首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C1s is the highly specific modular serine protease that mediates the proteolytic activity of the C1 complex and thereby triggers activation of the complement cascade. The crystal structure of a catalytic fragment from human C1s comprising the second complement control protein (CCP2) module and the chymotrypsin-like serine protease (SP) domain has been determined and refined to 1.7 A resolution. In the areas surrounding the active site, the SP structure reveals a restricted access to subsidiary substrate binding sites that could be responsible for the narrow specificity of C1s. The ellipsoidal CCP2 module is oriented perpendicularly to the surface of the SP domain. This arrangement is maintained through a rigid module-domain interface involving intertwined proline- and tyrosine-rich polypeptide segments. The relative orientation of SP and CCP2 is consistent with the fact that the latter provides additional substrate recognition sites for the C4 substrate. This structure provides a first example of a CCP-SP assembly that is conserved in diverse extracellular proteins. Its implications in the activation mechanism of C1 are discussed.  相似文献   

2.
A clip domain family of serine proteases has been identified in invertebrates as a crucial enzyme involved in diverse biological processes including immune responses and embryonic development. Although these proteins contain at least one clip domain at the N-terminal of the serine protease domain, the roles and three-dimensional structure of the clip domain are unknown. Prophenoloxidase activating factor-II (PPAF-II), a clip domain family of serine proteases, derived from the beetle Holotrichia diomphalia larvae, was overexpressed in the baculovirus system, and crystallized using the hanging-drop vapor-diffusion method. High-quality single crystals of PPAF-II were obtained in a precipitant solution containing 0.15 M ammonium sulfate, 1.25 M lithium sulfate monohydrate, and 0.1 M sodium citrate dehydrate (pH 5.5). These crystals belong to space group C2 with unit-cell parameters a=107.84, b=76.78, c=70.49 A and beta=113.93 degrees , and contain one or two molecules in the asymmetric unit. Determination of the three-dimensional structure of PPAF-II would clarify the functions of the clip domains.  相似文献   

3.
《Journal of Asia》2021,24(4):1144-1152
In insects, proteolytic cascades medicated by serine proteases (SPs), serine protease homologs (SPHs) and prophenoloxidases (PPOs) control several physiological processes, notably the innate immunity. However, no attempts have been made to identify and characterize these genes in Spodoptera frugiperda, one of the most destructive agricultural pests. In this study, 83 SPs, 26 SPHs and four PPOs were respectively identified in S. frugiperda genome based on homology blast against those of other insects. We then analyzed the domain organization of these proteins and assigned them into different groups by phylogenetic reconstruction. Furthermore, the mRNA levels of clip-domain SPs/SPHs (cSPs/cSPHs) and PPOs were quantified in response to a mixed infection of Micrococcus luteus and Escherichia coli, and obvious accumulations were recorded in immune tissues, including hemocytes and fat body. In the latter study, we profiled the expression patterns of highly expressed cSPs and PPOs in different developmental stages, including egg, larva, pupa, female and male adults. It was shown that most cSPs were abundantly expressed in adults, while PPOs were detected at high levels in both egg and larval stages. These current findings substantially add to our understanding of the roles of S. frugiperda SPs, SPHs and PPOs in immune regulation and further lay a solid foundation for uncovering the interaction mechanisms between insects and pathogens.  相似文献   

4.
The crystal structure of a serine protease from the alkalophilic strain Bacillus alcalophilus PB92 has been determined by X-ray diffraction at 1.75 A resolution. The structure has been solved by molecular replacement using the atomic model of subtilisin Carlsberg. The model of the PB92 protease has been refined to an R-factor of 14.0% and contains 1882 protein atoms, two calcium ions and 188 water molecules. The overall folding of the polypeptide chain closely resembles that of the subtilisins. Furthermore, almost all of the secondary structure elements found in subtilisin Carlsberg are also present in the PB92 protease. The major differences between the two structures are located around the deletion regions (residues 37 and 158-161 in subtilisin Carlsberg) and in two loops which are known to be the most variable parts of subtilisin structures. Flexibility of one of these loops (residues 126-130 in the PB92 protease) is believed to account for the induced-fit mechanism of substrate binding.  相似文献   

5.
Piao S  Song YL  Kim JH  Park SY  Park JW  Lee BL  Oh BH  Ha NC 《The EMBO journal》2005,24(24):4404-4414
Clip-domain serine proteases (SPs) are the essential components of extracellular signaling cascades in various biological processes, especially in embryonic development and the innate immune responses of invertebrates. They consist of a chymotrypsin-like SP domain and one or two clip domains at the N-terminus. Prophenoloxidase-activating factor (PPAF)-II, which belongs to the noncatalytic clip-domain SP family, is indispensable for the generation of the active phenoloxidase leading to melanization, a major defense mechanism of insects. Here, the crystal structure of PPAF-II reveals that the clip domain adopts a novel fold containing a central cleft, which is distinct from the structures of defensins with a similar arrangement of cysteine residues. Ensuing studies demonstrated that PPAF-II forms a homo-oligomer upon cleavage by the upstream protease and that the clip domain of PPAF-II functions as a module for binding phenoloxidase through the central cleft, while the clip domain of a catalytically active easter-type SP plays an essential role in the rapid activation of its protease domain.  相似文献   

6.
We report here the first crystal structure of the N-terminal domain of an A-type Lon protease. Lon proteases are ubiquitous, multidomain, ATP-dependent enzymes with both highly specific and non-specific protein binding, unfolding, and degrading activities. We expressed and purified a stable, monomeric 119-amino acid N-terminal subdomain of the Escherichia coli A-type Lon protease and determined its crystal structure at 2.03 A (Protein Data Bank [PDB] code 2ANE). The structure was solved in two crystal forms, yielding 14 independent views. The domain exhibits a unique fold consisting primarily of three twisted beta-sheets and a single long alpha-helix. Analysis of recent PDB depositions identified a similar fold in BPP1347 (PDB code 1ZBO), a 203-amino acid protein of unknown function from Bordetella parapertussis, crystallized as part of a structural genomics effort. BPP1347 shares sequence homology with Lon N-domains and with a family of other independently expressed proteins of unknown functions. We postulate that, as is the case in Lon proteases, this structural domain represents a general protein and polypeptide interaction domain.  相似文献   

7.
Thrombin is a serine protease that plays a central role in blood coagulation. It is inhibited by hirudin, a polypeptide of 65 amino acids, through the formation of a tight, noncovalent complex. Tetragonal crystals of the complex formed between human alpha-thrombin and recombinant hirudin (variant 1) have been grown and the crystal structure of this complex has been determined to a resolution of 2.95 A. This structure shows that hirudin inhibits thrombin by a previously unobserved mechanism. In contrast to other inhibitors of serine proteases, the specificity of hirudin is not due to interaction with the primary specificity pocket of thrombin, but rather through binding at sites both close to and distant from the active site. The carboxyl tail of hirudin (residues 48-65) wraps around thrombin along the putative fibrinogen secondary binding site. This long groove extends from the active site cleft and is flanked by the thrombin loops 35-39 and 70-80. Hirudin makes a number of ionic and hydrophobic interactions with thrombin in this area. Furthermore hirudin binds with its N-terminal three residues Val, Val, Tyr to the thrombin active site cleft. Val1 occupies the position P2 and Tyr3 approximately the position P3 of the synthetic inhibitor D-Phe-Pro-ArgCH2Cl. Thus the hirudin polypeptide chain runs in a direction opposite to that expected for fibrinogen and that observed for the substrate-like inhibitor D-Phe-Pro-ArgCH2Cl.  相似文献   

8.
Lon protease is evolutionarily conserved in prokaryotes and eukaryotic organelles. The primary function of Lon is to selectively degrade abnormal and certain regulatory proteins to maintain the homeostasis in vivo. Lon mainly consists of three functional domains and the N‐terminal domain is required for the substrate selection and recognition. However, the precise contribution of the N‐terminal domain remains elusive. Here, we determined the crystal structure of the N‐terminal 192‐residue construct of Lon protease from Mycobacterium avium complex at 2.4 å resolution,and measured NMR‐relaxation parameters of backbones. This structure consists of two subdomains, the β‐strand rich N‐terminal subdomain and the five‐helix bundle of C‐terminal subdomain, connected by a flexible linker,and is similar to the overall structure of the N domain of Escherichia coli Lon even though their sequence identity is only 26%. The obtained NMR‐relaxation parameters reveal two stabilized loops involved in the structural packing of the compact N domain and a turn structure formation. The performed homology comparison suggests that structural and sequence variations in the N domain may be closely related to the substrate selectivity of Lon variants. Our results provide the structure and dynamics characterization of a new Lon N domain, and will help to define the precise contribution of the Lon N‐terminal domain to the substrate recognition.  相似文献   

9.
HtrA (high temperature requirement A), a periplasmic heat-shock protein, functions as a molecular chaperone at low temperatures, and its proteolytic activity is turned on at elevated temperatures. To investigate the mechanism of functional switch to protease, we determined the crystal structure of the NH(2)-terminal protease domain (PD) of HtrA from Thermotoga maritima, which was shown to retain both proteolytic and chaperone-like activities. Three subunits of HtrA PD compose a trimer, and multimerization architecture is similar to that found in the crystal structures of intact HtrA hexamer from Escherichia coli and human HtrA2 trimer. HtrA PD shares the same fold with chymotrypsin-like serine proteases, but it contains an additional lid that blocks access the of substrates to the active site. A corresponding lid found in E. coli HtrA is a long loop that also blocks the active site of another subunit. These results suggest that the activation of the proteolytic function of HtrA at elevated temperatures might occur by a conformational change, which includes the opening of the helical lid to expose the active site and subsequent rearrangement of a catalytic triad and an oxyanion hole.  相似文献   

10.
With the advent of the sequencing programs of prokaryotic genomes, many examples of the presence of serine/threonine protein kinases in these organisms have been identified. Moreover, these kinases could be classified as homologues of those belonging to the well characterized superfamily of the eukaryotic serine/threonine and tyrosine kinases. Eleven such kinases were recognized in the genome of Mycobacterium tuberculosis. Here we report the crystal structure of an active form of PknB, one of the four M. tuberculosis kinases that are conserved in the downsized genome of Mycobacterium leprae and are therefore presumed to play an important role in the processes that regulate the complex life cycle of mycobacteria. Our structure confirms again the extraordinary conservation of the protein kinase fold and constitutes a landmark that extends this conservation across the evolutionary distance between high eukaryotes and eubacteria. The structure of PknB, in complex with a nucleotide triphosphate analog, reveals an enzyme in the active state with an unprecedented arrangement of the Gly-rich loop associated with a new conformation of the nucleotide gamma-phosphoryl group. It presents as well a partially disordered activation loop, suggesting an induced fit mode of binding for the so far unknown substrates of this kinase or for some modulating factor(s).  相似文献   

11.
The blotched snakehead virus (BSNV), an aquatic birnavirus, encodes a polyprotein (NH2-pVP2-X-VP4-VP3-COOH) that is processed through the proteolytic activity of its own protease (VP4) to liberate itself and the viral proteins pVP2, X and VP3. The protein pVP2 is further processed by VP4 to give rise to the capsid protein VP2 and four structural peptides. We report here the crystal structure of a VP4 protease from BSNV, which displays a catalytic serine/lysine dyad in its active site. This is the first crystal structure of a birnavirus protease and the first crystal structure of a viral protease that utilizes a lysine general base in its catalytic mechanism. The topology of the VP4 substrate binding site is consistent with the enzymes substrate specificity and a nucleophilic attack from the si-face of the substrates scissile bond. Despite low levels of sequence identity, VP4 shows similarities in its active site to other characterized Ser/Lys proteases such as signal peptidase, LexA protease and Lon protease. Together, the structure of VP4 provides insights into the mechanism of a recently characterized clan of serine proteases that utilize a lysine general base and reveals the structure of potential targets for antiviral therapy, especially for other related and economically important viruses, such as infectious bursal disease virus in poultry and infectious pancreatic necrosis virus in aquaculture.  相似文献   

12.
《Insect Biochemistry》1990,20(5):485-492
Three proteinase inhibitors have so far been isolated and purified from crayfish haemolymph. One of these, isolated from crayfish plasma, namely a trypsin inhibitor with a molecular mass of 155 kDa was found to inhibit a serine proteinase, ppA, which is involved in the activation of prophenoloxidase, and is localized in the haemocytes. Another high molecular mass proteinase inhibitor, an α2-macroglobulin from crayfish plasma, which is a dimer of 190 kDa-subunits, was only inhibitory towards ppA to a lesser extent. A 23 kDa subtilisin inhibitor, purified from haemocytes, did not have any effect on the serine proteinase.We suggest that mainly the trypsin inhibitor, but to some extent also the α2-macroglobulin, are important in the regulation of the prophenoloxidase activating cascade, as they both inhibit ppA, which in its active form has been shown to mediate prophenoloxidase activation.  相似文献   

13.
Huang R  Lu Z  Dai H  Velde DV  Prakash O  Jiang H 《Biochemistry》2007,46(41):11431-11439
Clip domains are structural modules found in arthropod serine proteinases and some proteolytically inactive homologues, which mediate extracellular signaling pathways of development and immunity. While little is known about their structures or functions, clip domains are proposed to be sites for interactions of proteinases with their activators, cofactors, and substrates. Here we report the solution structure of dual clip domains from Manduca sexta prophenoloxidase activating proteinase-2. Each domain adopts a new mixed alpha/beta fold (a three-stranded antiparallel beta-sheet flanked by two alpha-helices), and the architecture provides structural information on clip domains from a catalytically active proteinase for the first time. Examination of the structure in conjunction with a multiple sequence alignment of the clip domains from different groups suggests a substrate-binding site, a bacteria-interacting region, and a surface for specific interactions. In summary, our results provide insights into the structural basis of clip domain functions and this structure may represent the prototype of group-2 clip domains.  相似文献   

14.
The prophenoloxidase (proPO) activation pathway, like the vertebrate complement system, consists of a protease cascade and functions as a non-self-recognition system in these animals. Determining the molecular mechanism by which pattern recognition molecules differentiate non-self from self and transduce signals that stimulate defense responses is a key for understanding the ways in which innate immune systems are regulated. However, the proPO system is poorly defined at the molecular level. The proPO-activating system of the insect Holotrichia diomphalia comprises several components, some of which have been cloned and characterized, such as the novel 27-kDa proPO-activating factor-III (PPAF-III) from the plasma of H. diomphalia larvae and two prophenoloxidases. The PPAF-III gene encodes an easter-type serine protease zymogen consisting of 351 amino acid residues with a mass of 40 kDa. The purified 27-kDa PPAF-III specifically cleaved a 55-kDa proPPAF-II to generate a 45-kDa PPAF-II with or without Ca2+ present. Furthermore, two Holotrichia prophenoloxidases (proPO-I and -II) have been characterized, and their structural changes during activation were examined by in vitro reconstitution experiments. When the proPOs were incubated with PPAF-I, the 79-kDa proPOs were converted to 76-kDa proPOs, which did not exhibit any phenoloxidase (PO) activity. However, when the proPOs were incubated simultaneously with PPAF-I, proPPAF-II, and PPAF-III in the presence of Ca2+, a 60-kDa protein (PO-1) with PO activity was detected in addition to the 76-kDa proPO-II protein. These results indicate that the conversion of Holotrichia proPOs to enzymatically active phenoloxidase is accomplished by PPAF-I, PAF-II, and PPAF-III through a two-step limited proteolysis in the presence of Ca2+.  相似文献   

15.
The three-dimensional structure of duodenase, a serine protease from bovine duodenum mucosa, has been determined at 2.4A resolution. The enzyme, which has both trypsin-like and chymotrypsin-like activities, most closely resembles human cathepsin G with which it shares 57% sequence identity and similar specificity. The catalytic Ser195 in duodenase adopts the energetically favored conformation typical of serine proteinases and unlike the strained state typical of lipase/esterases. Of several waters in the active site of duodenase, the one associated with Ser214 is found in all serine proteinases and most lipase/esterases. The conservation of the Ser214 residue in serine proteinase, its presence in the active site, and participation in a hydrogen water network involving the catalytic triad (His57, Asp107, and Ser195) argues for its having an important role in the mechanism of action. It may be referred to as a fourth member of the catalytic triad. Duodenase is one of a growing family of enzymes that possesses trypsin-like and chymotrypsin-like activity. Not long ago, these activities were considered to be mutually exclusive. Computer modeling reveals that the S1 subsite of duodenase has structural features compatible with effective accommodation of P1 residues typical of trypsin (Arg/Lys) and chymotrypsin (Tyr/Phe) substrates. The determination of structural features associated with functional variation in the enzyme family may permit design of enzymes with a specific ratio of trypsin and chymotrypsin activities.  相似文献   

16.
Summary Lipopolysaccharides (LPS) and the -1,3-glucan laminarin G, both of which specifically activate the prophenoloxidase (proPO) activating system of crayfish haemocyte lysate, were found to induce degranulation (exocytosis) and subsequent lysis in vitro of monolayers of semigranular haemocytes from the crayfish,Pacifastacus leniusculus, (Table 1, Fig. 1 b), whereas the granular cells were unaffected (Fig. 1 c).Exocytosis of isolated semigranular or granular cells in vitro could also be evoked by the Ca2 ionophore A23187 (Table 2, Fig. 1 d). In this case, the whole proPO system was released from the cellular vesicles in its inactive form, since the secreted material contained protease and prophenoloxidase as inactive proenzymes, which could be activated if LPS or -1,3-glucans were added (Table 3). The anion channel blocker SITS, which inhibits exocytosis in several systems, prevented degranulation triggered by -1,3-glucan, LPS, or ionophore.It is concluded that, in arthropods, LPS serve as an indicator of Gram negative bacteria and -1,3-glucan as an indicator of fungi. These non-self molecules elicit both the exocytotic release of the proPO system from the semigranular cells and the subsequent biochemical activation of this system.Abbreviations CFS crayfish saline - DMSO dimethyl sulfoxide - LDH lactate dehydrogenase - LPS lipopolysaccharide - proPO prophenoloxidase - SITS 4-acetamido-4-isothiocyanato-stilbene-2,2-disulfonic acid, disodium salt  相似文献   

17.
In view of the functional similarities between subtilisin Carlsberg and the alkaline protease fromConidiobolus coronatus, the biochemical and structural properties of the two enzymes were compared. In spite of their similar biochemical properties, e.g., pH optima, heat stability, molecular mass, pI, esterase activity, and inhibition by diisopropyl fluorophosphate and phenylmethlysulfonylfluoride, the proteases were structurally dissimilar as revealed by (1) their amino acid compositions, (2) their inhibition by subtilisin inhibitor, (3) their immunological response to specific anti-Conidiobolus protease antibody, and (4) their tryptic peptide maps. Our results demonstrate that although they are functionally analogous, theConidiobolus protease is structurally distinct from subtilisin Carlsberg. TheConidiobolus protease was also different from other bacterial and animal proteases (e.g. pronase, protease K, trypsin, and chymotrypsin) as evidenced by their lack of response to anti-Conidiobolus protease antibody in double diffusion and in neutralization assays. TheConidiobolus serine protease fails to obey the general rule that proteins with similar functions have similar primary sequences and, thus, are evolutionarily related. Our results strengthen the concept of convergent evolution for serine proteases and provide basis for research in evolutionary relationships among fungal, bacterial, and animal proteases.  相似文献   

18.
昆虫酚氧化酶原活化及其在免疫中的作用   总被引:14,自引:1,他引:14  
时超美 《昆虫知识》2000,37(5):310-314
1 前言酚氧化酶 (phenoloxidase,PO)以无活性的酶原形式——酚氧化酶原 (prophenoloxi-dase,PPO)存在于昆虫血淋巴、中肠和表皮等组织 ,当病原生物入侵时 ,通过特异性丝氨酸蛋白酶的级联反应 (PPO级联 )被活化 ,参与机体的免疫防御反应 [1] 。本文拟就近年来有关昆虫PPO级联及其在免疫中的作用等研究方面的新进展做一简述。2 PPO的特性及其分子生物学PPO是 PPO级联中一个很重要的成分 ,近年来 ,随着分子生物学技术和其他相关学科的快速发展及向昆虫学领域的日渐渗透 ,有关PPO特性及其分子生物学方面的研究取得了很大进展。目前…  相似文献   

19.
Factor I (fI) is a major regulator of complement. As a protease it has very restricted specificity, cleaving only C3b or C4b in the presence of a cofactor such as factor H (fH). Cleavage of C3b by fI yields iC3b, a major opsonin. The cleavage occurs through the formation of a ternary complex between the enzyme, the substrate, and the cofactor. The catalytic subunit of fI, the SP domain, accommodates substrate recognition and cleavage. The role of the fI heavy chain within the catalysis complex is unknown. Using partial proteolysis and affinity chromatography an intact form of the SP domain was generated and isolated from fI in high yield. fI and the SP domain were found to have similar amidolytic activities but strikingly different proteolytic activities on C3(NH(3)). fI did not cleave C3(NH(3)) in the absence of fH, while in its presence it cleaved C3(NH(3)) rapidly at two sites. The SP domain, however, slowly cleaved C3(NH(3)) in the absence of fH, at more than two sites. Cleavage by the SP domain was inhibited, not stimulated, by fH. Pefabloc SC and antipain inhibited the proteolytic activity of both fI and the SP domain, but suramin inhibited only fI and not the SP domain. The contrast in the proteolytic activities suggests that the heavy chain domains and the cofactor must have roles in orienting the natural substrates and restricting cleavage to the two sites which yield iC3b through a highly specific catalysis.  相似文献   

20.
Zhu L  Song L  Mao Y  Zhao J  Li C  Xu W 《Molecular biology reports》2008,35(2):257-264
The serine proteases with clip domain are involved in various innate immune functions in invertebrate such as antimicrobial activity, cell adhesion, pattern recognition and regulation of the prophenoloxidase system. A serine protease with clip-domain cDNA (Cf SP) was obtained by Expressed sequence taggings (ESTs) method and rapid amplification of cDNA ends (RACE). The Cf SP full-length cDNA was of 1,152 bp, including a 5'-terminal untranslated region (UTR) of 63 bp, a 3'-terminal UTR of 81 bp with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, and an open reading frame of 1,008 bp encoding a polypeptide of 336 amino acids with a putative signal peptide of 19 amino acids. The deduced amino acid sequence of Cf SP contained an amino-terminal clip domain with three disulfide bonds formed six conserved Cys residues, a carboxyl-terminal trypsin-like domain with the conserved His-Asp-Ser catalytic triad, and a low complexity linker sequence. The Cf SP was strongly expressed in hemocytes and the mRNA expression of Cf SP was up-regulated and increased 3.2-fold and 2.6-fold at 16 h after injection of Vibrio anguillarum and Micrococcus luteus. The results suggested that Cf SP gene might be involved in immune response of Gram-negative and Gram-positive microbial infection in scallop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号