首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetrachloroethene, also known as perchloroethylene, was reductively dechlorinated to trichloroethene and cis-1,2-dichloroethene by laboratory sulfate-reducing enrichment cultures. The causative organism or group was not identified. However, tetrachloroethene was dechlorinated to trichloroethene in 50 mM bromoethane-sulfonate-inhibited enrichments and to trichloroethene and cis-1,2-dichloroethene in 3 mM fluoroacetate-inhibited enrichments. Overall transformation varied from 92% tetrachloroethene removal in 13 days to 22% removal in 65 days, depending on conditions of the inoculum, inhibitor used, and auxilliary substrate used. Neither lactate, acetate, methanol, isobutyric acid, valeric acid, isovaleric acid, hexanoic acid, succinic acid, nor hydrogen appeared directly to support tetrachloroethene dechlorination, although lactate-fed inocula demonstrated longer-term dechlorinating capability.  相似文献   

2.
Two membrane-bound, reductive dehalogenases that constitute a novel pathway for complete dechlorination of tetrachloroethene (perchloroethylene [PCE]) to ethene were partially purified from an anaerobic microbial enrichment culture containing Dehalococcoides ethenogenes 195. When titanium (III) citrate and methyl viologen were used as reductants, PCE-reductive dehalogenase (PCE-RDase) (51 kDa) dechlorinated PCE to trichloroethene (TCE) at a rate of 20 micromol/min/mg of protein. TCE-reductive dehalogenase (TCE-RDase) (61 kDa) dechlorinated TCE to ethene. TCE, cis-1,2-dichloroethene, and 1,1-dichloroethene were dechlorinated at similar rates, 8 to 12 micromol/min/mg of protein. Vinyl chloride and trans-1,2-dichloroethene were degraded at rates which were approximately 2 orders of magnitude lower. The light-reversible inhibition of TCE-RDase by iodopropane and the light-reversible inhibition of PCE-RDase by iodoethane suggest that both of these dehalogenases contain Co(I) corrinoid cofactors. Isolation and characterization of these novel bacterial enzymes provided further insight into the catalytic mechanisms of biological reductive dehalogenation.  相似文献   

3.
The substrate specificity of the tetrachloroethene reductive dehalogenase of Dehalospirillum multivoransand its corrinoid cofactor were studied. Besides reduced methyl viologen, titanium(III) citrate could serve as electron donor for reductive dehalogenation of tetrachloroethene (PCE) and trichloroethene to cis-1,2-dichloroethene. In addition to chlorinated ethenes, chlorinated propenes were reductively dechlorinated solely by the native enzyme. trans-1,3-Dichloropropene, 1,1,3-trichloropropene and 2,3-dichloropropene were reduced to a mixture of mono-chloropropenes, 1,1-dichloropropene, and 2-chloropropene, respectively. Other halogenated compounds that were rapidly reduced by the enzyme were also dehalogenated abiotically by the heat-inactivated enzyme and by commercially available cyanocobalamin. The rate of this abiotic reaction was dependent on the number and type of halogen substituents and on the type of catalyst. The corrinoid cofactor purified from the tetrachloroethene dehalogenase of D. multivorans exhibited an activity about 50-fold higher than that of cyanocobalamin (vitamin B(12)) with trichloroacetate as electron acceptor, indicating that the corrinoid cofactor of the PCE dehalogenase is not cyanocobalamin. Corrinoids catalyzed the rapid dehalogenation of trichloroacetic acid. The rate was proportional to the amount of, e.g. cyanocobalamin; therefore, the reductive dehalogenation assay can be used for the sensitive and rapid quantification of this cofactor.  相似文献   

4.
A rapid and accurate method for the determination of transformation kinetics of volatile organic substrates was developed. Concentrations were monitored by on-line gas chromatographic analysis of the headspace of well-mixed incubation mixtures. With this method, the kinetics of transformation of a number of C(inf1) and C(inf2) halogenated alkanes and alkenes by Methylosinus trichosporium OB3b expressing particulate methane monooxygenase or soluble methane monooxygenase (sMMO) were studied. Apparent specific first-order rate constants for cells expressing sMMO decreased in the order of dichloromethane, vinyl chloride, cis-1,2-dichloroethene, trans-1,2-dichloroethene, 1,1-dichloroethene, trichloroethene, chloroform, and 1,2-dichloroethane. During the degradation of trichloroethene, cis-1,2-dichloroethene, trans-1,2-dichloroethene, and vinyl chloride, the formation of the corresponding epoxides was observed. The epoxide of vinyl chloride and the epoxide of trichloroethene, which temporarily accumulated in the medium, were chemically degraded according to first-order kinetics, with half-lives of 78 and 21 s, respectively. Cells expressing sMMO actively degraded the epoxide of cis-1,2-dichloroethene but not the epoxide of trans-1,2-dichloroethene. Methane and acetylene inhibited degradation of the epoxide of cis-1,2-dichloroethene, indicating that sMMO was involved.  相似文献   

5.
A strictly anaerobic bacterium was isolated from tetrachloroethene (PCE)-to-ethene dechlorinating microcosms established with river sediment without prior exposure to chlorinated solvents. The isolation procedure included the addition of 2-bromoethanesulfonate to select against methanogenic archaea, >50 consecutive 1-2% (v/v) transfers to reduced mineral salts medium amended with trichloroethene (TCE), acetate, and hydrogen, the addition of ampicillin, and the dilution-to-extinction principle. Culture-dependent and 16S rRNA gene-targeted approaches suggested culture purity. Microscopic examination revealed a homogeneous culture of an organism with a distinct, disc-shaped morphology. The isolate shared >99% 16S rRNA gene sequence similarity with members of the Pinellas group of the Dehalococcoides cluster, and was designated Dehalococcoides sp. strain FL2. Strain FL2 could be propagated with TCE, cis-1,2-dichloroethene (cis-DCE), or trans-DCE as the electron acceptors, acetate as the carbon source, and hydrogen as the electron donor in defined, completely synthetic medium. No other growth-supporting redox couples were identified. Trichloroethene, cis-DCE and trans-DCE were dechlorinated at rates of 27.5, 30.4 and 18.8 micromol l-1 day-1 respectively. Quantitative real-time polymerase chain reaction (PCR) with a fluorescently labelled linear hybridization probe confirmed growth with these electron acceptors, and suggested that strain FL2 captures energy from both the TCE-to-cis-DCE and 1,2-DCE-to-VC dechlorination steps. Tetrachloroethene and vinyl chloride (VC) were slowly and cometabolically dechlorinated in the presence of a growth-supporting chloroethene, but ethene formation was incomplete, even after prolonged incubation. At room temperature, strain FL2 grew with a doubling time of 2.4 days, and yielded 166.1+/-10.2 mg of protein per mole of chloride released. In the presence of excess electron acceptor, strain FL2 consumed hydrogen to a concentration of 0.061+/-0.016 nM. Dechlorination ceased following the addition of 0.5 mM sulfite, whereas sulfate (10 mM) and nitrate (5 mM) had no inhibitory effects.  相似文献   

6.
Two membrane-bound, reductive dehalogenases that constitute a novel pathway for complete dechlorination of tetrachloroethene (perchloroethylene [PCE]) to ethene were partially purified from an anaerobic microbial enrichment culture containing Dehalococcoides ethenogenes 195. When titanium(III) citrate and methyl viologen were used as reductants, PCE-reductive dehalogenase (PCE-RDase) (51 kDa) dechlorinated PCE to trichloroethene (TCE) at a rate of 20 μmol/min/mg of protein. TCE-reductive dehalogenase (TCE-RDase) (61 kDa) dechlorinated TCE to ethene. TCE, cis-1,2-dichloroethene, and 1,1-dichloroethene were dechlorinated at similar rates, 8 to 12 μmol/min/mg of protein. Vinyl chloride and trans-1,2-dichloroethene were degraded at rates which were approximately 2 orders of magnitude lower. The light-reversible inhibition of TCE-RDase by iodopropane and the light-reversible inhibition of PCE-RDase by iodoethane suggest that both of these dehalogenases contain Co(I) corrinoid cofactors. Isolation and characterization of these novel bacterial enzymes provided further insight into the catalytic mechanisms of biological reductive dehalogenation.  相似文献   

7.
Desulfomonile tiedjei, a strict anaerobe capable of reductively dechlorinating 3-chlorobenzoate, also dechlorinates tetrachloroethene and trichloroethene. It is not known, however, if the aryl and aliphatic dechlorination activities are catalyzed by the same enzymatic system. Cultures induced for 3-chlorobenzoate activity dechlorinated tetrachloroethene and trichloroethene to lower chlorinated products while uninduced parallel cultures did not dechlorinate either substrate. The observed rate of PCE dechlorination in induced cultures was 22 µmol h–1 g protein–1, which is considerably faster than previous rates obtained with defined cultures of this organism. These results show that both dechlorination activities are co-induced and therefore, that the dechlorination mechanisms may share at least some components.Abbreviations PCE tetrachloroethene - TCE trichloroethene - cis-DCE cis-dichloroethene - trans-DCE trans-dichloroethene - 3FBz 3-fluorobenzoate - 3ClBz 3-chlorobenzoate  相似文献   

8.
A rapidly-growing facultatively aerobic bacterium that transforms tetrachloroethene (PCE) via trichloroethene (TCE) to cis-1,2-dichloroethene (cis-1,2-DCE) at high rates in a defined medium was isolated from a contaminated site. Metabolic characterization, cellular fatty acid analysis, and partial sequence analysis of 16S rRNA showed that the new isolate, strain MS-1, has characteristics matching those of the members of the family Enterobacteriaceae. Strain MS-1 can oxidize about 58 substrates including many carbohydrates, short-chain fatty acids, amino acids, purines, and pyrimidines. It can transform up to 1 mM PCE (aqueous) at a rate of about 0.5 (mu)mol of PCE(middot) h(sup-1)(middot)mg (dry weight) of cell(sup-1). PCE transformation occurs following growth on or with the addition of single carbon sources such as glucose, pyruvate, formate, lactate, or acetate or with complex nutrient sources such as yeast extract or a mixture of amino acids. PCE dehalogenation requires the absence of oxygen, nitrate, and high concentrations of fermentable compounds such as glucose. Enterobacter agglomerans biogroup 5 (ATCC 27993), a known facultative bacterium that is closely related to strain MS-1, also reductively dehalogenated PCE to cis-1,2-DCE. To our knowledge, this is the first report on isolation of a facultative bacterium that can reductively transform PCE to cis-1,2-DCE under defined physiological conditions. Also, this is the first report of the ability of E. agglomerans to dehalogenate PCE.  相似文献   

9.
The dehalorespiring Desulfitobacterium hafniense strain Y51 efficiently dechlorinates tetrachloroethene (PCE) to cis-1,2-dichloroethene (cis-DCE) via trichloroethene by PceA reductive dehalogenase encoded by the pceA gene. In a previous study, we found that the significant growth inhibition of strain Y51 occurred in the presence of commercial cis-DCE. In this study, it turned out that the growth inhibition was caused by chloroform (CF) contamination of cis-DCE. Interestingly, CF did not affect the growth of PCE-nondechlorinating SD (small deletion) and LD (large deletion) variants, where the former fails to transcribe the pceABC genes caused by a deletion of the promoter and the latter lost the entire pceABCT gene cluster. Therefore, PCE-nondechlorinating variants, mostly LD variant, became predominant, and dechlorination activity was significantly reduced in the presence of CF. Moreover, such a growth inhibitory effect was also observed in the presence of carbon tetrachloride at 1 microM, but not carbon dichloride even at 1 mM.  相似文献   

10.
The membrane-associated tetrachloroethene reductive dehalogenase from the tetrachloroethene-reducing anaerobe, strain PCE-S, was purified 165-fold to apparent homogeneity in the presence of the detergent Triton X-100. The purified dehalogenase catalyzed the reductive dechlorination of tetrachloroethene to trichloroethene and of trichloroethene to cis-1,2-dichloroethene with reduced methyl viologen as the electron donor, showing a specific activity of 650 nkat/mg protein. The apparent K m values of the enzyme for tetrachloroethene, trichloroethene, and methyl viologen were 10 μM, 4 μM, and 0.3 mM, respectively. SDS-PAGE revealed a single protein band with an apparent molecular mass of 65 kDa. The apparent molecular mass of the native enzyme was 200 kDa as determined by gel filtration. Tetrachloroethene dehalogenase contained 0.7 ± 0.3 mol corrinoid, 1.0 ± 0.3 mol cobalt, 7.8 ± 0.5 mol iron, and 10.3 ± 2.0 mol acid-labile sulfur per mol subunit. The pH optimum was approximately 7.2, and the temperature optimum was approximately 50 °C. The dehalogenase was oxygen-sensitive with a half-life of approximately 50 min. The N-terminal amino acid sequence of the enzyme was determined, and no significant similarity was found to any part of the amino acid sequence of the tetrachloroethene (PCE) reductive dehalogenase from Dehalospirillum multivorans. Received: 4 December 1997 / Accepted: 10 February 1998  相似文献   

11.
An anaerobic enrichment culture with glucose as the sole source of carbon and energy plus trichloroethene (TCE) as a potential electron acceptor was inoculated with material from a full size anaerobic charcoal reactor that biologically eliminated dichloromethane from contaminated groundwater (Stromeyer et al. 1991). In subcultures of this enrichment complete sequential transformation of 10 µM TCE viacis-dichloroethene and chloroethene to ethene was reproducibly observed. Maintenance of this activity on subcultivation required the presence of TCE in the medium. The enrichment culture was used to inoculate an anaerobic fixed-bed reactor containing sintered glass Raschig elements as support material. The reactor had a total volume of 1780 ml and was operated at 20 °C in an up-flow mode with a flow rate of 50 ml/h. It was fed continuously with 2 mM glucose and 55 µM TCE. Glucose was converted to acetate as the major product and to a minor amount of methane; TCE was quantitatively dehalogenated to ethene. When, in addition to TCE, tetrachloroethene or 1,2-dichloroethane were added to the system, these compounds were also dehalogenated to ethene. In contrast, 1,1,1-trichloroethane was not dehalogenated, but at 40 µM severely inhibited acetogenesis and methanogenesis. When the concentration of TCE in the feed was raised to 220 µM, chloroethene transiently accumulated, but after an adaptation period ethene was again the only volatile product detected in the effluent. The volumetric degradation rate at this stage amounted to 6.2 µmol/l/h. Since complete transformation of TCE occurred in the first sixth of the reactor volume, the degradation capacity of the system is estimated to exceed this value by factor of about ten.Abbreviations CA chloroethane - 1,1-DCA 1,1-dichloroethane - 1,2-DCA 1,2-dichloroethane - 1,1-DCE 1,1-dichloroethene - c-DCE cis-1,2-dichloroethene - t-DCE trans-1,2-dichloroethene - PCE tetrachloroethene, perchloroethene - 1,1,1-TCA 1,1,1-trichloroethane - TCE trichloroethene - VC chloroethene, vinyl chloride  相似文献   

12.
In order to study the effect of different chloroethenes (electron acceptors) on the bacterial composition of dechlorinating communities, two reductive dechlorinating enrichment cultures were developed that were able to reduce trichloroethene (TCE) and cis-1,2-dichloroethene (cis-DCE) to ethene using hydrogen as electron donor, respectively. The inoculum for the cultures was material from a methanogenic fluidized bed reactor (FBR), which was originally seeded with digester sludge and showed a stable capacity for tetrachloroethene (PCE) reduction to ethene for over six years. Molecular methods were used to determine and compare the microbial communities of these two enrichment cultures. A clone library of bacterial 16S rRNA genes was generated for each enrichment. The clones were screened into different groups by restriction fragment length polymorphism (RFLP) analysis using two different four base pair recognition restriction enzymes. A total of 12 sequence types were identified by phylogenetic analysis of nearly complete 16S rDNA sequences ( approximately 1450 bp). The sequences were affiliated with six recognized phyla of the domain Bacteria: Firmicutes (low G+C Gram-positives), Chloroflexi (green non-sulphur bacteria), Actinobacteria (high G+C Gram-positives), Bacteroidetes (Cytophaga-Flexibacter-Bacteroides), Nitrospira and Spirochaetes. The results led to the identification of an organism closely related to Dehalococcoides ethenogenes to be the presumptive dechlorinator in both enrichments. Different electron acceptors affected the bacterial diversity and the community profiles of the two enrichments. Most of the sequences identified in our dechlorinating enrichments shared high similarities with sequences previously obtained from other enriched dechlorinating cultures and chlorinated-compound-contaminated sediments or aquifers, suggesting these bacteria may have direct or indirect roles in reductive dechlorination.  相似文献   

13.
A strictly anaerobic bacterium, strain PCE1, was isolated from a tetrachloroethene-dechlorinating enrichment culture. Cells of the bacterium were motile curved rods, with approximately four lateral flagella. They possessed a gram-positive type of cell wall and contained cytochrome c. Optimum growth occurred at pH 7.2–7.8 and 34–38° C. The organism grew with l-lactate, pyruvate, butyrate, formate, succinate, or ethanol as electron donors, using either tetrachloroethene, 2-chlorophenol, 2,4,6-trichlorophenol, 3-chloro-4-hydroxy-phenylacetate, sulfite, thiosulfate, or fumarate as electron acceptors. Strain PCE1 also grew fermentatively with pyruvate as the sole substrate. l-Lactate and pyruvate were oxidized to acetate. Tetrachloroethene was reductively dechlorinated to trichloroethene and small amounts (< 5%) of cis-1,2-dichloroethene and trans-1,2-dichloroethene. Chlorinated phenolic compounds were dechlorinated specifically at the ortho-position. On the basis of 16S rRNA sequence analysis, the organism was identified as a species within the genus Desulfitobacterium, which until now only contained the chlorophenol-dechlorinating bacterium, Desulfitobacterium dehalogenans. Received: 31 August 1995 / Accepted: 14 November 1995  相似文献   

14.
  Reductive dechlorination of tetrachloroethene was studied in a mesophilic upflow anaerobic sludge blanket reactor. Operating the reactor in batch mode the dynamic transformation of tetrachloroethene, trichloroethene and dichloroethene (DCE) was monitored. Tetrachloroethene was reductively dechlorinated to trichloroethene, which again was dechlorinated at the same rate as DCE was produced. DCE showed a lag period of 40 h before transformation was observed. During normal reactor operation trans-1,2-DCE was the major DCE isomer, followed by cis-1,2-DCE. Small amounts of 1,1-DCE but no vinyl chloride were detected. When the influent tetrachloroethene concentration was increased from 4.6 μM to 27 μM, the transformation rate increased, indicating that the system was not saturated with tetrachloroethene. The main organic component in the effluent was acetate, indicating that the aceticlastic methane-producing bacteria were inhibited by the chlorinated ethenes. Received: 29 July 1996 / Received revision: 13 September 1996 / Accepted: 13 September 1996  相似文献   

15.
A strict anaerobic bacterium, strain Y51, was isolated from soil contaminated with tetrachloroethene (PCE). Strain Y51 is capable of very efficiently dehalogenating PCE via trichloroethene (TCE) to cis-1,2-dichloroethene (cis-1,2-DCE) at concentrations as high as 960 microM and as low as 0.6 microM. Strain Y51 was gram-negative, motile with some lateral flagella, and curved rod-shaped. On the basis of the 16S rDNA sequence, the organism was identified to be a species within the genus Desulfitobacterium. Strain Y51 also had dehalogenation activities toward polychloroethanes such as hexa-, penta-, and tetrachloroethanes, from which dichloroethenes were produced as the final products. The cell extracts mediated the dehalogenation of PCE with reduced methyl viologen as an electron carrier at the specific rate of 5.0 nmol min(-1) mg cell protein(-1) (pH 7.2, 37 degrees C). Dehalogenation was highly susceptible to air oxidation, and to potential alternative electron acceptors such as nitrite or sulfite.  相似文献   

16.
Tenax-TA, a solid-phase sorbent, was used as an alternative to hexadecane for continuous delivery of tetrachloroethene (PCE) to Desulfuromonas strain BB1, a chloro-respiring microorganism. In both batch and bioreactor configurations, Tenax not only maintained low, steady-state concentrations of PCE in an active culture for several months but also adsorbed the product of dechlorination, cis-1,2-dichloroethene, before it approached toxic levels.  相似文献   

17.
A microscopically pure enrichment culture of a gram-negative anaerobic bacterium, in the present article referred to as PER-K23, was isolated from an anaerobic packed-bed column in which tetrachloroethene (PCE) was reductively transformed to ethane via trichloroethene (TCE), cis-1,2-dichloroethene (cis-1,2-DCE), chloroethene, and ethene. PER-K23 catalyzes the dechlorination of PCE via TCE to cis-1,2-DCE and couples this reductive dechlorination to growth. H2 and formate were the only electron donors that supported growth with PCE or TCE as an electron acceptor. The culture did not grow in the absence of PCE or TCE. Neither O2, NO3-, NO2-, SO4(2-), SO3(2-), S2O3(2-), S, nor CO2 could replace PCE or TCE as an electron acceptor with H2 as an electron donor. Also, organic electron acceptors such as acetoin, acetol, dimethyl sulfoxide, fumarate, and trimethylamine N-oxide and chlorinated ethanes, DCEs, and chloroethene were not utilized. PER-K23 was not able to grow fermentatively on any of the organic compounds tested. Transferring the culture to a rich medium revealed that a contaminant was still present. Dechlorination was optimal between pH 6.8 and 7.6 and a temperature of 25 to 35 degrees C. H2 consumption was paralleled by chloride production, PCE degradation, cis-1,2-DCE formation, and growth of PER-K23. Electron balances showed that all electrons derived from H2 or formate consumption were recovered in dechlorination products and biomass. Exponential growth could be achieved only in gently shaken cultures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A novel Dehalococcoides isolate capable of metabolic trichloroethene (TCE)-to-ethene reductive dechlorination was obtained from contaminated aquifer material. Growth studies and 16S rRNA gene-targeted analyses suggested culture purity; however, the careful quantitative analysis of Dehalococcoides 16S rRNA gene and chloroethene reductive dehalogenase gene (i.e., vcrA, tceA, and bvcA) copy numbers revealed that the culture consisted of multiple, distinct Dehalococcoides organisms. Subsequent transfers, along with quantitative PCR monitoring, yielded isolate GT, possessing only vcrA. These findings suggest that commonly used qualitative 16S rRNA gene-based procedures are insufficient to verify purity of Dehalococcoides cultures. Phylogenetic analysis revealed that strain GT is affiliated with the Pinellas group of the Dehalococcoides cluster and shares 100% 16S rRNA gene sequence identity with two other Dehalococcoides isolates, strain FL2 and strain CBDB1. The new isolate is distinct, as it respires the priority pollutants TCE, cis-1,2-dichloroethene (cis-DCE), 1,1-dichloroethene (1,1-DCE), and vinyl chloride (VC), thereby producing innocuous ethene and inorganic chloride. Strain GT dechlorinated TCE, cis-DCE, 1,1-DCE, and VC to ethene at rates up to 40, 41, 62, and 127 micromol liter-1 day-1, respectively, but failed to dechlorinate PCE. Hydrogen was the required electron donor, which was depleted to a consumption threshold concentration of 0.76+/-0.13 nM with VC as the electron acceptor. In contrast to the known TCE dechlorinating isolates, strain GT dechlorinated TCE to ethene with very little formation of chlorinated intermediates, suggesting that this type of organism avoids the commonly observed accumulation of cis-DCE and VC during TCE-to-ethene dechlorination.  相似文献   

19.
The tetrachloroethene (PCE) reductive dehalogenase (encoded by the pceA gene and designated PceA dehalogenase) of Desulfitobacterium sp. strain Y51 was purified and characterized. The expression of the enzyme was highly induced in the presence of PCE and trichloroethene (TCE). The purified enzyme catalyzed the reductive dehalogenation of PCE via TCE to cis-1,2-dichloroethene at a specific activity of 113.6 nmol x min(-1) x mg of protein(-1). The apparent K(m) values for PCE and TCE were 105.7 and 535.3 microM, respectively. Chlorinated ethenes other than PCE and TCE were not dehalogenated. However, the enzyme exhibited dehalogenation activity for various chlorinated ethanes such as hexachloroethane, pentachloroethane, 1,1,1,2-tetrachloroethane, and 1,1,2,2-tetrachloroethane. The pceA gene of Desulfitobacterium sp. strain Y51 was identified in a 2.8-kb DNA fragment and used to express the protein in Escherichia coli for the preparation of antibodies. Immunoblot analyses located PceA in the periplasm of the cell.  相似文献   

20.
Strain TEA, a strictly anaerobic, motile rod with one to four lateral flagella and a crystalline surface layer was isolated from a mixed culture that completely reduces chlorinated ethenes to ethene. The organism coupled reductive dehalogenation of tetrachloroethene or trichloroethene to cis-1,2-dichloroethene to growth, using molecular hydrogen as the electron donor. It was unable to grow fermentatively or in the presence of tri- or tetrachloroethene with glucose, pyruvate, lactate, acetate or formate. The 16S rDNA sequence of strain TEA was 99.7% identical to that of Dehalobacter restrictus. The two organisms thus are representatives of the same species or the same genus within the Bacillus/Clostridium subphylum of the gram-positive bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号