首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondria are both targets and sources of oxidative stress. This dual relationship is particularly evident in experimental paradigms modeling ischemic brain injury. One mitochondrial metabolic enzyme that is particularly sensitive to oxidative inactivation is pyruvate dehydrogenase. This reaction is extremely important in the adult CNS that relies very heavily on carbohydrate metabolism, as it represents the sole bridge between anaerobic and aerobic metabolism. Oxidative injury to this enzyme and to other metabolic enzymes proximal to the electron transport chain may be responsible for the oxidized shift in cellular redox state that is observed during approximately the first hour of cerebral reperfusion. In addition to impairing cerebral energy metabolism, oxidative stress is a potent activator of apoptosis. The mechanisms responsible for this activation are poorly understood but likely involve the expression of p53 and possibly direct effects of reactive oxygen species on mitochondrial membrane proteins and lipids. Mitochondria also normally generate reactive oxygen species and contribute significantly to the elevated net production of these destructive agents during reperfusion. Approaches to inhibiting pathologic mitochondrial generation of reactive oxygen species include mild uncoupling, pharmacologic inhibition of the membrane permeability transition, and simply lowering the concentration of inspired oxygen. Antideath mitochondrial proteins of the Bcl-2 family also confer cellular resistance to oxidative stress, paradoxically through stimulation of mitochondrial free radical generation and secondary upregulation of antioxidant gene expression.  相似文献   

2.
3.
Adriamycin (ADR) is a chemotherapeutic agent useful in treating various cancers. ADR is a quinone-containing anthracycline chemotherapeutic and is known to produce reactive oxygen species (ROS) in heart. Application of this drug can have serious side effects in various tissues, including brain, apart from the known cardiotoxic side effects, which limit the successful use of this drug in treatment of cancer. Neurons treated with ADR demonstrate significant protein oxidation and lipid peroxidation. Patients under treatment with this drug often complain of forgetfulness, lack of concentration, dizziness (collectively called somnolence or sometimes called chemobrain). In this study, we tested the hypothesis that ADR induces oxidative stress in brain. Accordingly, we examined the in vivo levels of brain protein oxidation and lipid peroxidation induced by i.p. injection of ADR. We also measured levels of the multidrug resistance-associated protein (MRP1) in brain isolated from ADR- or saline-injected mice. MRP1 mediates ATP-dependent export of cytotoxic organic anions, glutathione S-conjugates and sulphates. The current results demonstrated a significant increase in levels of protein oxidation and lipid peroxidation and increased expression of MRP1 in brain isolated from mice, 72 h post i.p injection of ADR. These results are discussed with reference to potential use of this redox cycling chemotheraputic agent in the treatement of cancer and its chemobrain side effect in brain.  相似文献   

4.
Andrea Dlasková 《BBA》2010,1797(8):1470-1476
We provide evidence that ablation or inhibition of, uncoupling protein 1 increases the rate of reactive oxygen containing species production by mitochondria from brown adipose tissue, no matter what electron transport chain substrate is used (succinate, glycerol-3-phosphate or pyruvate/malate). Consistent with these data are our observations that (a) the mitochondrial membrane potential is maximal when uncoupling protein 1 is ablated or inhibited and (b) oxygen consumption rates in mitochondria from uncoupling protein 1 knock-out mice, are significantly lower than those from wild-type mice, but equivalent to those from wild-type mice in the presence of GDP. In summary, we show that uncoupling protein 1 can affect reactive oxygen containing species production by isolated mitochondria from brown adipose tissue.  相似文献   

5.
During CNS injury and diseases, nitric oxide (NO) is released at a high flux rate leading to formation of peroxynitrite (ONOO) and other reactive nitrogenous species, which nitrate tyrosines of proteins to form 3-nitrotyrosine (3NY), leading to cell death. Previously, we have found that motor neurons exposed to low levels of NO become resistant to subsequent cytotoxic NO challenge; an effect dubbed induced adaptive resistance (IAR). Here, we report IAR mitigates, not only cell death, but 3NY formation in response to cytotoxic NO. Addition of an NO scavenger before NO challenge duplicates IAR, implicating reactive nitrogenous species in cell death. Addition of uric acid (a peroxynitrite scavenger) before cytotoxic NO challenge, duplicates IAR, implicating peroxynitrite, with subsequent 3NY formation, in cell death, and abrogation of this pathway as a mechanism of IAR. IAR is dependent on the heme-metabolizing enzyme, heme oxygenase-1 (HO1), as indicated by the elimination of IAR by a specific HO1 inhibitor, and by the finding that neurons isolated from HO1 null mice have increased NO sensitivity with concomitant increased 3NY formation. This data indicate that IAR is an HO1-dependent mechanism that prevents peroxynitrite-mediated NO toxicity in motor neurons, thereby elucidating therapeutic targets for the mitigation of CNS disease and injury.  相似文献   

6.
Inhibition of the mitochondrial electron transport chain (ETC) ultimately limits ATP production and depletes cellular ATP. However, the individual complexes of the ETC in brain mitochondria need to be inhibited by approximately 50% before causing significant depression of ATP synthesis. Moreover, the ETC is the key site for the production of intracellular reactive oxygen species (ROS) and inhibition of one or more of the complexes of the ETC may increase the rate of mitochondrial ROS generation. We asked whether partial inhibition of the ETC, to a degree insufficient to perturb oxidative phosphorylation, might nonetheless induce ROS production. Chronic increase in mitochondrial ROS might then cause oxidative damage to the ETC sufficient to produce prolonged changes in ETC function and so compound the defect. We show that the exposure of astrocytes in culture to low concentrations of nitric oxide (NO) induces an increased rate of O2*- generation that outlasts the presence of NO. No effect was seen on oxygen consumption, lactate or ATP content over the 4-6 h that the cells were exposed to NO. These data suggest that partial ETC inhibition by NO may initially cause oxidative stress rather than ATP depletion, and this may subsequently induce irreversible changes in ETC function providing the basis for a cycle of damage.  相似文献   

7.
Nitric oxide (NO) has been involved in many pathophysiological brain processes. However, the exact role of NO in the cognitive deficit associated to chronic stress exposure has not been elucidated. In this study, we investigated the participation of hippocampal NO production and their regulation by protein kinase C (PKC) in the memory impairment induced in mice subjected to chronic mild stress model (CMS). CMS mice showed a poor learning performance in both open field and passive avoidance inhibitory task respect to control mice. Histological studies showed a morphological alteration in the hippocampus of CMS mice. On the other hand, chronic stress induced a diminished NO production by neuronal nitric oxide synthase (nNOS) correlated with an increment in gamma and zeta PKC isoenzymes. Partial restoration of nNOS activity was obtained after PKC activity blockade. NO production by inducible nitric oxide synthase isoform was not detected. The magnitude of oxidative stress, evaluated by reactive oxygen species production, after excitotoxic levels of NMDA was increased in hippocampus of CMS mice. Moreover, ROS formation was higher in the presence of nNOS inhibitor in both control and CMS mice. Finally, treatment of mice with nNOS inhibitors results in behavioural alterations similar to those observed in CMS animals. These findings suggest a novel role for nNOS showing protective activity against insults that trigger tissue toxicity leading to memory impairments.  相似文献   

8.
Photodynamic therapy is selective destruction of cells stained with a photosensitizer upon irradiation with light at a specific wavelength in the presence of oxygen. Cell death upon photodynamic treatment is known to occur mainly due to free radical production and subsequent development of oxidative stress. During photodynamic therapy of brain tumors, healthy cells are also damaged; considering this, it is important to investigate the effect of the treatment on normal neurons and glia. We employed live-cell imaging technique to investigate the cellular mechanism of photodynamic action of radachlorin (200 nM) on neurons and astrocytes in primary rat cell culture. We found that the photodynamic effect of radachlorin increases production of reactive oxygen species measured by dihydroethidium and significantly decrease mitochondrial membrane potential. Mitochondrial depolarization was independent of opening of mitochondrial permeability transition pore and was insensitive to blocker of this pore cyclosporine A. However, irradiation of cells with radachlorin dramatically decreased NADH autofluorescence and also reduced mitochondrial NADH pool suggesting inhibition of mitochondrial respiration by limitation of substrate. This effect could be prevented by inhibition of poly (ADP-ribose) polymerase (PARP) with DPQ. Thus, irradiation of neurons and astrocytes in the presence of radachlorin leads to activation of PARP and decrease in NADH that leads to mitochondrial dysfunction.  相似文献   

9.
Antioxidant systems against reactive oxygen species (ROS) are important factors in regulating homeostasis in various cells, tissues, and organs. Although ROS are known to cause to muscular disorders, the effects of mitochondrial ROS in muscle physiology have not been fully understood. Here, we investigated the effects of ROS on muscle mass and function using mice deficient in peroxiredoxin 3 (Prx3), which is a mitochondrial antioxidant protein. Ablation of Prx3 deregulated the mitochondrial network and membrane potential of myotubes, in which ROS levels were increased. We showed that the DNA content of mitochondria and ATP production were also reduced in Prx3-KO muscle. Of note, the mitofusin 1 and 2 protein levels decreased in Prx3-KO muscle, a biochemical evidence of impaired mitochondrial fusion. Contractile dysfunction was examined by measuring isometric forces of isolated extensor digitorum longus (EDL) and soleus muscles. Maximum absolute forces in both the EDL and the soleus muscles were not significantly affected in Prx3-KO mice. However, fatigue trials revealed that the decrease in relative force was greater and more rapid in soleus from Prx3-KO compared to wild-type mice. Taken together, these results suggest that Prx3 plays a crucial role in mitochondrial homeostasis and thereby controls the contractile functions of skeletal muscle.  相似文献   

10.
A variety of hepatobiliary abnormalities occur in inflammatory bowel diseases (IBDs). The role of tight junction (TJ) in hepatobiliary complications have been well described. The purpose of this study was to investigate the role of inducible nitric oxide (NOS) in alteration of hepatocyte TJ paracellular barrier and in the rapid transcytotic vesicular pathway modification associated with intestinal inflammation. To address this question, we used an experimental model of colitis, induced by dinitrobenzene sulfonic acid (DNBS). When compared to DNBS-treated iNOS wild-type (WT) mice, DNBS-treated iNOS knock out mice (iNOSKO) mice experienced a significant less rate of the extent and severity of the histological signs of colon injury. Colon levels of the pro-inflammatory cytokines tumour necrosis factor, interleukin-1beta and interleukin-6 were also significantly reduced in iNOS-KO mice in comparison to wild-type mice. Liver histology from iNOSKO and wild-type mice iNOSWT did not show any parenchymal and portal tract inflammation at 4 days after DNBS administration. Serum total bilirubin and alanine aminotransferase, were significantly reduced in DNBS-iNOSKO mice vs DNBS-iNOSKO mice. Therefore, we found an increase of tight junctional permeability to lanthanum nitrate (molecular weight, 433) in the livers from DNBS-treated IL-10WT mice, lanthanum accumulated throughout the junctional area up to the most apical region bordering the lumen. Absence of a functional iNOS gene in iNOSKO mice resulted in a significant reduction of apical diffusion of lanthanum after DNBS-induced colitis. Immunofluorescent labeling of frozen liver sections from DNBS-iNOSWT mice showed a significant alteration of the immunolocalization for claudin-1 and zonula occludens (ZO)-1. In contrast, a significant reduced alteration in the localization of the immunosignals for claudin-1 and ZO-1 was observed in the liver from iNOSKO mice after DNBS administration. In conclusion, we suggest that the iNOS may represent an important pathophysiological mechanism of hepatobiliary injuries and cholestasis observed in patients with IBD.  相似文献   

11.
Mitochondrial Impairment in the Developing Brain After Hypoxia–Ischemia   总被引:3,自引:0,他引:3  
The pattern of cell death in the immature brain differs from that seen in the adult CNS. During normal development, more than half of the neurons are removed through apoptosis, and mediators like caspase-3 are highly upregulated. The contribution of apoptotic mechanisms in cell death appears also to be substantial in the developing brain, with a marked activation of downstream caspases and signs of DNA fragmentation. Mitochondria are important regulators of cell death through their role in energy metabolism and calcium homeostasis, and their ability to release apoptogenic proteins and to produce reactive oxygen species. We find that secondary brain injury is preceded by impairment of mitochondrial respiration, signs of membrane permeability transition, intramitochondrial accumulation of calcium, changes in the Bcl-2 family proteins, release of proapoptotic proteins (cytochrome C, apoptosis inducing factor) and downstream activation of caspase-9 and caspase-3 after hypoxia-ischemia. These data support the involvement of mitochondria-related mechanisms in perinatal brain injury.  相似文献   

12.
Alpha-synuclein, a protein implicated in the pathogenesis of Parkinson disease (PD), is thought to affect mitochondrial functions, although the mechanisms of its action remain unclear. In this study we show that the N-terminal 32 amino acids of human alpha-synuclein contain cryptic mitochondrial targeting signal, which is important for mitochondrial targeting of alpha-synuclein. Mitochondrial imported alpha-synuclein is predominantly associated with the inner membrane. Accumulation of wild-type alpha-synuclein in the mitochondria of human dopaminergic neurons caused reduced mitochondrial complex I activity and increased production of reactive oxygen species. However, these defects occurred at an early time point in dopaminergic neurons expressing familial alpha-synuclein with A53T mutation as compared with wild-type alpha-synuclein. Importantly, alpha-synuclein that lacks mitochondrial targeting signal failed to target to the mitochondria and showed no detectable effect on complex I function. The PD relevance of these results was investigated using mitochondria of substantia nigra, striatum, and cerebellum of postmortem late-onset PD and normal human brains. Results showed the constitutive presence of approximately 14-kDa alpha-synuclein in the mitochondria of all three brain regions of normal subjects. Mitochondria of PD-vulnerable substantia nigra and striatum but not cerebellum from PD subjects showed significant accumulation of alpha-synuclein and decreased complex I activity. Analysis of mitochondria from PD brain and alpha-synuclein expressing dopaminergic neuronal cultures using blue native gel electrophoresis and immunocapture technique showed the association of alpha-synuclein with complex I. These results provide evidence that mitochondrial accumulated alpha-synuclein may interact with complex I and interfere with its functions.  相似文献   

13.
We measured the contribution of mitochondrial nitric oxide synthase (mtNOS) and respiratory chain enzymes to reactive nitrogen species (RNS) production. Diaminofluorescein (DAF) was applied for the assessment of RNS production in isolated mouse brain, heart and liver mitochondria and also in a cultured neuroblastoma cell line by confocal microscopy and flow cytometry. Mitochondria produced RNS, which was inhibited by catalysts of peroxynitrite decomposition but not by nitric oxide (NO) synthase inhibitors. Disrupting the organelles or withdrawing respiratory substrates markedly reduced RNS production. Inhibition of complex I abolished the DAF signal, which was restored by complex II substrates. Inhibition of the respiratory complexes downstream from the ubiquinone/ubiquinol cycle or dissipating the proton gradient had no effect on DAF fluorescence. We conclude that mitochondria from brain, heart and liver are capable of significant RNS production via the respiratory chain rather than through an arginine-dependent mtNOS.  相似文献   

14.
Rett syndrome (RTT) is a pervasive neurodevelopmental disorder mainly caused by mutations in the X-linked MECP2 gene associated with severe intellectual disability, movement disorders, and autistic-like behaviors. Its pathogenesis remains mostly not understood and no effective therapy is available. High circulating levels of oxidative stress markers in patients and the occurrence of oxidative brain damage in MeCP2-deficient mouse models suggest the involvement of oxidative stress in RTT pathogenesis. However, the molecular mechanism and the origin of the oxidative stress have not been elucidated. Here we demonstrate that a redox imbalance arises from aberrant mitochondrial functionality in the brain of MeCP2-308 heterozygous female mice, a condition that more closely recapitulates that of RTT patients. The marked increase in the rate of hydrogen peroxide generation in the brain of RTT mice seems mainly produced by the dysfunctional complex II of the mitochondrial respiratory chain. In addition, both membrane potential generation and mitochondrial ATP synthesis are decreased in RTT mouse brains when succinate, the complex II respiratory substrate, is used as an energy source. Respiratory chain impairment is brain area specific, owing to a decrease in either cAMP-dependent phosphorylation or protein levels of specific complex subunits. Further, we investigated whether the treatment of RTT mice with the bacterial protein CNF1, previously reported to ameliorate the neurobehavioral phenotype and brain bioenergetic markers in an RTT mouse model, exerts specific effects on brain mitochondrial function and consequently on hydrogen peroxide production. In RTT brains treated with CNF1, we observed the reactivation of respiratory chain complexes, the rescue of mitochondrial functionality, and the prevention of brain hydrogen peroxide overproduction. These results provide definitive evidence of mitochondrial reactive oxygen species overproduction in RTT mouse brain and highlight CNF1 efficacy in counteracting RTT-related mitochondrial defects.  相似文献   

15.
Cerebral ischemia-reperfusion (IR) injury is associated with mitochondrial damage. Macrophage-stimulating 1 (MST1) reportedly stimulates mitochondrial apoptosis by suppressing BCL-2. We investigated whether MST1 promotes the progression of cerebral IR injury by inducing mitochondrial dysfunction in vivo and in vitro. Western blot analysis, quantitative polymerase chain reaction, immunofluorescence, and mitochondrial function assays were conducted in cells from wild-type and Mst1-knockout mice subjected to cerebral IR injury. MST1 expression in wild-type glial cells increased following cerebral IR injury. Cerebral IR injury reduced the mitochondrial membrane potential and mitochondrial metabolism in glial cells, while it enhanced mitochondrial reactive oxygen species generation and mitochondrial calcium levels in these cells. The deletion of Mst1 attenuated cerebral IR injury by improving mitochondrial function and reducing mitochondrial damage. The mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway was suppressed in wild-type glial cell upon cerebral IR injury but was reactivated in Mst1-knockout glial cell. Accordingly, blocking the MAPK/ERK pathway abolished the beneficial effects of Mst1 deletion during cerebral IR injury by inducing mitochondrial damage in glial cells. Our results suggest that cerebral IR injury is associated with MST1 upregulation in the brain, while the genetic ablation of Mst1 can attenuate mitochondrial damage and sustain brain function following cerebral IR injury.  相似文献   

16.
Cardiolipin (CL) is a key mitochondrial phospholipid essential for mitochondrial energy production. CL is remodeled from monolysocardiolipin (MLCL) by the enzyme tafazzin (TAZ). Loss-of-function mutations in the gene which encodes TAZ results in a rare X-linked disorder called Barth Syndrome (BTHS). The mutated TAZ is unable to maintain the physiological CL:MLCL ratio, thus reducing CL levels and affecting mitochondrial function. BTHS is best known as a cardiac disease, but has been acknowledged as a multi-syndrome disorder, including cognitive deficits. Since reduced CL levels has also been reported in numerous neurodegenerative disorders, we examined how TAZ-deficiency impacts cognitive abilities, brain mitochondrial respiration and the function of hippocampal neurons and glia in TAZ knockdown (TAZ kd) mice. We have identified for the first time the profile of changes that occur in brain phospholipid content and composition of TAZ kd mice. The brain of TAZ kd mice exhibited reduced TAZ protein expression, reduced total CL levels and a 19-fold accumulation of MLCL compared to wild-type littermate controls. TAZ kd brain exhibited a markedly distinct profile of CL and MLCL molecular species. In mitochondria, the activity of complex I was significantly elevated in the monomeric and supercomplex forms with TAZ-deficiency. This corresponded with elevated mitochondrial state I respiration and attenuated spare capacity. Furthermore, the production of reactive oxygen species was significantly elevated in TAZ kd brain mitochondria. While motor function remained normal in TAZ kd mice, they showed significant memory deficiency based on novel object recognition test. These results correlated with reduced synaptophysin protein levels and derangement of the neuronal CA1 layer in hippocampus. Finally, TAZ kd mice had elevated activation of brain immune cells, microglia compared to littermate controls. Collectively, our findings demonstrate that TAZ-mediated remodeling of CL contributes significantly to the expansive distribution of CL molecular species in the brain, plays a key role in mitochondria respiratory activity, maintains normal cognitive function, and identifies the hippocampus as a potential therapeutic target for BTHS.  相似文献   

17.
Uncoupling protein 2 (UCP2) is suggested to be a regulator of reactive oxygen species production in mitochondria. We performed a detailed study of brain injury, including regional and cellular distribution of UCP2 mRNA, as well as measures of oxidative stress markers following permanent middle cerebral artery occlusion in UCP2 knockout (KO) and wild-type (WT) mice. Three days post ischemia, there was a massive induction of UCP2 mRNA confined to microglia in the peri-infarct area of WT mice. KO mice were less sensitive to ischemia as assessed by reduced brain infarct size, decreased densities of deoxyuridine triphosphate nick end-labelling (TUNEL)-labelled cells in the peri-infact area and lower levels of lipid peroxidation compared with WT mice. This resistance may be related to the substantial increase of basal manganese superoxide dismutase levels in neurons of KO mice. Importantly, we found a specific decrease of mitochondrial glutathione (GSH) levels in UCP2 expressing microglia of WT, but not in KO mice after ischemia. This specific association between UCP2 and mitochondrial GSH levels regulation was further confirmed using lipopolysaccharide models of peripheral inflammation, and in purified peritoneal macrophages. Moreover, our data imply that UCP2 is not directly involved in the regulation of ROS production but acts by regulating mitochondrial GSH levels in microglia.  相似文献   

18.
Reactive oxygen species (ROS) are known to be involved in the pathogenesis of traumatic brain injury (TBI). Previous studies have shown that the susceptibility of mice to TBI-induced formation of cortical lesion is determined by the expression levels of copper-zinc and manganese superoxide dismutase (CuZnSOD and MnSOD, respectively). However, the underlying biochemical mechanisms are not understood. In this study, we measured the efficiency of mitochondrial respiration in mouse brains with altered expression of these two enzymes. While controlled cortical impact injury (CCII) with a deformation depth of 2 mm caused a drastic decrease in NAD-linked bioenergetic capacity in brain mitochondria of wild-type mice, the functional decrease was not observed in brains of littermate transgenic mice overexpressing CuZnSOD or MnSOD. In addition, a 1 mm CCII greatly compromised brain mitochondrial function in mice deficient in CuZnSOD or MnSOD, but not wild-type mice. Inclusion of the calcium-chelating agent, EGTA, in the assay solution could completely prevent dysfunction of oxidative phosphorylation in all mitochondrial samples, suggesting that the observed impairment of mitochondrial function was a result of calcium overloading. In conclusion, our results imply that mitochondrial dysfunction induced by superoxide anion radical contributes to lesion formation in mouse brain following physical trauma.  相似文献   

19.
《Cytokine》2014,70(2):255-262
Activin A, a member of the transforming growth factor-β superfamily, is stimulated early in inflammation via the Toll-like receptor (TLR) 4 signalling pathway, which is also activated in myocardial ischaemia–reperfusion. Neutralising activin A by treatment with the activin-binding protein, follistatin, reduces inflammation and mortality in several disease models. This study assesses the regulation of activin A and follistatin in a murine myocardial ischaemia–reperfusion model and determines whether exogenous follistatin treatment is protective against injury. Myocardial activin A and follistatin protein levels were elevated following 30 min of ischaemia and 2 h of reperfusion in wild-type mice. Activin A, but not follistatin, gene expression was also up-regulated. Serum activin A did not change significantly, but serum follistatin decreased. These responses to ischaemia–reperfusion were absent in TLR4−/− mice. Pre-treatment with follistatin significantly reduced ischaemia–reperfusion induced myocardial infarction. In mouse neonatal cardiomyocyte cultures, activin A exacerbated, while follistatin reduced, cellular injury after 3 h of hypoxia and 2 h of re-oxygenation. Neither activin A nor follistatin affected hypoxia-reoxygenation induced reactive oxygen species production by these cells. However, activin A reduced cardiomyocyte mitochondrial membrane potential, and follistatin treatment ameliorated the effect of hypoxia-reoxygenation on cardiomyocyte mitochondrial membrane potential. Taken together, these data indicate that myocardial ischaemia–reperfusion, through activation of TLR4 signalling, stimulates local production of activin A, which damages cardiomyocytes independently of increased reactive oxygen species. Blocking activin action by exogenous follistatin reduces this damage.  相似文献   

20.
The amino acid leucine causes an increase of collagen alpha1(I) synthesis in hepatic stellate cells through the activation of translational regulatory mechanisms and PI3K/Akt/mTOR and ERK signaling pathways. The aim of the present study was to evaluate the role played by reactive oxygen species on these effects. Intracellular reactive oxygen species levels were increased in hepatic stellate cells incubated with leucine 5 mM at early time points, and this effect was abolished by pretreatment with the antioxidant glutathione. Preincubation with glutathione also prevented 4E-BP1, eIF4E and Mnk-1 phosphorylation induced by leucine, as well as enhancement of procollagen alpha1(I) protein levels. Inhibitors for MEK-1 (PD98059), PI3K (wortmannin) or mTOR (rapamycin) did not affect leucine-induced reactive oxygen species production. However, preincubation with glutathione prevented ERK, Akt and mTOR phosphorylation caused by treatment with leucine. The mitochondrial electron chain inhibitor rotenone and the NADPH oxidase inhibitor apocynin prevented reactive oxygen species production caused by leucine. Leucine also induced an increased phosphorylation of IR/IGF-R that was abolished by pretreatment with either rotenone or apocynin. Therefore, leucine exerts on hepatic stellate cells a prooxidant action through NADPH oxidase and mitochondrial Reactive oxygen species production and these effects mediate the activation of IR/IGF-IR and signaling pathways, finally leading to changes in translational regulation of collagen synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号