steady state distribution of the radioactivity. Transformation of algal organic P into inorganic P could also be detected.In extremely P limited Lake Balaton benthic microorganisms were shown to supplement their high P requirements by inorganic P uptake. The velocity of the inorganic into organic P transformation, i.e. the rate of microbial P uptake, was comparable to P uptake in the water column. Microbial P uptake contributed significantly to total P fixation by sediments, particularly at low ( 100 µg P l–1) phosphate additions.  相似文献   

16.
In anoxic salt marsh sediments of Sapelo Island, GA, USA, the vertical distribution of CH4 production was measured in the upper 20 cm of surface sediments in ten locations. In one section of high marsh sediments, the concentration and oxidation of acetate in sediment porewaters and the rate and amount of14C acetate and14CO2 incorporation into cellular lipids of the microbial population were investigated. CH4 production rates ranged from <1 to 493 nM CH4 gram sediment−1 day−1 from intact subcores incubated under nitrogen. Replacement with H2 stimulated the rate of methane release up to nine fold relative to N2 incubations. Rates of lipid synthesis from CO2 averaged 39.2 ×10−2nanomoles lipid carbon cm3 sediment−1 hr−1, suggesting that CO2 may be an important carbon precursor for microbial membrane synthesis in marsh sediments under anoxic conditions. Qualitative measurements of lipid synthesis rates from acetate were found to average 8.7 × 10−2 nanomoles. Phospholipids were the dominant lipids synthesized by both substrates in sediment cores, accounting for an average of 76.6% of all lipid radioactivity. Small amounts of ether lipids indicative of methanogenic bacteria were observed in cores incubated for 7 days, with similar rates of synthesis for both CO2 and acetate. The low rate of ether lipid synthesis suggests that either methanogen lipid biosynthesis is very slow or that methanogens represent a small component of total microbial lipid synthesis in anoxic sediments. present address: The University of Maryland,, Chesapeake Biological Laboratory, Box 38, Solomons, MD 20688, USA  相似文献   

17.
Numbers and activities of microorganisms were measured in the vadose zones of three arid and semiarid areas of the western United States, and the influence of water availability was determined. These low-moisture environments have vadose zones that are commonly hundreds of meters thick. The specific sampling locations chosen were on or near U.S. Department of Energy facilities: the Nevada Test Site (NTS), the Idaho National Engineering Laboratory (INEL), and the Hanford Site (HS) in southcentral Washington State. Most of the sampling locations were uncontaminated, but geologically representative of nearby locations with storage and/or leakage of waste compounds in the vadose zone. Lithologies of samples included volcanic tuff, basalt, glaciofluvial and fluvial sediments, and paleosols (buried soils). Samples were collected aseptically, either by drilling bore-holes (INEL and HS), or by excavation within tunnels (NTS) and outcrop faces (paleosols near the HS). Total numbers of microorganisms were counted using direct microscopy, and numbers of culturable microorganisms were determined using plate-count methods. Desiccation-tolerant microorganisms were quantified by plate counts performed after 24 h desiccation of the samples. Mineralization of 14C-labeled glucose and acetate was quantified in samples at their ambient moisture contents, in dried samples, and in moistened samples, to test the hypothesis that water limits microbial activities in vadose zones. Total numbers of microorganisms ranged from log 4.5 to 7.1 cells g-1 dry wt. Culturable counts ranged from log <2 to 6.7 CFU g-1 dry wt, with the highest densities occurring in paleosol (buried soil) samples. Culturable cells appeared to be desiccation-tolerant in nearly all samples that had detectable viable heterotrophs. Water limited mineralization in some, but not all samples, suggesting that an inorganic nutrient or other factor may limit microbial activities in some vadose zone environments. Offprint requests to: T.L. Kieft  相似文献   

18.
Water bodies, which are monitored for microbial water quality by quantification of faecal indicator organisms (IOs), can contain various zoonotic pathogens contributed by livestock waste and other sources. Sediments can serve as reservoirs of IOs and other enteric microorganisms, including pathogens. Agrochemicals may influence the survival of these microorganisms in water bodies impacted by livestock waste by enhancing or reducing their survival. Complex, 1100 l, freshwater mesocosms containing leaf litter, zooplankton, periphyton, phytoplankton, and invertebrate and vertebrate animals were used to investigate the response of Escherichia coli and enterococci to agrochemicals. Replicate tanks were treated with atrazine, malathion, chlorothalonil and inorganic fertilizer, either alone at 1× or 2× their expected environmental concentrations (EECs) or in pair‐wise combinations at their EECs. IOs inoculated in sediment (~104 cfu per 100 ml) were enumerated over 28 days. IOs generally declined over time, but manova revealed that addition of fertilizer and atrazine resulted in significantly greater IO densities. Malathion, chlorothalonil and agrochemical concentration (1× vs 2×) did not significantly affect IO densities and no significant interactions between agrochemicals were noted. The augmentation of IO densities in sediments by fertilizer and atrazine may impact their reliability as accurate predictors of water quality and human health risk, and indicates the need for a better understanding of the fate of IOs and enteric pathogens in sediments exposed to agrochemicals.  相似文献   

19.
Estuarine gammaridean amphipods grazing at natural population density on detrital microbiota affected the microbial community composition, biomass, and metabolic activity without affecting the physical structure of the leaves. Total microbial biomass estimated by adenosine triphosphate and lipid phosphate or observed by scanning electron microscopy was greater on grazed than on ungrazed detritus. The rates of oxygen consumption, poly-β-hydroxybutyrate synthesis, total lipid biosynthesis, and release of 14CO2 from radioactively prelabeled microbiota were higher on grazed than on ungrazed leaves, indicating stimulation of the metabolic activity of grazed detrital microbes. This was true with rates based either on the dry leaf weight or microbial biomass. Alkaline phosphatase activity was lower in the grazed system, consistent with enhanced inorganic phosphate cycling. The loss of 14C from both total lipid and poly-β-hydroxybutyrate of microorganisms prelabeled with 14C was greater from grazed than ungrazed microbes. There was a faster decrease in the 14C-glycolipid than in the 14C-neutral lipid or 14C-phospholipid fractions. Analysis of specific phospholipids showed losses of the metabolically stable [14C]glycerolphosphorylcholine derived from phosphatidylcholine and much more rapid metabolism of the bacterial lipid phosphatidylglycerol measured as [14C]glycerolphosphorylglycerol with amphipod grazing. The biochemical data supported scanning electron microscopy observations of a shift as the grazing proceeded from a bacterial/fungal community to one dominated by bacteria.  相似文献   

20.
Bacterial numbers and activities (as estimated by glucose uptake and total thymidine incorporation) were investigated at two sites in Long Island, New York aquifer sediments. In general, bacterial activities were higher in shallow (1.5–4.5 m below the water table or BWT), oxic sediments than in deep (10–18 m BWT), anoxic sediments. The average total glucose uptake rates were 0.18 ± 0.10 ng gdw–1 h–1 in shallow sediments and 0.09 ± 0.11 ng gdw–1 h–1 in deep sediments; total thymidine incorporation rates were 0.10 ± 0.13 pmol gdw–1 h–1 and 0.03 ± 0.03 pmol gdw–1 h–1 in shallow and deep sediments, respectively. Incorporation of glucose was highly efficient, as only about 10% of added label was recovered as CO2. Bacterial abundance (estimated from acridine orange direct counts) was 2.5 ± 2.0 × 107 cells gdw–1 and 2.0 ± 1.3 × 107 cells gdw–1 in shallow and deep sediments, respectively. These bacterial activity and abundance estimates are similar to values found in other aquifer environments, but are 10- to 1000-fold lower than values in soil or surface sediment of marine and estuarine systems. In general, cell specific microbial activities were lower in sites from Connetquot Park, a relatively pristine site, when compared to activities found in sites from Jamesport, which has had a history of aldicarb (a pesticide) contamination. To our knowledge, this is the first report of bacterial activity measurements in the shallow, sandy aquifers of Long Island, New York.Correspondence to: D.G. Capone  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号