首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hybrid between the maltose-binding protein (MalE) of Escherichia coli and the gene 5 protein (G5P) of phage M13 was constructed at the genetic level. MalE is a monomeric and periplasmic protein while G5P is dimeric and cytoplasmic. The hybrid (MalE-G5P) was synthesized in large amounts from a multicopy plasmid and efficiently exported into the periplasmic space of E. coli. The export was dependent on the integrity of the signal peptide. MalE-G5P was purified from a periplasmic extract by affinity chromatography on cross-linked amylose, with a yield larger than 50,000 molecules/E. coli cell. The hybrid specifically bound denatured but not double-stranded DNA cellulose, as native G5P. Sedimentation velocity and gel-filtration experiments showed that MalE-G5P exists as a dimer. Thus, it was possible to efficiently translocate through the membrane a normally cytoplasmic and dimeric protein, by fusion to MalE. Moreover, the passenger protein kept its activity, specificity and quaternary structure in the purified hybrid. MalE-G5P will enable the study of mutant G5P that no longer binds single-stranded DNA and therefore cannot be purified by DNA-cellulose chromatography.  相似文献   

2.
Ultraviolet irradiation of bacteriophage M13-infected Escherichia coli induces the formation of a covalent crosslink between progeny single-stranded DNA and the M13 DNA binding protein, the product of gene 5. The crosslinked complex is readily isolated from detergent-treated lysates by sucrose-gradient velocity sedimentation and CsCl equilibrium sedimentation in the presence of detergent. The crosslinked complex produced with optimal levels of irradiation sediments 1.06 times faster than uncomplexed M13 single-stranded DNA, has a buoyant density of approximately 1.62 to 1.64 g/cm3 and a protein to DNA mass ratio of 2 mg protein per mg DNA. Cleavage of the crosslinked complex with cyanogen bromide or trypsin yields products similar to those produced by cleavage of purified M13 gene 5 protein. The crosslink is located close to the carboxyl terminus of the protein.  相似文献   

3.
The bacterial tetracycline-resistance determinant from Tn 10 encodes a 43 kDa membrane protein, TetA, responsible for active efflux of tetracyclines. The tetA gene was cloned behind a T7 promoter/ac operator in a plasmid that provided fusion of TetA to a polyhis-tidine-carboxy terminal tail. A second plasmid provided a regulated T7 RNA polymerase. The specific activity of the TetA fusion protein was between 10–40% that of the wild-type protein as assayed by tetracycline resistance in cells and by transport in membrane vesicles. The fusion protein, overproduced approximately 3–13-fold, was purified by nickel chelation chromatography. Calculations from circular dichroism spectra of the purified protein solubilized in dodecylmaltoside gave an α-helix content of 54–64%, close to the 68% predicted from the amino acid sequence by hydropathy analysis (12 membrane-spanning helices) for the native protein in the membrane bilayer. Fluorescence studies showed binding activity of the purified protein to its substrate, the tetracycline analogue 13-(cyclopentylthio)-5-hydroxy-6-α-deoxyte-tracycline. These findings suggested that the purified protein was in a native state.  相似文献   

4.
A synthetic gene encoding a chimeric silklike protein was constructed that combined a polyalanine encoding region (Ala)(18), a sequence slightly longer than the (Ala)(12-13) found in the silk fibroin from the wild silkworm Samia cynthia ricini, and a sequence encoding GVGAGYGAGAGYGVGAGYGAGVGYGAGAGY, found in the silk fibroin from the silkworm Bombyx mori. A tetramer of the chimeric repeat sequence encoding a approximately 29 kDa protein was expressed as a fusion protein in Escherichia coli. In comparison to S. c. ricini silk, the chimeric protein demonstrated improved solubility because it could be dissolved in 8 M urea. The purified protein assumed an alpha-helical structure based on solid-state (13)C CP/MAS NMR and was less prone to conformational transition to a beta-sheet, unlike native silk proteins from S. c. ricini. Model peptides representing the crystalline region of S. c. ricini silk fibroin, (Ala)(12) and (Ala)(18), formed beta-sheet structures. Therefore, the solubility and structural transitions of the chimeric protein were significantly altered through the formation of this chimeric silk. This experimental strategy to the study of silk structure and function can be used to develop an improved understanding of the contributions of protein domains in repetitive silkworm and spider silk sequences to structure development and structural transitions.  相似文献   

5.
6.
Complex of bacteriophage M13 single-stranded DNA and gene 5 protein   总被引:19,自引:0,他引:19  
Lysates of bacteriophage M13-infected cells contain numerous unbranched filamentous structures approximately 1·1 μm long × 160 Å wide, that is, slightly longer and considerably wider than M13 virions. These structures are complexes of viral single-stranded DNA molecules with M13 gene 5 protein, a non-capsid protein required for single-stranded DNA production. All, or nearly all, of the single-stranded DNA from the infected cells and at least half to two-thirds of the gene 5 protein molecules are found as complex in the lysates. The complex contains about 1300 gene 5 protein molecules per DNA molecule but little if any of the two known capsid proteins. The complex is much less stable than virions in the presence of salt or ionic detergent solutions and in electron micrographs it appears to have a much looser and more open structure. If an excess of M13 single-stranded DNA is added to complex in a lysate, the gene 5 protein molecules from the complex redistribute onto all of the added as well as the original DNA, again suggesting a rather loose association of protein and DNA.By electron microscopy, the complex from infected cells appears to differ structurally from complex formed in vitro between purified single-stranded DNA and purified gene 5 protein. Because of this apparent structural difference and because previous experiments suggested the presence of complex in vivo, we presume that the complex which we have found in lysates of infected cells previously did exist as such inside the cells, but we have been unable to exclude that it formed during or after lysis. If it is assumed that complex does occur in vivo, the results of pulse-chase radioactive labeling experiments on infected cells can be interpreted as showing that with time the single-stranded DNA leaves complex, presumably to be matured into virions, while the gene 5 protein molecules are re-used to form more complex.  相似文献   

7.
The structural gene for the blue copper protein azurin from Pseudomonas aeruginosa has been subcloned in different expression plasmid vectors. The highest yield of expression was obtained when the gene with its native ribosome-binding site was placed downstream of the lac promoter in plasmid pUC18. The protein is exported to the periplasmic space in Escherichia coli and the amount corresponds to 27% of the total protein content in the periplasmic space. The preprotein is cleaved correctly according to N-terminal sequencing of the purified protein. Azurin has been purified in large amounts and is spectroscopically indistinguishable from the protein purified from P. aeruginosa.  相似文献   

8.
Analysis of the interaction between the host immune system and the intracellular parasite Mycobacterium leprae has identified a 35 kDa protein as a dominant antigen. The native 35 kDa protein was purified from the membrane fraction of M. leprae and termed MMPI (major membrane protein I). As the purified protein was not amenable to N-terminal sequencing, partial proteolysis was used to establish the sequences of 21 peptides. A fragment of the 35 kDa protein-encoding gene was amplified by the polymerase chain reaction from M. leprae chromosomal DNA with oligonucleotide primers derived from internal peptide sequences and the whole gene was subsequently isolated from a M. leprae cosmid library. The nucleotide sequence of the gene revealed an open reading frame of 307 amino acids containing most of the peptide sequences derived from the native 35 kDa protein. The calculated subunit mass was 33.7 kDa, but the native protein exists as a multimer of 950 kDa. Database searches revealed no identity between the 35 kDa antigen and known protein sequences. The gene was expressed in Mycobacterium smegmatis under the control of its own promoter or at a higher level using an‘up-regulated’promoter derived from Mycobacterium fortuitum. The gene product reacted with monoclonal antibodies raised to the native protein. Using the bacterial alkaline phosphatase reporter system, we observed that the 35 kDa protein was unable to be exported across the membrane of recombinant M. smegmatis. The 35 kDa protein-encoding gene is absent from members of the Mycobacterium tuberculosis complex, but homologous sequences were detected in Mycobacterium avium, Mycobacterium haemophilum and M. smegmatis. The avaibility of the recombinant 35 kDa protein will permit dissection of both antibody- and T-cell-mediated immune responses in leprosy patients.  相似文献   

9.
Glucosidase I releases the distal alpha1,2-glucosyl residue in the Glc(3)Man(9)GlcNAc(2) precursor immediately after its transfer from the dolichol-P-P-linked intermediate in the endoplasmic reticulum and triggers the processes for the posttranslational remodeling, folding, and maturation of N-linked glycoproteins. The enzyme has been purified and characterized from several eukaryotic systems. Its cDNA and the gene have also been cloned. The enzyme is a target for the development of drugs for several pathological conditions. A structural analysis on the biochemically purified enzyme has been hampered because of its low abundance and unstable character. The recombinant enzyme has not been obtained in quantity and characterized. Glucosidase I is strongly inhibited by the glucose analog 1-deoxynojirimycin (DNM). To gain an insight into the architecture of the active site of the enzyme, we here report the synthesis of a photoactive derivative of DNM, viz. 4-(rho-azidosalicylamido)butyl-5-amido-pentyl-1-DNM (ASBA-P-DNM). With an IC(50) of 0.42 micro M, it is nearly nine times stronger inhibitor than DNM (IC(50) = 3.5 micro M). On photolysis, the bound [(125)I]ASBA-P-DNM specifically labels the native enzyme, which yields a 24-kDa peptide after treatment with V8 protease, apparently representing the region around its active site. Thus ASBA-P-DNM should serve as a novel reagent to conduct structure-function analysis on glucosidase I.  相似文献   

10.
P13 is a chromosomally encoded 13-kDa integral outer membrane protein of the Lyme disease agent, Borrelia burgdorferi. The aim of this study was to investigate the function of the P13 protein. Here, we inactivated the p13 gene by targeted mutagenesis and investigated the porin activities of outer membrane proteins by using lipid bilayer experiments. Channel-forming activity was lost in the p13 mutant compared to wild-type B. burgdorferi, indicating that P13 may function as a porin. We purified native P13 to homogeneity by fast performance liquid chromatography and demonstrated that pure P13 has channel-forming activity with a single-channel conductance in 1 M KCl of 3.5 nS, the same as the porin activity that was lost in the p13 mutant. Further characterization of the channel formed by P13 suggested that it is cation selective and voltage independent. In addition, no major physiological effects of the inactivated p13 gene could be detected under normal growth conditions. The inactivation of p13 is the first reported inactivation of a gene encoding an integral outer membrane protein in B. burgdorferi. Here, we describe both genetic and biophysical experiments indicating that P13 in B. burgdorferi is an outer membrane protein with porin activity.  相似文献   

11.
Bacteriophage T7 gene 4 protein, purified from phage-infected cells, consists of a mixture of a 56- and a 63-kDa species that provides primase and helicase activities for T7 DNA replication. The 56-kDa species has been purified 1800-fold from Escherichia coli cells containing a plasmid that encodes this gene 4 protein. The purified 56-kDa protein is homogeneous, as determined by denaturing gel electrophoresis, and is monomeric in its native form, as indicated by gel filtration. The binding of the 56-kDa protein to single-stranded DNA is stimulated by nucleoside 5'-triphosphates, as is the case for a mixture of the two molecular weight species. In the presence of DNA, the 56-kDa protein preferentially hydrolyzes dTTP (Bernstein, J. A., and Richardson, C. C. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 396-400). Since nucleoside 5'-triphosphatase activity is necessary for both helicase activity and for translocation of gene 4 protein to primase recognition sites, we have characterized this activity using the 56-kDa protein alone. In the DNA-dependent hydrolysis reaction, the enzyme displays a Km of 10 mM for dTTP, and a Vmax of 2.9 x 10(-5) M/min/mg of protein (at 2.5 micrograms/ml). There is little cooperativity with respect to dTTP binding (Hill coefficient = 1.1) except in the presence of ribonucleoside 5'-triphosphate, an inhibitor of dTTP hydrolysis (Hill coefficient greater than 1.5). The apparent KD for single-stranded circular DNA is 0.2 microM. The active species in dTTP hydrolysis is an oligomer of at least two subunits, as indicated by the effect of enzyme concentration upon the rate of DNA-dependent hydrolysis. The 56-kDa protein also catalyzes DNA-independent hydrolysis of dTTP with a Km of 0.11 mM and a Vmax of 1.3 x 10(-7) M/min/mg of protein (at 8 micrograms/ml). The active species in DNA-independent dTTP hydrolysis is also an oligomer.  相似文献   

12.
The dnaZ protein has been purified to near-homogeneity using an in vitro complementation assay that measures the restoration of activity in a crude enzyme fraction from the dnaZ mutant deficient in the replication of phi X174 DNA. Over 70-fold overproduction of the protein was obtained with a bacteriophage lambda lysogen carrying the dnaZ gene. The purified protein, under reducing and denaturing conditions, has a molecular weight of 52,000 and appears to be a dimer in its native form. The dnaZ protein is judged to be th 52,000-dalton gamma subunit of DNA polymerase III holoenzyme (McHenry, C., and Kornberg, A. (1977) J. Biol. Chem. 252, 6478-6484) for the following reasons: (i) highly purified DNA polymerase III holoenzyme contains a 52,000-dalton polypeptide and has dnaZ-complementing activity; (ii) the 52,000-dalton polypeptide is associated tightly with the DNA polymerase III holoenzyme and can be separated from the DNA polymerase III core only with severe measures; (iii) no other purified replication protein, among 14 tested, contains dnaZ protein activity; and (iv) the abundance of dnaZ protein, estimated at about 10 dimer molecules per Escherichia coli cell, is similar to that of the DNA polymerase III core. Among several circular templates tested in vitro (i.e. single stranded phi X174, G4 and M13 DNAs, and duplex phi X174 DNA), all rely on dnaZ protein for elongation by DNA polymerase III holoenzyme. The protein acts catalytically at a stoichiometry of one dimer per template.  相似文献   

13.
Purification and properties of the Escherichia coli dnaK replication protein   总被引:37,自引:0,他引:37  
The Escherichia coli dnaK+ gene was cloned into the "runaway" plasmid vector pMOB45 resulting in a large overproduction of the dnaK protein. The dnaK protein was purified by following its ability to complement the replication of single-stranded M13 bacteriophage DNA in a reaction system dependent on the presence of the lambda O and P DNA replication proteins. The DNA replication activity of the dnaK protein is also essential for lambda dv DNA replication in vitro, since antibodies against it were shown to inhibit the reaction. Purified dnaK protein preparations possess a weak ATPase activity and an autophosphorylating activity which copurify with its DNA replication activity throughout all purification steps. The dnaK protein is an acidic largely monomeric protein of Mr = 72,000 and 78,400 under denaturing and native conditions, respectively. The amino acid composition and N-terminal amino acid sequence match those predicted from the DNA sequence of the dnaK gene (Bardwell, J.C.A., and Craig, E. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 848-852).  相似文献   

14.
A gene (Ecs) encoding a platelet aggregation inhibitor, echistatin (Ecs), has been chemically synthesized. Met at position 28 of the native protein was replaced by Leu in the recombinant Ecs. To express this synthetic gene in Escherichia coli, an expression vector, pJC264, was constructed by inserting portions of the E. coli cheB and cheY gene complex into the plasmid pUC13. High-level expression of the synthetic [Leu-28]Ecs was achieved by its fusion with the E. coli cheY gene in the expression vector. Recombinant [Leu-28]Ecs was liberated from the fusion protein by CNBr cleavage at the Met inserted between the CheY protein and [Leu-28]Ecs. The recombinant [Leu-28]Ecs was purified to homogeneity by reverse-phase high-performance liquid chromatography. The refolded [Leu-28]Ecs was identical to native Ecs in inhibiting platelet aggregation, suggesting that Met at position 28 is not essential for the biological activity of this platelet aggregation inhibitor.  相似文献   

15.
16.
17.
Rhizobium etli glutaminase A was purified to homogeneity by conventional procedures that included ammonium sulfate differential precipitation, ion-exchange chromatography, hydrophobic interaction chromatography, gel filtration, and dye-ligand chromatography. Alternatively, the structural glsA gene that codifies for glutaminase A was amplified by PCR and cloned in the expression vector pTrcHis. The recombinant protein was purified to homogeneity by affinity chromatography. This protein showed the same kinetic properties as native glutaminase A (K(m) for glutamine of 1.5 mM and V(max) of 80 micromol ammonium min(-1) mg protein(-1)). Physicochemical and biochemical properties of native and recombinant glutaminase were identical. The molecular mass of recombinant glutaminase A (M(r) 106.8 kDa) and the molecular mass of the subunits (M(r) 26.9 kDa) were estimated by mass spectrometry. These results suggest that R. etli glutaminase A is composed of four identical subunits. The high-level production of recombinant glutaminase A elevates the possibilities for determination of its three-dimensional structure through X-ray crystallography.  相似文献   

18.
Cobra venom (Naja naja naja) phospholipase A2 (PLA2) contains 14 cysteines in the form of 7 disulfide bonds amongst its 119 amino acids. A gene encoding the PLA2 was synthesized and inserted into a bacterial expression vector containing the phage lambda pL promoter. In order to obtain protein without the initiating methionine at the N-terminus, a Factor Xa site was engineered upstream from the PLA2 gene. Upon heat-induction of the cells transformed with the expression plasmid, the protein is produced as insoluble inclusion bodies. The enzyme was partially purified by washing the inclusion bodies with Triton X-100 and urea. The expressed protein was first denatured with 8 M guanidine-HCl and 10 mM DTT. After digestion with Factor Xa, formation of disulfide bonds and refolding into the fully active form was carried out in the presence of cysteine and Ca2+. The renatured recombinant protein was purified by Affi-gel blue column chromatography. The purified recombinant enzyme had the same specific activity as the native enzyme when assayed on a variety of substrates and cross-reacted with antisera prepared against the native enzyme. This is the first report of the expression of a recombinant PLA2 from any venom.  相似文献   

19.
A 2.7-kilobase fragment of DNA from Oerskovia xanthineolytica containing the gene for a beta-1,3-glucanase has been isolated and its complete nucleotide sequence determined. The sequence was found to contain two large open reading frames. Purification of the mature native enzyme and subsequent amino-terminal sequencing defined the glucanase gene in one reading frame which potentially encodes a protein of 548 amino acids. We have expressed this glucanase gene in Escherichia coli under control of the lacUV5 promoter and found the product to be secreted into the periplasm as a mature enzyme of about the same molecular weight as that of the native protein. The recombinant enzyme was purified to near homogeneity by a single step of high performance liquid chromatography. The ability of the recombinant enzyme to digest beta-glucan substrates and to lyse viable yeast cells was found to be indistinguishable from that of the native protein. Deletion of the cysteine-rich carboxyl-terminal 117 amino acids of the enzyme, which also contain two duplicated segments, abolished the lytic activity but did not significantly affect the glucanase function of the protein. The possible involvement of this domain in interaction with the yeast cell wall is discussed.  相似文献   

20.
1-Aminocyclopropane-1-carboxylic acid (ACC), which is a precursor of ethylene in plants, has never been known to occur in microorganisms. We describe the synthesis of ACC by Penicillium citrinum, purification of ACC synthase [EC 4.4.1.14] and ACC deaminase [EC 4.1.99.4], and their properties. Analyses of P. citrinum culture showed occurrence of ACC in the culture broth and in the cell extract. ACC synthase was purified from cells grown in a medium containing 0.05% L-methionine and ACC deaminase was done from cells incubated in a medium containing 1% 2-aminoisobutyrate. The purified ACC synthase, with a specific activity of 327 milliunit/mg protein, showed a single band of M(r) 48,000 in SDS-polyacrylamide gel electrophoresis. The molecular mass of the native enzyme by gel filtration was 96,000 Da. The ACC synthase had the Km for S-adenosyl-L-methionine of 1.74 mM and kcat of 0.56 s-1 per monomer. The purified ACC deaminase, with a specific activity of 4.7 unit/mg protein, showed one band in SDS-polyacrylamide gel electrophoresis of M(r) 41,000. The molecular mass of the native ACC deaminase was 68,000 Da by gel filtration. The enzyme had a Km for ACC of 4.8 mM and kcat of 3.52 s-1. The presence of 7 mM Cu2+ in alkaline buffer solution was effective for increasing the stability of the ACC deaminase in the process of purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号