首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The hydroxo complex [NBu4]2[Ni2(C6F5)4(μ-OH)2] reacts with ammonium O,O-dialkyldithiophosphates, O-alkyl-p-methoxyphenyldithiophosphonate acids and ammonium O-alkylferrocenyldithiophosphonates in dichloromethane under mild conditions to give, respectively, [NBu4][Ni(C6F5)2{S(S)P(OR)2}] (R=Me (1), Et (2), iPr (3)) and [NBu4][Ni(C6F5)2{S(S)P(OR)Ar}] (Ar=p-MeOC6H4, R=Me (4), Et (5), iPr (6); Ar=ferrocenyl; R=Me (7), Et (8), iPr (9)). The monothiophosphonate nickel complexes [NBu4][Ni(C6F5)2{S(S)P(OR)(ferrocenyl)}] (R=Et (10), iPr (11)) are obtained by reaction of the hydroxo complex with O-alkylferrocenyldithiophosphonate acids. Analytical (C, H, N, S), conductivity, and spectroscopic (IR, 1H, 19F and 31P NMR, and FAB-MS) data were used for structural assignments. A single-crystal X-ray diffraction study of [NBu4][Ni(C6F5)2{S(S)P(OMe)(p-MeOC6H4)}] (4) and [NBu4][Ni(C6F5)2{S(O)P(OEt)(ferrocenyl)}] (10) shows that in both cases the coordination around the nickel atom es essentially square planar with NiC2S2 and NiC2SO central cores, respectively.  相似文献   

2.
Three mono- and dinuclear nickel complexes with dichalcogenolate o-carboranyl ligands were synthesized and characterized by X-ray crystallography. The reactions of Ni(COD)2(COD=1,5-octadiene) with [(THF)3LiE2C2B10H10Li(THF)]2 (E=S, Se) in THF in the presence of air in different ratios afforded the mono- and dinuclear nickel complexes of formulae Li(THF)4]2[Ni(E2C2B10H10)2] (E=S, 1a; E=Se, 1b) and [Li(THF)4]2[Ni2(E2C2B10H10)3] (E=S, 2a; E=Se, 2b). In 2a, two nickel atoms are connected by one chalcogen (η12-S2C2B10H10) bridging ligand with strong metal-metal interaction. Complex of formula (PPh3)2Ni(S2C2B10H10) · 0.5THF (3a) was also obtained from the reaction of (PPh3)2NiCl2 and [(THF)3LiS2C2B10H10Li(THF)]2.  相似文献   

3.
Four new nickel(II) complexes of dissymmetric tetradentate ligands, containing mixed-ligand donor sets of NSNS or NSNO, have been synthesized. These complexes were prepared by facile template reactions of the appropriate aldehyde and amine in the presence of [Ni(H2O)6](BF4)2, resulting directly in the desired nickel compounds. The nickel compounds were characterized by analytical, spectroscopic and electrochemical methods. The structures of [Ni(pyzs)]BF4, [Ni(pyrs)]BF4 and [Ni(pyzo)]BF4 (see Scheme 1) have been determined by single-crystal X-ray crystallography, showing the geometry of the nickel ion to be square-planar. Vis–NIR spectra show that the phenolate-containing complexes [Ni(pyzo)]BF4 and [Ni(pyro)]BF4 (see Scheme 1) are essentially square-planar in nitromethane, but tetragonal octahedral in methanol, whereas the thiophenolate-containing compounds [Ni(pyzs)]BF4 and [Ni(pyrs)]BF4 remain square-planar in both solvents. Titration of the thiophenolate-containing complexes with 1-methylimidazole results in diamagnetic five-coordinated complexes. Electrochemistry shows quasi-reversible reductions to Ni(I) to occur for [Ni(pyzo)]BF4, [Ni(pyrs)]BF4 and [Ni(pyro)]BF4.  相似文献   

4.
The bimetallic cyclosiloxanolate cluster complexes Na[PhSiO2)6Cu4Ni26-Cl)(PhSiO2)6] (1) and Na[(PhSiO2)6Cu3Ni3(μ6-Cl)(PhSiO2)6] (2) were prepared by Na+ and Ni2+ ion exchange from in situ generated Na2 {[(PhSiO2)6]2Na4Ni4(OH)2}. Complexes 1 and 2 were characterized by analytical, spectroscopic and electrochemical methods as well as complex 2 by single-crystal X-ray diffraction. The X-ray structure shows a sandwich-type array comprising two superimposed cyclosiloxanolate rings and an M6Cl unit in between. For the first time the regioselectivity of the metal ion exchange could be deduced from the X-ray structural parameters.  相似文献   

5.
The nickel(II) complexes of the compositions [Ni(hmidtc)(bpy)2]ClO4 (I), [Ni(hmidtc)(phen)2]ClO4 (II), [Ni(hmidtc)(phen)2]SCN (III), [Ni(hmidtc)(phen)2]PF6 (IV), [Ni(hmidtc)(phen)2]BPh4 (V), [Ni(hmidtc)(phen)2]AcO·2H2O (VI) and [Ni(hmidtc)(phen)2]Br·H2O (VII), involving a combination of one hexamethyleneimine-dithiocarbamate anion (hmidtc) and two bidentate N,N-donor ligands (2,2′-bipyridine (bpy) for I or 1,10-phenanthroline (phen) for II-VII), have been prepared. The compounds were characterized by elemental analysis, molar conductivity measurements, UV-Vis and IR spectroscopy, magnetochemical measurements and thermal analysis. A single-crystal X-ray analysis of the complex I revealed a distorted octahedral geometry with the nickel(II) ion coordinated by four nitrogen atoms (from two bidentate-coordinated bpy molecules) and two sulfur atoms (from one bidentate-coordinated hmidtc anion), together giving an NiN4S2 donor set.  相似文献   

6.
Five new complexes of general formula: [Ni(RSO2NCS2)(dppe)], where R = C6H5 (1), 4-ClC6H4 (2), 4-BrC6H4 (3), 4-IC6H4 (4) and dppe = 1,2-bis(diphenylphosphino)ethane and [Ni(4-IC6H4SO2NCS2)(PPh3)2] (5), where PPh3 = triphenylphosphine, were obtained in crystalline form by the reaction of the appropriate potassium N-R-sulfonyldithiocarbimate K2(RSO2NCS2) and dppe or PPh3 with nickel(II) chloride in ethanol/water. The elemental analyses and the IR, 1H NMR, 13C NMR and 31P NMR spectra are consistent with the formation of the square planar nickel(II) complexes with mixed ligands. All complexes were also characterized by X-ray diffraction techniques and present a distorted cis-NiS2P2 square-planar configuration around the Ni atom. Quantum chemical calculations reproduced the crystallographic structures and are in accord with the spectroscopic data. Rare C-H···Ni intramolecular short contact interactions were observed in the complexes 1-5.  相似文献   

7.
The observation of homolytic S---CH3 bond cleavage in (Ph2P(o-C6H4)SCH3)2Ni0 under photochemical conditions has prompted further investigation of nickel(0) complexes and their stability. Tetradentate P2S′2 donor ligands (S′ = thioether type S donor) with aromatic rings incorporated into the P to S links, Ph2P(o-C6H4)S(CH2)3S(o-C6H4)PPh2 (arom-PSSP), or the S to S links, Ph2P(CH2)2SCH2(o-C6H4)CH2S(CH2)2PPh2 (PS-xy-SP), have been used to form four-coordinate, square planar nickel(II) complexes, [(arom-PSSP)Ni](BF4)2 (2) and [(PS-xy-SP)Ni](BF4)2 (3). The bidentate and tetradentate ligands, Ph2P(o-C6H4)SCH2CH3 (arom-PSEt) and Ph2P(CH2)2S(CH2)3S(CH2)2PPh2 (PSSP), give similar complexes, [(arom-PSEt)2Ni](BF4)2 (1) and [(PSSP)Ni](BF4)2 (4), respectively. Cyclic voltammograms of the Ni11 complexes in CH3CN show two reversible redox events assigned to and . The one-electron reduction product produced by stoichiometric amounts of Cp2Co can be characterized by EPR. At 100 K rhombic signals show hyperfine coupling to two phosphorus atoms. Complete bulk chemical reduction of complexes 1, 2, 3 and 4 with Na/Hg amalgam provided the corresponding nickel(0) complexes 1R, 2R, 3R and 4R which were isolated as red solutions or solids characterized by magnetic resonance properties and reaction products. Photolysis of these nickel(0) complexes leads to S-dealkylation to produce alkyl radicals and dithiolate nickel(II) complexes. Complex 3 crystallized in the monoclinic space group P2t/c with a=20.740(5), B=9.879(3), C=17.801(4) åA, ß=92.59(2)°, V=3644(2) Å3 and Z=4; complex 4: P21/c with A=13.815(4), B=13.815(4), C=15.457(5) åA, V=3365.4(14) Å3 and Z=4.  相似文献   

8.
Reaction of [NiCl2(dtbpe)] (dtbpe = 1,2-bis(di-tert-butylphosphino)ethane) with one equivalent of NaBArF4 (BArF4 = tetrakis[3,5-bis(trifluoromethyl)phenyl]borate) gives the dinuclear chloro-bridged nickel complex [Ni2(μ-Cl)2(dtbpe)2](BArF4)2 (1). [Ni(solv)6](BF4)2 reacts with dtbpe to give, depending on the solvent, the fluoro-bridged complex [Ni2(μ-F)2(dtbpe)2](BF4)2 (2) (solv = THF) or the mononuclear chelate complex [Ni(MeCN)2(dtbpe)](BF4)2 (3) (solv = MeCN). In 1-3, nickel cations are coordinated in a square-planar fashion according to X-ray crystallography. No Ni-Ni interaction was observed in dinuclear halogen-bridged complexes 1 and 2.  相似文献   

9.
Four nickel complexes each containing an R-2,2′-dipicolylamine ligand species (RDPA; R = benzyl, isopropyl, or tert-butyl) were synthesized and structurally characterized. In the absence of an interfering coordinating counterion, BzDPA and iPrDPA form 1:2 nickel:ligand complexes, with two facial ligands completing an pseudooctahedral nickel(II) coordination environment. In contrast, the sterically hindered tBuDPA ligand instead forms 1:1 metal:ligand complexes, even in the absence of associating counterions. Two novel tBuDPA nickel complexes with different counterions are described: nickel(II) chloride gives rise to an unusual 2Ni-3Cl dimer complex, while nickel(II) nitrate affords a 1:1 nickel:ligand complex which crystallizes with both fac and mer conformations in the same unit cell.  相似文献   

10.
The complexes [(L)Os(η6-Cym)Cl](PF6), Cym = p-cymene and L = bis(1-methylimidazol-2-yl)ketone (bik) or bis(1-methylimidazol-2-yl)glyoxal (big), were obtained and characterized with respect to spectroscopy, crystal structure (big complex) and (spectro)electrochemical behaviour at variable temperatures. DFT calculations confirm the structure of [(big)Os(η6-Cym)Cl]+ with imidazolyl-N-bonded OsII in a boat-shaped seven-membered chelate ring with small N-Os-N angles (<84°). Reduction of this compound proceeds reversibly to a neutral complex of the α-semidione radical anion ligand big; EPR and IR spectroelectrochemistry indicate very little participation from the heavy metal in the spin distribution. The analogous [(bik)Os(η6-Cym)Cl]+ could not be reduced reversibly to the ketyl radical complex but displayed a more reversible oxidation at high potential.  相似文献   

11.
Two four-coordinate nickel complexes, HB(tBuIm)3NiBr and HB(tBuIm)3NiNO, were prepared by reaction of a bulky tris(carbene)borate ligand with NiBr2(PPh3)2 and NiBr(NO)(PPh3)2, respectively, and structurally and spectroscopically characterized. In addition to standard techniques, high-frequency and -field electron paramagnetic resonance (HFEPR) was employed to understand the spin triplet (S = 1) ground state of the bromo complex. HFEPR, combined with electronic absorption spectroscopy allows comparison of this novel complex with other paramagnetic four-coordinate Ni(II) species. The tris(carbene)borate ligand is a stronger σ-donor than corresponding tris(pyrazolyl)borates (traditional “scorpionate” ligands). The tris(carbene)borate ligand may also act as a π-acceptor, in contrast to tris(pyrazolyl)borates, which show relatively little π-bonding interactions. The influence of tris(carbene)borate substituents on the donor strength of the ligand have been elucidated from IR spectroscopic investigations of {NiNO}10 derivatives. HFEPR spectra of HB(tBuIm)3NiBr exhibit hyperfine coupling from Br, which indicates the strong electronic interaction between Ni(II) and this halide ligand, consistent with studies on tris(pyrazolyl)borate Ni(II) complexes.  相似文献   

12.
The Schiff base formed by condensation of 2,6-diacetylpyridine with S-benzyldithiocarbazate (H2SNNNS) behaves as a pentadentate ligand, forming a nickel(II) complex of empirical formula Ni(SNNNS)·H2O that is high-spin with a room-temperature magnetic moment of 2.93 B.M. Spectroscopic data indicate that the ligand coordinates with the nickel(II) ion via the pyridine nitrogen atom, the azomethine nitrogen atom and the thiolate sulfur atom. The crystal and molecular structure of the nickel(II) complex was determined by X-ray crystallography. The complex crystallizes in the monoclinic system, space group C2/c, with a=15.849(2), b=18.830(2) and c=18.447(2) Å and =90°, β=102.179(6)°, γ=90° and Z=8. The crystal structure analysis shows that the complex is dinuclear, [Ni(SNNNS)]2·2H2O, in which the nickel(II) ions are bridged by the two pyridine nitrogen atoms of two fully deprotonated ligands. The NiN4S2 coordination geometry about each nickel(II) ion can be described as a distorted octahedron. The Schiff base and its nickel(II) complex were tested against four pathogenic bacteria (Bacillus subtilis, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus and B. subtilis (wild type B29) and pathogenic fungi (Saccharomyces ceciricae, Candida albicans, Candida lypolitica and Aspergillus ochraceous) to assess their antimicrobial properties. Both compounds exhibit mild antibacterial and antifungal activities against these organisms. The anticancer properties of these compounds were also evaluated against Human T-lymphoblastic leukaemia cell lines. The Schiff base exhibits marked cytotoxicity against these cells, but its nickel(II) complex is inactive.  相似文献   

13.
Formation of mono- and dinuclear complexes containing ligands stemmed from the condensation of 2,6-diformyl-4-methylphenol derivatives with 2-(diphenylphosphino)aniline (PN) was investigated. Condensation of PN with 2,6-diformyl-4-methylanisole yielded the desired bis(imine-phosphine) L3, but provided the cyclized benzoazaphospholium compound with 2,6-diformyl-4-methylphenol. Complexation of L3 with (COD)PdCl2 gave the dinuclear complex 4. On the other hand, L3 underwent the intramolecular cyclization in the presence of (DME)NiCl2 via the formation of benzoazaphospholium rings. Template condensation of 2,6-diformyl-4-methylphenol with PN in the presence of metal ions yielded the mononuclear nickel(II) and palladium(II) complexes, respectively.  相似文献   

14.
The synthesis of two derivatized NiII Schiff-base complexes is reported. Self-assembled monolayers (SAMs) have been obtained by reaction of coupling layers, functionalized glass substrates and the derivatized complex precursors. The self-assembled films have been characterized by contact angle measurements, X-ray photoelectron spectroscopy, and UV-Vis absorption spectroscopy. A structure of these SAMs is proposed on the basis of spectroscopic data and molecular metrical parameters.  相似文献   

15.
Few nickel(II) and copper(II) complexes have been prepared with three new indolecarboxamide ligands (H4L3, H4L4 and H4L5) offering two Namide and two Nindole donor sites to the metal center. The ligands carry electron-donating (-CH3); -H; and electron-withdrawing (-Cl) substituents on the phenylene backbone to evaluate their effect on the structure and redox properties of the metal complexes. One of the representative nickel complexes has been structurally characterized and reveals that the ligand create a distorted square-planar geometry around the metal center. The electrochemical results suggest that the Ni3+/2+ and Cu3+/2+ redox couple primarily depends on the tetra-anionic N4 donors; however, the electronic substituents shift the redox potentials by 285 mV. The observed M3+/2+ redox potentials (0.007-0.30 V versus SCE) for these complexes are considerably on lower side due to strong σ-donation from the tetra-deprotonated form of the indolecarboxamide ligands. Based on the redox investigations, the transient M3+ species were generated electrochemically and characterized by the absorption spectroscopy.  相似文献   

16.
The 31P CP-MAS NMR spectra of trans-square-planar complexes of dihalonickel(II) complexes with tribenzyl-, tricyclohexyl- and tricyclohexylmethylphosphines have been examined and the chemical shift tensors determined. The spans, δ11-δ33, of the tensor components decrease with change in the halide, Cl > Br > I, for all the tertiary phosphines due principally to the deshielding of the δ33 component.  相似文献   

17.
Reaction of thiosemicarbazones of salicylaldehyde, 2-hydroxyacetophenone and 2-hydroxynaphthaldehyde with Ni(ClO4)2·6H2O, using 2,2′-bipyridine as coligand, afforded three dinuclear complexes (1a, 1b and 1c). Similar reactions using 2,2′:6′2″-terpyridine as coligand yielded three mononuclear complexes (2a, 2b and 2c). Crystal structures of 1b and 2a have been determined. In the dinuclear complexes, one nickel center is surrounded octahedrally by a dianionic O,N,S-donor thiosemicarbazone, a bipyridine and the bridging phenolate oxygen of the other thiosemicarbazone. The second nickel center adopts a square-planar geometry created by the second O,N,S-coordinated thiosemicarbazone and the bridging sulfur of the first thiosemicarbazone. In the mononuclear complexes nickel is complexed by a monoanionic O,N,S-coordinated thiosemicarbazone and a terpyridine, and the cationic species are isolated as perchlorate salts. All these six complexes are paramagnetic (μeff = 2.63-2.92 B.M.) and in dimethylsulfoxide solution they show intense absorptions in the visible and ultraviolet region, origin of which has been probed through DFT calculations. Cyclic voltammetry on the complexes shows one irreversible oxidation of coordinated thiosemicarbazone on the positive side of SCE, and one irreversible reduction of the coordinated polypyridine ligand on the negative side. These nickel complexes are found to be efficient catalysts for Suzuki cross-coupling reactions.  相似文献   

18.
Copper(II) and nickel(II) complexes of potentially N2O4 Schiff base ligands 2-({[2-(2-{2-[(1-{2-hydroxy-5-[2-phenyl-1-diazenyl]phenyl}methylidene)amino] phenoxy}ethoxy) phenyl]imino}methyl)4-[2-phenyl-1-diazenyl]phenol (H2L1) and 2-({[2-(4-{2-[(1-{2-hydroxy-5-[2-phenyl-1-diazenyl]phenyl}methylidene)amino] phenoxy}butoxy) phenyl]imino}methyl)4-[2-phenyl-1-diazenyl]phenol (H2L2) prepared of 5-phenylazo salicylaldehyde (1) and two various diamines 2-[2-(2-aminophenoxy)ethoxy]aniline (2) and 2-[4-(2-aminophenoxy)butoxy]aniline (3) were synthesized and characterized by a variety of physico-chemical techniques. The single-crystal X-ray diffractions are reported for CuL1 and NiL2. The CuL1 complex contains copper(II) in a near square-planar environment of N2O2 donors. The NiL2 complex contains nickel(II) in a distorted octahedral geometry coordination of N2O4 donors. In all complexes, H2L1 behaves as a tetradentate and H2L2 acts as a hexadentate ligand. Cyclic voltammetry of copper(II) complexes indicate a quasi-reversible redox wave in the negative potential range.  相似文献   

19.
A series of small model complexes made from Ni(II) and the ligands ethylenediamine (en), histamine (hist), and histidylleucine (HisLeu) were prepared and studied as potential hydrolytic DNA-cleavage agents. The stability constants and species-distribution curves for these complexes were determined as a function of pH. The 1 : 1 : 1 ternary complexes [Ni(II)(en)(HisLeu)] (1) and [Ni(II)(hist)(HisLeu)] (2) were the only major species present at the physiologically relevant pH of 6-7, as further corroborated by ESI-MS analysis. The complex geometries of 1 and 2 were analyzed by UV/VIS experiments and molecular dynamics (MD) simulations. Both ternary complexes were found to intercalate with DNA, as shown by UV/VIS, thermal-denaturation, and fluorescence-titration studies with ethidium bromide (EB). The intrinsic binding constants (K(b)) for the bound complexes 1DNA and 2DNA were determined as 150 and 290, resp. Gel-electrophoresis experiments revealed that 1 and 2 cleave supercoiled (type-I) to nicked-circular (type-II) DNA at physiological pH, with rate constants of 0.64 and 0.75 h(-1), resp. A tentative mechanism for this hydrolytic cleavage is proposed.  相似文献   

20.
The dinuclear terephthalato-bridged nickel(II) complexes [Ni2(cyclen)2(μ-tp)](ClO4)2 (1) [Ni2(trpn)2(μ-tp)(H2O)2](ClO4)2 (2) and [Ni2(3,3,3-tet)2(μ-tp)(H2O)2](ClO4)2 · 2H2O (3), where tp = terephthalate dianion, cyclen = 1,4,7,10-tetraazacyclododecane, trpn = tris(3-aminopropyl)amine and 3,3,3-tet = 1,5,9,13-tetraazatridecane, were synthesized and structurally characterized by X-ray crystallography. Their magnetic susceptibilities were also determined at variable temperatures over the range 2-300 K. The structures of these complexes consist of μ-tp bridging two Ni(II) centers in a bis(bidentate) bonding fashion in 1 and in bis(monodentate) bonding fashion in 2 and 3. The coordination geometry around the Ni(II) ions in these compounds has a distorted octahedral geometry with four nitrogen atoms from the amine ligand (cyclen, trpn or 3,3,3-tet) and two coordinated oxygen atoms supplied by the chelated carboxylate group of the bridged terephthalate ligand in 1, and by one tp-carboxylate-oxygen in 2 and 3. The sixth coordination site in the last two complexes 2 and 3 is achieved via an oxygen atom from a coordinated water molecule. The intradimer Ni…Ni distances in these complexes are 10.740, 11.428 and 11.537 Å for 1, 2 and 3, respectively. The electronic spectra of the complexes in aqueous solutions are in complete agreement with the assigned X-ray geometry around the Ni(II) centers. Also, the analysis of the infrared spectral data for the ν(COO) stretching frequencies of the tp-carboxalato groups reveals the existence of the bis(bidentate) and bis(monodentate) coordination modes for the bridged terephthalate ligand in 1, 2 and 3, respectively. Despite the different coordination modes of the tp bridging ligand in these complexes, they all exhibit very weak antiferromagnetic coupling. The coupling constants J were found to be −2.2, −0.6 and −1.5 cm3 K mol−1 for the complexes 1, 2 and 3, respectively. The structural and magnetic results of 1-3 are discussed in relation to the other related published μ-terephthalato dinuclear Ni(II) compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号